JPS58218159A - Complementary type metal oxide semiconductor device - Google Patents

Complementary type metal oxide semiconductor device

Info

Publication number
JPS58218159A
JPS58218159A JP57100311A JP10031182A JPS58218159A JP S58218159 A JPS58218159 A JP S58218159A JP 57100311 A JP57100311 A JP 57100311A JP 10031182 A JP10031182 A JP 10031182A JP S58218159 A JPS58218159 A JP S58218159A
Authority
JP
Japan
Prior art keywords
well region
layer
type
region
type silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57100311A
Other languages
Japanese (ja)
Inventor
Satoshi Konishi
小西 「さ」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57100311A priority Critical patent/JPS58218159A/en
Publication of JPS58218159A publication Critical patent/JPS58218159A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Abstract

PURPOSE:To prevent a latch-up phenomenon, and to improve performance and increase density by forming a high resistance layer to one part of a boundary between a semiconductor base body and a well region formed in insular manner. CONSTITUTION:A p<-> type silicon layer 22 and an n<-> type layer 23 are grown on an n type silicon substrate 21 in an epitaxial manner in succession. A resist pattern 26 is formed, and a phosphorus ion implanted layer 27 is formed selectively extending over the n<-> type silicon layer 23 and the p<-> type silicon layer 22. The insular p-well region 29 and a p<-> type impurity layer (the high resistance layer) 30 are formed through heat treatment. With a CMOS manufactured through several processes, density can be increased because the latch-up phenomenon can be prevented by the high resistance layer 30 formed in the depth direction of the semiconductor base body without forming a guard ring region.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は相補型MOS半導体装置の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to improvements in complementary MOS semiconductor devices.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

相補型MOS半導体装置(以下CMOSと略す)は例え
ば島状のpウェル領域が形成されたn型半導体基板を用
い、pウェル領域表面にnチャンネルMOSトランジス
タ、pウェル以外の半導体基板の表面領域に、pチャン
ネルMOSトランジスタを夫々設けた構成になっている
。こうしたCMOSを組込んだ回路は単一チャンネルの
MOSトランジスタ回路に比べて消費電力の点で優れて
いる。このため高集積化に伴なう回路の発熱が問題視さ
れている超LSIにおいてはCMOSにより回路を形成
することが適している。
A complementary MOS semiconductor device (hereinafter abbreviated as CMOS) uses, for example, an n-type semiconductor substrate on which an island-shaped p-well region is formed, an n-channel MOS transistor on the surface of the p-well region, and an n-channel MOS transistor on the surface region of the semiconductor substrate other than the p-well. , p-channel MOS transistors are provided, respectively. A circuit incorporating such a CMOS is superior in terms of power consumption compared to a single channel MOS transistor circuit. For this reason, it is suitable to form circuits using CMOS in VLSIs where heat generation in circuits due to higher integration is considered a problem.

ところで、従来のCMOSは第1図に示す構造になって
いる。即ち、図中の1はn型半導体基板であり、この基
板1にはp−ウェル領域2が選択的に設けられている。
By the way, a conventional CMOS has a structure shown in FIG. That is, 1 in the figure is an n-type semiconductor substrate, and a p-well region 2 is selectively provided in this substrate 1.

ウェル領域2以外の基板1表面には互に電気的に分離さ
れたp+型のソース、ドレイン領域3、4が設けられ、
これら領域3、4間の基板1上にはゲート酸化膜5を介
してゲート電極6が設けられている。こうしたp+型の
ソース、ドレイン領域3、4、ゲート電極6等によりp
チャンネルMOSトランジスタが構成されている。なお
、図中の7は基板1に設けられ、前記pチャンネルMO
Sトランジスタの基板バイアス電位としてVDDを与え
るn+型領域である。さらに、前記p−ウェル領域2の
表面には互に電気的に分離されたn+型のソース、ドレ
イン領域8、9が設けられ、これらソース、ドレイン領
域8、9間のウェル領域2上にはゲート酸化膜10を介
してゲート電極11が設けられている。こうしたn+型
ソース、ドレイン領域8、9、ゲート電極11等により
nチャンネルMOSトランジスタが構成されている。な
お、図中の12はp−ウェル領域2に設けられ、前記n
チャンネルMOSトランジスタの基板バイアスとしてV
SS電位を与えるp+型領域である。このようなCMO
Sで形成された回路は最も単純なインバータ回路となり
、各トランジスタのゲート電極6、11はアルミニウム
配線等で結線されて入力Vin側となり、p+型、n+
型のドレイン領域4、9間もアルミニウム配線等で結線
され、出力Voutとなる。また、pチャンネルMOS
トランジスタのp+型ソース領域3と電位印加用n+型
領域7とはアルミニウム配線等により電気的に電源VD
Dに接続されている。一方、nチャンネルMOSトラン
ジスタのn+型ソース領域8と電位印加用p+型領域1
2とはアルミニウム配線等により電気的に基準電源VS
Sに接続されている。
P+ type source and drain regions 3 and 4 electrically isolated from each other are provided on the surface of the substrate 1 other than the well region 2,
A gate electrode 6 is provided on the substrate 1 between these regions 3 and 4 with a gate oxide film 5 interposed therebetween. These p+ type source and drain regions 3, 4, gate electrode 6, etc.
A channel MOS transistor is configured. Note that 7 in the figure is provided on the substrate 1, and the p-channel MO
This is an n+ type region that provides VDD as the substrate bias potential of the S transistor. Furthermore, n+ type source and drain regions 8 and 9 which are electrically isolated from each other are provided on the surface of the p-well region 2, and on the well region 2 between these source and drain regions 8 and 9, A gate electrode 11 is provided with a gate oxide film 10 interposed therebetween. The n+ type source, drain regions 8, 9, gate electrode 11, etc. constitute an n-channel MOS transistor. Note that 12 in the figure is provided in the p-well region 2, and
V as the substrate bias of the channel MOS transistor
This is a p+ type region that provides an SS potential. This kind of CMO
The circuit formed by S is the simplest inverter circuit, and the gate electrodes 6 and 11 of each transistor are connected with aluminum wiring etc. and become the input Vin side, p+ type, n+ type.
The drain regions 4 and 9 of the mold are also connected by aluminum wiring or the like, and become an output Vout. Also, p-channel MOS
The p+ type source region 3 and potential application n+ type region 7 of the transistor are electrically connected to the power supply VD by aluminum wiring or the like.
Connected to D. On the other hand, the n+ type source region 8 of the n-channel MOS transistor and the p+ type region 1 for potential application.
2 is electrically reference power supply VS using aluminum wiring, etc.
Connected to S.

