JPS61147549A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61147549A
JPS61147549A JP26839384A JP26839384A JPS61147549A JP S61147549 A JPS61147549 A JP S61147549A JP 26839384 A JP26839384 A JP 26839384A JP 26839384 A JP26839384 A JP 26839384A JP S61147549 A JPS61147549 A JP S61147549A
Authority
JP
Japan
Prior art keywords
layer
melting point
metal
semiconductor device
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26839384A
Other languages
Japanese (ja)
Inventor
Hirosaku Yamada
山田 啓作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26839384A priority Critical patent/JPS61147549A/en
Publication of JPS61147549A publication Critical patent/JPS61147549A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the tight adhesive strength and the electric contacting property of a high melting point metal by a method wherein, in the wiring layer of a silicon semiconductor device, an oxide-growing metal layer having the standard free energy smaller than that of SiO2 is provided on the base of the high melting point metal layer. CONSTITUTION:After a field oxide film 2 is formed on a silicon substrate 1, an N<+> layer 4 is formed by implanting arsenic 3. Then, after SiO25 is covered on the whole surface, a layer 6 of 10-500Angstrom in thickness consisting of at least a kind of berylium, magnesium, titanium, zirconium and halfnium is formed on the whole surface as the first metal layer. Also, the second layer 7 consisting of at least a kind of molybdenum, tungsten niobium and tantalum is formed thereon. As a result, the natural oxide film on a silicon semiconductor is reduced to the first layer metal, and a part of the surface of the SiO2 is also reduced, thereby enabling to obtain the excellent tight adhesive strength and the electric contacting property for a high melting point metal.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、珪素半導体の配線層の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to improvements in wiring layers of silicon semiconductors.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

珪素半導体においては、長らくアルミニウムー珪素合金
による配線が用いられてきた。しかし、近年の半導体装
置、特に集積回路においては増々微細化が進み、アルミ
ニウム合金では信頼性の点で問題となってきた。例えば
アルミニウム合金で0.15μm以下の深さを持つn型
半導体層へのコンタクトの突き抜けの問題があり、また
、エレクトロマイグレーシ嘗ンによる継時的なアルミニ
ウム又はその合金配線層の断線がある。それらはアルミ
ニウムが低融点(660℃)であることにその原因があ
る。
In silicon semiconductors, wiring made of aluminum-silicon alloys has been used for a long time. However, in recent years, semiconductor devices, especially integrated circuits, have become increasingly finer, and aluminum alloys have become problematic in terms of reliability. For example, in aluminum alloys, there is a problem of contact penetration to an n-type semiconductor layer having a depth of 0.15 μm or less, and there is also a problem of disconnection of aluminum or its alloy wiring layer over time due to electromigration. The reason for this is that aluminum has a low melting point (660°C).

それに対し、高融点金属をアルミニウム系合金の替りに
用いることが試みられた。しかし、珪素半導体において
はその表面に不可避的に生じる自然酸化膜の為、珪素半
導体と高融点金属配線の間の電気的接触がしばしば不良
となり、また、珪素半導体の絶縁膜として一般的に用い
られるSin、膜上で形成された高融点金属層が密着不
良のためハガレることかしばしば見受けられる。この欠
点がアルミニウム系合金では見られないのはsio、に
対しM、01の生成の標準自由エネルギーが小さいから
であり、そのため、自然酸化膜や、S10.絶縁膜の表
面を還元するからである。
In response, attempts have been made to use high melting point metals in place of aluminum alloys. However, due to the natural oxide film that inevitably forms on the surface of silicon semiconductors, the electrical contact between the silicon semiconductor and the high-melting point metal wiring is often poor, and it is also commonly used as an insulating film for silicon semiconductors. It is often observed that the high melting point metal layer formed on the Sin film peels off due to poor adhesion. This defect is not observed in aluminum-based alloys because the standard free energy of formation of M, 01 is small compared to sio, and therefore, natural oxide films and S10. This is because the surface of the insulating film is reduced.

〔発明の目的〕[Purpose of the invention]

本発明は前記の高融点金属配線の欠点を改良し、高信頼
性の微細化配線技術達成することを目的とする。
The object of the present invention is to improve the drawbacks of the above-mentioned high melting point metal wiring and to achieve highly reliable miniaturized wiring technology.