しかしながら、上述したCMOS構造においてはnチャ
ンネルMOSトランジスタのn+型ソース領域8とp−
ウェル領域2とn型半導体基板1を夫々エミッタ、ベー
ス、コレクタとする寄生npnトランジスタQn、並び
にpチャンネルMOSトランジスタのp+型ソース領域
3とn型半導体基板1とp−ウェル領域2を夫々エミッ
タ、ベース、コレクタとする寄生pnpトランジスタQ
pが形成される。なお、第1図の各寄生トランジスタQ
n、Qpは夫々1つしか示さなかったが、実際には広く
分布されている。このような寄生npnトランジスタQ
n、寄生pnpトランジスタQpが形成されると、動作
時、ラッチアップ現象を生じる、これを、第1図および
等価回路を示す第2図を参照して以下に説明する。
However, in the CMOS structure described above, the n+ type source region 8 and the p-
A parasitic npn transistor Qn has well region 2 and n-type semiconductor substrate 1 as emitter, base, and collector, respectively, and p+-type source region 3 of p-channel MOS transistor, n-type semiconductor substrate 1, and p- well region 2 as emitter, Parasitic pnp transistor Q as base and collector
p is formed. In addition, each parasitic transistor Q in FIG.
Although only one n and Qp are shown, they are actually widely distributed. Such a parasitic npn transistor Q
When a parasitic pnp transistor Qp is formed, a latch-up phenomenon occurs during operation. This will be explained below with reference to FIG. 1 and FIG. 2 showing an equivalent circuit.

まず、出力Voutに外乱によって負の電圧が加わった
とすると、nチャンネルMOSトランジスタのn+型ド
レイン領域9とp−ウェル領域2とn型半導体基板1を
夫々エミッタ、ベース、コレクタとする寄生npnトラ
ンジスタQn′のエミッタ電位が負になる。この負の電
圧とp−ウェル領域2の電位VSSの間の電位差が前記
寄生npnトランジスタQn′のベース・エミッタ間電
位より高くなると、nチャンネルMOSトランジスタの
n+型ドレイン領域9とp−ウェル領域2とn型半導体
基板1との間にパイポーラアクションが起こり、前記寄
生npnトランジスタQn′のコレクタ電流Ic′が流
れる。このコレクタ電流Ic′はVDD側にあるn型半
導体基板1の抵抗Rbnを流れることになるため、前述
した寄生pnpトランジスタQnのベース電位を下げる
ことになって該トランジスタQpをバイポーラアクショ
ンさせ、その結果同トランジスタQpのコレクタ電流I
cpが流れるようになる。そして、このコレクタ電流I
cpはp−ウェル領域2中のウェル基板電源用p+型領
域12に接続したVSSへ流れ込む。この時、p−ウェ
ル領域2の電気抵抗Rbpにより前述した寄生npnト
ランジスタQnのベースを上げることになり、それが該
トランジスタQnをパイポーラアクションさせることに
なる。このトランジスタQnのパイポーラアクションに
より、そのコレクタ電流■cnけ更に前記寄生pnpト
ランジスタQpのベース電圧を下げ、該トランジスタQ
pのコレクタ電流Icpを流れ易くし、これによって寄
生npnトランジスタQnのベース電圧を更に上げ、該
トランジスタのコレクタ電流Icnを更に大きくすると
いう正帰還によりVDDからVSSへ大きな電流が流れ
ることになる。このようなラッチアップ電流により、C
MOSは動作しなくなるばかりか、かかるCMOSを有
する集積回路は大電流により熱的に破壊されてしまう。
First, if a negative voltage is applied to the output Vout due to a disturbance, a parasitic npn transistor Qn whose emitter, base, and collector are the n+ type drain region 9, p− well region 2, and n type semiconductor substrate 1 of the n channel MOS transistor, respectively. ’ emitter potential becomes negative. When the potential difference between this negative voltage and the potential VSS of the p-well region 2 becomes higher than the base-emitter potential of the parasitic npn transistor Qn', the n+ type drain region 9 of the n-channel MOS transistor and the p-well region 2 A bipolar action occurs between the transistor Qn and the n-type semiconductor substrate 1, and the collector current Ic' of the parasitic npn transistor Qn' flows. Since this collector current Ic' flows through the resistor Rbn of the n-type semiconductor substrate 1 on the VDD side, the base potential of the above-mentioned parasitic pnp transistor Qn is lowered, causing the transistor Qp to take a bipolar action. Collector current I of the same transistor Qp
CP will start flowing. And this collector current I
cp flows into VSS connected to the p+ type region 12 for well substrate power supply in the p- well region 2. At this time, the electrical resistance Rbp of the p-well region 2 raises the base of the parasitic npn transistor Qn, which causes the transistor Qn to take a bipolar action. Due to the bipolar action of the transistor Qn, its collector current ■cn and the base voltage of the parasitic pnp transistor Qp are lowered, and the transistor Q
A large current flows from VDD to VSS due to positive feedback in which the collector current Icp of p is made easier to flow, thereby further increasing the base voltage of the parasitic npn transistor Qn, and further increasing the collector current Icn of the transistor. Such latch-up current causes C
Not only does the MOS become inoperable, but an integrated circuit including such a CMOS is thermally destroyed by the large current.

上述したラッチアップ現象を防ぐために、第3図に示す
如くp−ウェル領域2とn型半導体基板1の対向してい
る領域に夫々VSSとVDDの電位と接続するp+型ガ
ードリング領域13、n+型ガードリング領域14を設
けたCMOS回路が開発されている。このような構成に
すれば、ラッチアップを起こす寄生npnトランジスタ
Qnと寄生pnpトランジスタQpは夫々のペースがガ
ードリング領域13、14に等価的に接続されることに
なる。この等価接続において、例えば寄生pnpトラン
ジスタQpのコレクタ電流Icpが流れるとすると、そ
の電流はp−ウェル領域2のp+型ガードリング領域1
3に吸収されて寄生npnトランジスタQnはパイポー
ラアクションがなされず、そのコレクタ電流Icnは流
れないため、前記トランジスタQpもパイポーラアクシ
ョンがなされず■cpも流れない。つまり、寄生pnp
トランジスタQpのコレクタ電流Icpはもともと流れ
ないことになる。したがって、ガードリング領域13、
14を設けることにより、ラッチアップ現象を起こりに
くくすることができる。しかしながら、各チャンネルの
MOSトランジスタ以外にガードリング領域を設けるた
め、CMOSの回路構成に必要な面積が増大し、高集積
化の妨げとなる。
In order to prevent the above-mentioned latch-up phenomenon, as shown in FIG. 3, p+ type guard ring regions 13 and n+ type guard ring regions are connected to the opposing regions of the p- well region 2 and the n-type semiconductor substrate 1 to the potentials of VSS and VDD, respectively. A CMOS circuit with a mold guard ring region 14 has been developed. With this configuration, the parasitic npn transistor Qn and the parasitic pnp transistor Qp, which cause latch-up, are equivalently connected to the guard ring regions 13 and 14 at their respective paces. In this equivalent connection, if the collector current Icp of the parasitic pnp transistor Qp flows, for example, the current flows through the p+ type guard ring region 1 of the p- well region 2.
3, the parasitic npn transistor Qn does not have a bipolar action and its collector current Icn does not flow. Therefore, the transistor Qp also does not have a bipolar action and 2cp does not flow either. In other words, parasitic pnp
Originally, the collector current Icp of the transistor Qp does not flow. Therefore, the guard ring area 13,
By providing 14, it is possible to make the latch-up phenomenon less likely to occur. However, since a guard ring region is provided in addition to the MOS transistor of each channel, the area required for the CMOS circuit configuration increases, which hinders high integration.

〔発明の目的〕[Purpose of the invention]

本発明は各チャンネルのMOSトランジスタ間の面積増
大を招くことなくラッチアップ現象を防止して高性能化
と高密度化を達成した相補型MOS半導体装置を提供し
ようとするものである。
The present invention aims to provide a complementary MOS semiconductor device that achieves high performance and high density by preventing latch-up phenomena without increasing the area between MOS transistors of each channel.

〔発明の概要〕[Summary of the invention]

本発明は半導体基体と核基体に島状に形成されたウェル
領域との境界の少なくとも一部に該基体及びウェル領域
より電気伝導率の小さい半導体層(高抵抗層)を設ける
ことによって、ラッチアップトリガー電流となる半導体
基体からウェル領域に流れる電流を流れにくくし、もっ
て従来の如くガードリング領域を設けることによる面積
増加を招くことなくラッチアップ現象を防止することを
骨子とするものである。
The present invention provides a latch-up method by providing a semiconductor layer (high resistance layer) having a lower electrical conductivity than that of the substrate and the well region at least in part of the boundary between the semiconductor substrate and the well region formed in an island shape on the nuclear substrate. The main idea is to make it difficult for the current flowing from the semiconductor substrate to the well region, which serves as a trigger current, to prevent the latch-up phenomenon without causing an increase in area due to the provision of a guard ring region as in the conventional method.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の実施例を製造方法を併記して説明する。 Next, examples of the present invention will be described along with manufacturing methods.

実施例1 (1)まず、n型シリコン基板21上に例えば1013
/cm3の不純物濃度を有するp−型シリコン層22及
びn−型シリコン層23を順次エピタキシャル成長させ
た(第4図(a)図示)。つづいて、n−型シリコン層
23上のp−ウェル領域予定部より少し小さい部分を除
く領域に写真蝕刻法によってレジストパターン24を形
成した後、該レジストパターン24をマスクとしてp型
不純物、例えばボロンを加速電圧100keV、ドーズ
量5×1012/cm2の条件でイオン注入してn−型
シリコン層23にボロンイオン注入層26を選択的に形
成した(第4図(b)図示)。ひきつづき、レジストパ
ターン24を除去し、更にn−型シリコン層23上のボ
ロンイオン注入層25を含む領域に写真蝕刻法によりレ
ジストパターン26を形成した後、該レジストパターン
26をマスクとしてn型不純物、例えばリンを加速電圧
320keV、ドーズ量1x1012/cm^2の条件
でイオン注入し、n−型シリコン層23とp−型シリコ
ン層22に亘ってリンイオン注入層27を選択的に形成
した(第4図(c)図示)。
Example 1 (1) First, for example, 1013
A p-type silicon layer 22 and an n-type silicon layer 23 having an impurity concentration of /cm3 were epitaxially grown in sequence (as shown in FIG. 4(a)). Subsequently, a resist pattern 24 is formed by photolithography in an area on the n-type silicon layer 23 excluding a portion slightly smaller than the planned p-well region, and then using the resist pattern 24 as a mask, a p-type impurity, such as boron, is added. A boron ion implantation layer 26 was selectively formed in the n-type silicon layer 23 by ion implantation at an acceleration voltage of 100 keV and a dose of 5.times.10@12 /cm@2 (as shown in FIG. 4(b)). Subsequently, the resist pattern 24 is removed, and a resist pattern 26 is formed by photolithography in a region including the boron ion implanted layer 25 on the n-type silicon layer 23. Using the resist pattern 26 as a mask, an n-type impurity, For example, phosphorus was ion-implanted under the conditions of an acceleration voltage of 320 keV and a dose of 1 x 1012/cm^2, and a phosphorus ion implantation layer 27 was selectively formed over the n-type silicon layer 23 and the p-type silicon layer 22 (the fourth Figure (c) shown).