〔発明の概要〕[Summary of the invention]

本発明は高融点金属層の下地にs i o、より小さい
生成の標準自由エネルギーを持つ酸化物を生じる金属層
をもうけ、高融点金属の欠点である電気的接触不良、密
着性不良を改良するものである。第1層金属は上記目的
を達するに必要最少限の厚さであることが望しい。それ
はそれら元素は反応性に著しく富み、また、上層金属を
通して写真蝕刻法にて加工するため、上層金属に比べて
エツチング速度が異った場合、上層金属層の後退や下層
金属層のいわゆるアンダーカットが生じやすいためであ
る。
The present invention provides a metal layer that generates an oxide with a smaller standard free energy of formation under the high-melting point metal layer, thereby improving poor electrical contact and poor adhesion, which are the drawbacks of high-melting point metals. It is something. It is desirable that the first layer metal has the minimum thickness necessary to achieve the above objective. This is because these elements are extremely reactive, and since they are processed by photolithography through the upper metal layer, if the etching speed is different from that of the upper metal layer, the upper metal layer may recede or the lower metal layer may undergo so-called undercuts. This is because this is likely to occur.

また、第1層金属は酸化性が強く、その表面に生じた酸
化物は第1層、第2層金属層間の電気的接触不良の原因
となることは言うまでもない。そのため本発明では真空
中で第1層金属の形成後、大気又は酸化性雰囲気と触れ
ることなく、第2層金属層を形成しなければならない0
その形成法線電子ビーム溶解蒸発法やスパッタリング法
が考えられる。
Furthermore, it goes without saying that the first layer metal has strong oxidizing properties, and oxides formed on its surface cause poor electrical contact between the first and second metal layers. Therefore, in the present invention, after forming the first metal layer in vacuum, the second metal layer must be formed without contact with the air or oxidizing atmosphere.
The normal electron beam melting and evaporation method and the sputtering method are conceivable.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、珪素半導体上の自然酸化膜は第1層金
属に還−元され、良好な電気的接触が得られる。また、
StO,上ではその表面の一部を還元し良好な密着性か
えられる。それらはアルミニウム又はその合金を配線に
用いた場合と同様の効果がある。
According to the present invention, the natural oxide film on the silicon semiconductor is reduced to the first layer metal, and good electrical contact can be obtained. Also,
On StO, a part of the surface is reduced to improve adhesion. They have the same effect as when aluminum or its alloy is used for wiring.

また、電気的性質の大部分は上層、第2層金属層で決定
され、第2層金属にタングステンを用いた場合、その高
融点(3380℃)より、エレクトロマイグレーション
は事実上、無視でき、アルミニウム系には劣るものの比
較的低抵抗配線が得られる。
In addition, most of the electrical properties are determined by the upper and second metal layers, and when tungsten is used as the second metal layer, electromigration can be virtually ignored due to its high melting point (3380°C), and aluminum Although it is inferior to the system, relatively low resistance wiring can be obtained.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例の工程を第1図に示す。先ず、通常の
工程として、nfi基板1上にフィールド酸化膜2を形
成する(第1図(a))。次にヒ素3を注入して部分的
に表面ヒ素濃度がlXl0”個/ crdのn+層4が
形成される(第1図(b))。全面をCvD 法にて8
10. 5で覆う。
The steps of an embodiment of the present invention are shown in FIG. First, as a normal process, a field oxide film 2 is formed on an NFI substrate 1 (FIG. 1(a)). Next, arsenic 3 is implanted to partially form an n+ layer 4 with a surface arsenic concentration of lXl0''/crd (Fig. 1(b)).
10. Cover with 5.

次にn+層の一部に対し、写真蝕刻法にて ゛sio、
層5を開孔する(第1図(C))。第1層金属として・
・フニウム層6を50Xをアルゴンスパッタリング法に
て形成し、引き続き同一真空槽内でタングステン層7を
2000λ程形成する(第1図(d) ) oさらに写
真蝕刻法、すなわち、平行平板型リアクティブ・イオン
エツチング法にて配線層を形成し、400℃30分の熱
処理を加える(第1図(e))。
Next, a part of the n+ layer was etched using photolithography.
A hole is made in layer 5 (FIG. 1(C)). As the first layer metal・
・Funium layer 6 is formed by 50X argon sputtering method, and subsequently, tungsten layer 7 of about 2000λ is formed in the same vacuum chamber (Fig. 1(d)). - A wiring layer is formed by ion etching and heat treated at 400°C for 30 minutes (Fig. 1(e)).