(ii)次いで、レジストパターン26を除去した後、
熱処理を施した。この時、前記ボロンイオン注入層25
及びリンイオン注入層27が拡散されn型シリコン基板
21上にn型シリコン層28が、形成されると共に、該
シリコン層28に島状のp−ウェル領域29及び該p−
ウェル領域29と基板21間にp−型不純物層(高抵抗
層)30が夫々形成された(第4図(d)図示)。
(ii) Next, after removing the resist pattern 26,
Heat treatment was performed. At this time, the boron ion implantation layer 25
The phosphorus ion implantation layer 27 is diffused to form an n-type silicon layer 28 on the n-type silicon substrate 21, and an island-shaped p-well region 29 and the p-well region 29 are formed in the silicon layer 28.
A p-type impurity layer (high resistance layer) 30 was formed between the well region 29 and the substrate 21 (as shown in FIG. 4(d)).

(iii)次いで、選択酸化法によりシリコン層28と
ウェル領域29間等を分離するフィールド酸化膜31お
よびフィールド酸化膜下のチャンネルストッパ領域(図
示せず)を形成した後、フィールド酸化膜31で分離さ
れたn型シリコン層28、p−ウェル領域29の島領域
にゲート酸化膜32を形成した。つづいて、全面に多結
晶シリコン層を堆積し、これをパターニングしてゲート
酸化膜32上にゲート電極331、332、34を形成
した後、n型シリコン層28及びp−ウェル領域29に
ボロンを選択的にイオン注入、活性化してn型シリコン
層28にp+型のドレイン、ソース領域361、361
、352、362を、p−ウェル領域29にはp−ウェ
ル基板電源用のp+型領域37を形成した。
(iii) Next, after forming a field oxide film 31 for isolating the silicon layer 28 and the well region 29 and a channel stopper region (not shown) under the field oxide film by selective oxidation, the field oxide film 31 is used to separate the silicon layer 28 and the well region 29. A gate oxide film 32 was formed on the n-type silicon layer 28 and the island region of the p-well region 29. Subsequently, a polycrystalline silicon layer is deposited on the entire surface and patterned to form gate electrodes 331, 332, and 34 on the gate oxide film 32, and then boron is deposited on the n-type silicon layer 28 and the p-well region 29. Selectively implant and activate ions to form p+ type drain and source regions 361, 361 in the n-type silicon layer 28.
, 352 and 362, a p+ type region 37 for a p-well substrate power supply was formed in the p-well region 29.

こうした工程によりn型シリコン層28に2つのpチャ
ンネルMOSトランジスタが形成された。
Through these steps, two p-channel MOS transistors were formed in the n-type silicon layer 28.

ひきつづき、p−ウェル領域29及びn型シリコン層2
8に砒素を選択的にイオン注入し、活性化してp−ウェ
ル領域29にn+型のソース、ドレイン領域38、39
を、n型シリコン層28に基板電源(VDD)用のn+
型領域40を、夫夫形成した。こうした工程によりp−
ウェル領域29にnチャンネルMOSトランジスタが形
成された。更に、全面にCVD−SiO2膜41を堆積
し、コンタクトホール42・・・を開孔した後、全面に
Al膜を蒸着し、これをパターニングして前記p+型ド
レイン領域351とn+型ドレイン領域39とを2つの
コンタクトホール42、42を介して結線するAl配線
43、前記p+型ソース領域361とp+型ドレイン領
域352とを2つのコンタクトホール42、42を介し
て結線するAl配線44、前記p+型ソース領域362
とn+型領域40とを2つのコンタクトホール42、4
2を介して結線するAl配線45、及びn+型ソース領
域38とp+型領領域37を2つのコンタクトホール4
2、42を介して結線するAl配線46、を夫々形成し
た。最後に全面にリン珪化ガラス等の保護膜47を堆積
してCMOSを製造した(第4図(e)図示)。
Subsequently, p-well region 29 and n-type silicon layer 2
Arsenic is selectively ion-implanted into 8 and activated to form n+ type source and drain regions 38 and 39 in the p- well region 29.
, the n+ for substrate power supply (VDD) is applied to the n-type silicon layer 28.
A mold region 40 was formed. Through these steps, p-
An n-channel MOS transistor was formed in well region 29. Furthermore, after depositing a CVD-SiO2 film 41 on the entire surface and opening contact holes 42, an Al film is deposited on the entire surface and patterned to form the p+ type drain region 351 and the n+ type drain region 39. an Al wiring 43 connecting the p+ type source region 361 and the p+ type drain region 352 via the two contact holes 42, 42, an Al wiring 44 connecting the p+ type source region 361 and the p+ type drain region 352 via the two contact holes 42, Type source area 362
and the n+ type region 40 through two contact holes 42 and 4.
2, and the n+ type source region 38 and p+ type region 37 are connected through two contact holes 4.
Al wirings 46 connected via wires 2 and 42 were formed, respectively. Finally, a protective film 47 made of phosphorus silicide glass or the like was deposited on the entire surface to manufacture a CMOS (as shown in FIG. 4(e)).

しかして、本発明のCMOSは第4図(e)に示す如く
p−ウェル領域29と、n型シリコン基板21及びn型
シリコン層28からなる半導体基体との界面である該p
−ウェル領域29底部に高抵抗層30を設けた構造にな
っているため、ラッチアップ現象を防止できる。即ち、
p−ウェル領域のn型ドレイス領域が外乱にかって負の
電位となると、前述した第1図に示すCMOS構造では
トリガー電流Ic′が半導体基体より流れ、これが第2
図の等価回路に示したPウェル領域をコレクタとし、n
型基板をベースとし、p+型ソース領域をエミッタとす
る寄生pnpトランジスタのベース電流となりラッチア
ップ動作が始まる。これに対し、本発明のCMOSはp
−ウェル領域29の底部に高抵抗層30を設けているの
で半導体基体からp−ウェル領域29へ流れるトリガー
電流■c′は該高抵抗層30によりその大きさが小さく
なり、その結果寄生pnpトランジスタへ流れる電流も
小さくなってラッチアップが生じにくくなる。事実、5
Vの電源電圧で動作させた場合において、高抵抗層30
の膜厚(t)をパラメータし、該高抵抗層30の不純物
濃度に対する外部からラッチアップを起こさせるに必要
なトリガー電流の大きさを求めたところ、第5図に示す
特性図を得た。ただし図中のトリがー電流は適当な値で
規格化してある。この第5図より、高抵抗層30の不純
物濃度を低下させればさせる程、又膜厚を厚くすればす
る程、ラッチアップに必要なトリガー電流は大きくなり
、それだけラッチアップが生じにくくなることがわかる
As shown in FIG. 4(e), the CMOS of the present invention has an interface between the p-well region 29 and the semiconductor substrate composed of the n-type silicon substrate 21 and the n-type silicon layer 28.
- Since the structure is such that the high resistance layer 30 is provided at the bottom of the well region 29, latch-up phenomenon can be prevented. That is,
When the n-type drain region of the p-well region becomes a negative potential due to a disturbance, a trigger current Ic' flows from the semiconductor substrate in the CMOS structure shown in FIG.
The P well region shown in the equivalent circuit in the figure is the collector, and n
This becomes a base current of a parasitic pnp transistor having the type substrate as the base and the p+ type source region as the emitter, and a latch-up operation begins. On the other hand, the CMOS of the present invention has p
- Since the high resistance layer 30 is provided at the bottom of the well region 29, the trigger current c' flowing from the semiconductor substrate to the p-well region 29 is reduced in magnitude by the high resistance layer 30, resulting in a parasitic pnp transistor. The current flowing to the terminal also becomes smaller, making latch-up less likely to occur. Fact, 5
When operated with a power supply voltage of V, the high resistance layer 30
The magnitude of the trigger current required to cause latch-up from the outside with respect to the impurity concentration of the high-resistance layer 30 was determined using the film thickness (t) as a parameter, and the characteristic diagram shown in FIG. 5 was obtained. However, the trigger current in the figure is normalized to an appropriate value. From FIG. 5, it can be seen that the lower the impurity concentration of the high-resistance layer 30 and the thicker the film thickness, the larger the trigger current required for latch-up, and the more difficult it is for latch-up to occur. I understand.

また、本発明のCMOSは第3図図示の従来のCMOS
の如くpチャンネル、nチャンネルのMOSトランジス
タ間にガードリング領域を設けずに、半導体基体の深さ
方向に設けた高抵抗層30によりラッチアップ現象を防
止するため、高密度化を達成できる。
Furthermore, the CMOS of the present invention is similar to the conventional CMOS shown in FIG.
As shown in FIG. 2, high density can be achieved by preventing latch-up phenomena by using the high resistance layer 30 provided in the depth direction of the semiconductor substrate without providing a guard ring region between the p-channel and n-channel MOS transistors.

実施例2 (i)まず、n型シリコン基板21上に例えば1013
/cm3の不純物濃度を有するp−型シリコン層22′
をエピタキシャル成長させた(第6図(n)図示)。つ
づいて、p−型シリコン層り22′上のp−ウェル領域
予定部より少し小さい部分を除く領域に写真蝕刻法によ
シレジストパターン24を形成した後、該レジストパタ
ーン24をマスクとしてボロンを加速電圧50keV、
ドーズ量4×1012/cm2の条件でイオン注入して
p−型シリコン層22′にボロンイオン注入層25を選
択的に形成した(第6図(b)図示)。ひきつづき、レ
ジストパターン24を除去し、再度p−型シリコン層2
2′上のボロンイオン注入層25を含む領域に写真蝕刻
法によりレジストパターン26を形成した後、該レジス
トパターン26をマスクとしてリンを加速電圧200k
eV、ドーズ量1×1012/cm2の条件でイオン注
入し、p−型シリコン層22′にリンイオン注入層27
を選択的に形成した(第6図(c)図示)。
Example 2 (i) First, for example, 1013 is placed on the n-type silicon substrate 21.
p-type silicon layer 22' having an impurity concentration of /cm3
was epitaxially grown (as shown in FIG. 6(n)). Subsequently, a resist pattern 24 is formed by photolithography on the p-type silicon layer 22' except for a portion slightly smaller than the planned p-well region, and then, using the resist pattern 24 as a mask, boron is deposited. Acceleration voltage 50keV,
A boron ion implantation layer 25 was selectively formed in the p-type silicon layer 22' by ion implantation at a dose of 4.times.10@12 /cm@2 (as shown in FIG. 6(b)). Continuing, the resist pattern 24 is removed and the p-type silicon layer 2 is removed again.
After forming a resist pattern 26 by photolithography in a region including the boron ion-implanted layer 25 on 2', phosphorus is accelerated at a voltage of 200 k using the resist pattern 26 as a mask.
Ions are implanted under the conditions of eV and a dose of 1×10 12 /cm 2 to form a phosphorus ion implanted layer 27 in the p-type silicon layer 22 ′.
was selectively formed (as shown in FIG. 6(c)).

(ii)次いで、レジストパターン26を除去した後、
熱処理を施した。この時、前記ボロンイオン注入層25
及びリンイオン注入層27が夫々拡散され、n型シリコ
ン基板21上にn型シリコン層28′が形成されると共
に、該シリコン層28′に島状のp−ウェル領域29′
及び該p−ウェル領域29′と基板21間にp−型不純
物層(高抵抗層)30′が夫々形成された(第6図(d
)図示)。その後、実施例1の(iii)工程と同様な
方法によりCMOSを製造した(第6図(e)図示)。
(ii) Next, after removing the resist pattern 26,
Heat treatment was performed. At this time, the boron ion implantation layer 25
and phosphorous ion implantation layer 27 are respectively diffused to form an n-type silicon layer 28' on the n-type silicon substrate 21, and an island-shaped p-well region 29' is formed in the silicon layer 28'.
A p-type impurity layer (high resistance layer) 30' was formed between the p-well region 29' and the substrate 21 (FIG. 6(d)).
). Thereafter, a CMOS was manufactured in the same manner as in step (iii) of Example 1 (as shown in FIG. 6(e)).

しかして、第6図(e)図示のCMOSはp−ウェル領
域29′と、n型シリコン基板21及びn型シリコン層
28′からなる半導体基体との界面である該ウェル領域
29′底部に高抵抗層30′を設けた構造になっている
ため、第4図(e)図示のCMOSと同様ラッチアップ
現象を防止できる。
Therefore, the CMOS shown in FIG. 6(e) has a high rise at the bottom of the well region 29', which is the interface between the p-well region 29' and the semiconductor substrate consisting of the n-type silicon substrate 21 and the n-type silicon layer 28'. Since the structure includes the resistive layer 30', the latch-up phenomenon can be prevented as in the CMOS shown in FIG. 4(e).

実施例3 (i)まず、n型シリコン基板21上のp−ウェル領域
予定部より少し小さい部分を除く領域に写真蝕刻法によ
りレジストパターン48を形成した後、該レジストパタ
ーン48をマスクとしてリンを加速電圧1MeV、ドー
ズ量3×1011/cm2の条件でイオン注入してn型
シリコン基板21の内部にリンイオン注入層49を形成
した(第7図(a)図示)。つづいて、同レジストパタ
ーン48をマスクとしボロンを加速電圧160keV、
ドーズ量5×1012/cm2の条件でイオン注入して
基板21表面にボロンイオン注入層50を形成した(第
7図(b)図示)。
Embodiment 3 (i) First, a resist pattern 48 is formed by photolithography on an area of the n-type silicon substrate 21 excluding a portion slightly smaller than the planned p-well region, and then phosphorus is applied using the resist pattern 48 as a mask. A phosphorus ion implantation layer 49 was formed inside the n-type silicon substrate 21 by ion implantation under the conditions of an acceleration voltage of 1 MeV and a dose of 3×10 11 /cm 2 (as shown in FIG. 7(a)). Next, using the same resist pattern 48 as a mask, boron was accelerated at a voltage of 160 keV.
A boron ion implantation layer 50 was formed on the surface of the substrate 21 by ion implantation at a dose of 5×10 12 /cm 2 (as shown in FIG. 7(b)).

(ii)次いで、レジストパターン48を除去した後、
熱処理を施した。この時、前記各イオン注入層49、5
0が拡散してn型シリコン基板21に島状のp−ウェル
領域29″が形成されると共に、リンイオン注入層49
とボロンイオン注入層50間でリンとボロンとがほぼ等
量近く混わり電気的な抵抗が高くなった高抵抗層30″
がウェル領域29″底部に形成された(第7図(c)図
示)。その後、実施例1の(iii)工程と同様な方法
によりCMOSを製造した(第7図(d)図示)。
(ii) Next, after removing the resist pattern 48,
Heat treatment was performed. At this time, each of the ion implantation layers 49, 5
0 is diffused to form an island-shaped p-well region 29'' in the n-type silicon substrate 21, and a phosphorus ion-implanted layer 49 is formed in the n-type silicon substrate 21.
and the boron ion-implanted layer 50, a high resistance layer 30'' in which phosphorus and boron are mixed in almost equal amounts and has a high electrical resistance.
was formed at the bottom of the well region 29'' (as shown in FIG. 7(c)). Thereafter, a CMOS was manufactured by the same method as in step (iii) of Example 1 (as shown in FIG. 7(d)).

しかして、第7図(d)図示のCMOSはp−ウェル領
域2g″とn型シリコン基板21(半導体基体)との界
面である該ウェル領域29″底部に高抵抗層30″を設
けた構造になっているため、第4図(e)図示のCMO
Sと同様、ラッチアップ現象を防止できる。
Therefore, the CMOS shown in FIG. 7(d) has a structure in which a high resistance layer 30'' is provided at the bottom of the well region 29'', which is the interface between the p-well region 2g'' and the n-type silicon substrate 21 (semiconductor base). Therefore, the CMO shown in Figure 4(e)
Like S, latch-up phenomenon can be prevented.

なお、本発明に係るCMOSは前記各実施例に示す構造
に限らず、例えば第8図に示す如くn型シリコン基板2
1に深さの浅いp−ウェル領域29″′を設け、nチャ
ンネルMOSトランジスタのn+型ソース、ドレイン領
域38、39及びp+型領域37を該ウェル領域29″
′底部の高抵抗層30″′と接触させた構造にしてもよ
い。このような構成によれば、ウェル領域29″′内の
ウェル領域が浅くなっただけ寄生トランジスタのコレク
タ電流が少なくなり、ラッチアップ現象をより効果的に
防止できる。
Note that the CMOS according to the present invention is not limited to the structure shown in each of the embodiments described above, and for example, as shown in FIG.
A shallow p-well region 29'' is provided in the well region 29'', and the n+ type source and drain regions 38, 39 and p+ type region 37 of the n-channel MOS transistor are provided in the well region 29''.
It is also possible to have a structure in which it is in contact with the high resistance layer 30'' at the bottom. With such a structure, the collector current of the parasitic transistor decreases as the well region within the well region 29'' becomes shallower. The latch-up phenomenon can be more effectively prevented.

また、本発明に係るCMOSは上記各実施例に示す構造
に限定されず、例えばn型シリコン基板表面に島状のp
−ウェル領域を設け、かつ該p−ウェル領域底面に砒素
をカウンタ・ドープすることにより低濃度不純物層(高
抵抗層)を設けた構造にしてもよい。かかる構造のCM
OSにおいて、p−ウェル領域の不純物濃度を1016
/cm3とし、5Vの電源電圧で動作させた場合の低濃
度不純物層の砒素濃度変化(p−ウェル領域の不純物濃
度との差の変化)によるラッチアップを生ずるに必要な
トリガー電流を求めると、第9図に示す特性図となる。
Further, the CMOS according to the present invention is not limited to the structure shown in each of the above embodiments, but, for example, an island-shaped p
A structure may be adopted in which a -well region is provided and a low concentration impurity layer (high resistance layer) is provided by counter-doping arsenic into the bottom surface of the p-well region. CM with such structure
In the OS, the impurity concentration of the p-well region is set to 1016
/cm3, and the trigger current required to cause latch-up due to a change in arsenic concentration in the low concentration impurity layer (change in the difference from the impurity concentration in the p-well region) when operated at a power supply voltage of 5V is calculated as follows. The characteristic diagram is shown in FIG.

この第9図より、砒素をp−ウェル領域の不純物濃度と
同程度(1016/cm3)カウンタードープすると、
p型不純物(ボロン)と砒素とが中和されてインステリ
ックな低濃度不純物層(高抵抗層)が形成されトリガー
電流が増大する。つまり、p−ウェル領域の不純物濃度
とカウンタ−ドープされる砒素濃度との差が小さくなれ
ばなる程、ラッチアップが生ずるに必要なトリガー電流
値は増大し、ラッチアップが生じにくくなる。
From this Figure 9, if arsenic is counter-doped to the same level as the impurity concentration of the p-well region (1016/cm3),
The p-type impurity (boron) and arsenic are neutralized, an insteric low concentration impurity layer (high resistance layer) is formed, and the trigger current increases. In other words, the smaller the difference between the impurity concentration in the p-well region and the counter-doped arsenic concentration, the greater the trigger current value required to cause latch-up, and the less latch-up occurs.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば各チャンネルのMO
Sトランジスタ間の面積増大を招くことなくラッチアッ
プ現象を防止して高性能化、高密度化を達成した相補M
OS半導体装置を提供できる。
As detailed above, according to the present invention, each channel's MO
Complementary M that achieves higher performance and higher density by preventing latch-up without increasing the area between S transistors.
An OS semiconductor device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のCM0Sを示す概略断面図、第2図は第
1図のCMOSに生じる寄生トランジスタの等価回路図
、第3図は従来の改良されたCMOSを示す概略断面図
、第4図(a)〜(e)は本発明の実施例1のCMOS
を得るための製造工程を示す断面図、第5図は実施例1
のCMOSにおける高抵抗層の膜厚パラメータにして該
高抵抗層の不純物濃度の変化に対するラッチアップを生
ずるに必要なトリガー電流の増減を示す特性図、第6図
(a)〜(e)は本発明の実施例2のCMOSを得るた
めの製造工程を示す断面図、第7図(a)〜(d)は本
発明の実施例3のCMOSを得るための製造工程を示す
断面図、第8図は本発明の更に他の実施例を示すCMO
Sの断面図、第9図はp−ウェル領域底部に低濃度不純
物層を形成するためにカウンタードープした砒素濃度の
変化とラッチアップが生ずるに必要なトリガー電流との
関係を示す特性図である。 21・・・n型シリコン基板、22、22′・・・p−
型シリコン層、23・・・n−型シリコン層、28、2
8′−n型シリコン層、29、29′、29″29″′
・・・p−ウェル領域、30、30′、30″、30″
′・・・低濃度不純物層(高抵抗層)、32・・・ゲ−
ト酸化膜、331、332、34・・・ゲート電極、3
51、352・・・p+型ドレイン領域、361、36
2・・・p+型ソース領域、37・・・p+型領域、3
8・・・n+型ソース領域、39・・・n+型ドレイン
領域、40・・・n+型領域、41・・・CVD−Si
O2膜、43〜46・・・Al配線、47・・・保膿膜
Fig. 1 is a schematic sectional view showing a conventional CMOS, Fig. 2 is an equivalent circuit diagram of a parasitic transistor occurring in the CMOS shown in Fig. 1, Fig. 3 is a schematic sectional view showing a conventional improved CMOS, and Fig. 4 (a) to (e) are CMOS of Example 1 of the present invention
FIG. 5 is a cross-sectional view showing the manufacturing process for obtaining Example 1.
Characteristic diagrams showing the increase and decrease of the trigger current necessary to cause latch-up with respect to changes in the impurity concentration of the high-resistance layer with respect to the film thickness parameters of the high-resistance layer in the CMOS, and Figures 6 (a) to (e) are from this book. 7(a) to 7(d) are cross-sectional views showing the manufacturing process for obtaining a CMOS according to Example 2 of the present invention; FIGS. The figure shows a further embodiment of the present invention.
FIG. 9 is a cross-sectional view of S, and is a characteristic diagram showing the relationship between the change in arsenic concentration that is counter-doped to form a low-concentration impurity layer at the bottom of the p-well region and the trigger current required to cause latch-up. . 21...n-type silicon substrate, 22, 22'...p-
type silicon layer, 23...n-type silicon layer, 28, 2
8'-n-type silicon layer, 29, 29', 29''29'''
...p-well region, 30, 30', 30'', 30''
'...Low concentration impurity layer (high resistance layer), 32...Gate
oxide film, 331, 332, 34...gate electrode, 3
51, 352...p+ type drain region, 361, 36
2...p+ type source region, 37...p+ type region, 3
8...n+ type source region, 39...n+ type drain region, 40...n+ type region, 41...CVD-Si
O2 film, 43-46... Al wiring, 47... Purulent retention film.

Claims (2)

【特許請求の範囲】[Claims] (1)表面に島状の第1導電型のウェル領域を有する第
2導電型の半導体基体と、前記ウェル領域表面に設けら
れた第2導電型チャンネルのMOSトランジスタと、前
記ウェル領域以外の半導体基体表面に設けられた第1導
電型チャンネルのMOSトランジスタとを備えた相補型
MOS半導体装置において、前記ウェル領域と半導体基
体との境界の少なくとも一部に該ウェル領域及び半導体
基体より電気伝導率の小さい半導体層を設けたことを特
徴とする相補型MOS半導体装置。
(1) A semiconductor substrate of a second conductivity type having an island-shaped well region of a first conductivity type on its surface, a MOS transistor of a second conductivity type channel provided on the surface of the well region, and a semiconductor other than the well region. In a complementary MOS semiconductor device including a MOS transistor of a first conductivity type channel provided on a surface of a substrate, at least a portion of the boundary between the well region and the semiconductor substrate has a conductivity lower than that of the well region and the semiconductor substrate. A complementary MOS semiconductor device characterized by providing a small semiconductor layer.
(2)前記半導体層の不純物濃度が1014/cm3以
下であることを特徴とする特許請求の範囲第1項記載の
相補型MOS半導体装置。
(2) The complementary MOS semiconductor device according to claim 1, wherein the impurity concentration of the semiconductor layer is 1014/cm3 or less.
JP57100311A 1982-06-11 1982-06-11 Complementary type metal oxide semiconductor device Pending JPS58218159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57100311A JPS58218159A (en) 1982-06-11 1982-06-11 Complementary type metal oxide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57100311A JPS58218159A (en) 1982-06-11 1982-06-11 Complementary type metal oxide semiconductor device

Publications (1)

Publication Number Publication Date
JPS58218159A true JPS58218159A (en) 1983-12-19

Family

ID=14270622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57100311A Pending JPS58218159A (en) 1982-06-11 1982-06-11 Complementary type metal oxide semiconductor device

Country Status (1)

Country Link
JP (1) JPS58218159A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386565A (en) * 1986-09-30 1988-04-16 Fuji Electric Co Ltd Manufacture of semiconductor device
EP0696062A3 (en) * 1994-07-28 1996-12-11 Hitachi Ltd CMOS semiconductor device and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386565A (en) * 1986-09-30 1988-04-16 Fuji Electric Co Ltd Manufacture of semiconductor device
EP0696062A3 (en) * 1994-07-28 1996-12-11 Hitachi Ltd CMOS semiconductor device and manufacturing method thereof
US6368905B1 (en) 1994-07-28 2002-04-09 Hitachi, Ltd. Process for manufacturing a semiconductor wafer, a semiconductor wafer, process for manufacturing a semiconductor integrated circuit device, and semiconductor integrated circuit device
US6630375B2 (en) 1994-07-28 2003-10-07 Hitachi, Ltd. Process for manufacturing a semiconductor wafer, a semiconductor wafer, process for manufacturing a semiconductor integrated circuit device, and semiconductor integrated circuit device
US6806130B2 (en) 1994-07-28 2004-10-19 Renesas Technology Corp. Process for manufacturing a semiconductor wafer, a semiconductor wafer, process for manufacturing a semiconductor integrated circuit device, and semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US20070241421A1 (en) Semiconductor structure and method of manufacture
US4762802A (en) Method for preventing latchup in CMOS devices
US5045900A (en) Semiconductor device having a vertical power MOSFET fabricated in an isolated form on a semiconductor substrate
JP3090081B2 (en) Semiconductor device
JPH0799764B2 (en) Integrated circuit and manufacturing method thereof
JPH0348457A (en) Semiconductor device and manufacture thereof
US6169310B1 (en) Electrostatic discharge protection device
JPH10214907A (en) Semiconductor device and its manufacture
US5221635A (en) Method of making a field-effect transistor
EP0151347B1 (en) Integrated circuit having bipolar and field effect devices and method of fabrication
JP2001284540A (en) Semiconductor device and its manufacturing method
JPS6384164A (en) Perpendicular mosfet
KR0119469B1 (en) Semiconductor device and method of manufacturing thereof
JPH0783113B2 (en) Semiconductor device
JPS58218159A (en) Complementary type metal oxide semiconductor device
US6218866B1 (en) Semiconductor device for prevention of a floating gate condition on an input node of a MOS logic circuit and a method for its manufacture
JPS6230363A (en) Semiconductor device
JPS61245563A (en) Bipolar cmos semiconductor device
JPH03227054A (en) Complementary type bipolar transistor compatible with cmos process
JP2003017603A (en) Semiconductor device and its manufacturing method
JPS58218158A (en) Complementary type metal oxide semiconductor device
EP0138162A2 (en) CMOS structure
JPH04146660A (en) Input/output protective element and manufacture thereof
JP2610906B2 (en) Method for manufacturing BiMOS semiconductor circuit device
JPH08172100A (en) Semiconductor device