第2図は第1図の上述した工程による試作半導体装置の
電極(実施例ではタングステン)と基板とのI・7曲線
を示す。第3図は比較のために示した従来のタングステ
ンのみの配線の場合の測定例である。タングステン−n
+層界面の自然酸化膜によるものと思われる非直線が見
られる。
FIG. 2 shows an I.7 curve between an electrode (tungsten in the example) and a substrate of a prototype semiconductor device obtained through the process described above in FIG. FIG. 3 shows a measurement example of conventional tungsten-only wiring for comparison. Tungsten-n
Nonlinearity is observed, which is thought to be due to the natural oxide film at the interface of the + layer.

なお、ハフニウムは101以上の膜厚があれば8i0□
上でタングステンのハガレ現象はみられなかった。
In addition, if hafnium has a film thickness of 101 or more, it is 8i0□
No peeling phenomenon of tungsten was observed.

上述の実施例では、極めて簡単な例で示したが、本発明
は微細、複雑な集積回路に用いることが可能である。ま
た、本発明を多層配線に用いた場合、第1層配線上の酸
化物に対しても同様の効果がある。しかし、この場合、
多層配線の第1層配線層がアルミニウムの場合、チタン
を多層配線第2層の下地金属層に用いてもその効果は期
待できない。多層配線第1層にはペリリムウ、マグネシ
ウム、チタン、ジルコニウム、ハフニウムを用い、第2
層にはモリブデン、タングステン、ニオブ、タンタルを
用いることができる。
Although the above-described embodiments have been shown as extremely simple examples, the present invention can be used in fine and complex integrated circuits. Further, when the present invention is applied to multilayer wiring, the same effect can be obtained on the oxide on the first layer wiring. But in this case,
When the first wiring layer of the multilayer wiring is aluminum, no effect can be expected even if titanium is used as the underlying metal layer of the second layer of the multilayer wiring. Perilimu, magnesium, titanium, zirconium, and hafnium are used for the first layer of multilayer wiring, and the second layer
Molybdenum, tungsten, niobium, tantalum can be used for the layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す工程断面図、第2図は
本発明によるI−V特性を示す特性図、第3図は比較例
のI−V%性を示す特性図である0 1・・・n型珪素基板、2・・・SiO□絶縁膜、3・
・・ヒ素イオン、4・・・n”Ni%5・・・CVD−
810゜膜、6・・・ハフニウム層(50λ)、7・・
・タングステン層(2000λ)0 代理人 弁理士  則 近 憲 佑 (ほか1名) 第  1  図 ?
FIG. 1 is a process sectional view showing an example of the present invention, FIG. 2 is a characteristic diagram showing the IV characteristics according to the present invention, and FIG. 3 is a characteristic diagram showing the IV% characteristics of a comparative example. 0 1...n-type silicon substrate, 2...SiO□ insulating film, 3...
...Arsenic ion, 4...n"Ni%5...CVD-
810° film, 6... Hafnium layer (50λ), 7...
・Tungsten layer (2000λ) 0 Agent Patent attorney Kensuke Chika (and 1 other person) Figure 1?

Claims (2)

【特許請求の範囲】[Claims] (1)珪素半導体装置の配線層の形成において、前記配
線層がベリリウム、マグネシウム、チタン、ジルコニウ
ム、ハフニウムの少くとも1種からなり、かつ形成膜厚
が10Å以上 500Å以下である第1層とモリブデン、タングステン
、ニオブ、タンタルの少くとも一種からなる第2層によ
り構成されることを特徴とする半導体装置。
(1) In forming a wiring layer of a silicon semiconductor device, the wiring layer is made of at least one of beryllium, magnesium, titanium, zirconium, and hafnium, and has a formed film thickness of 10 Å or more and 500 Å or less; , tungsten, niobium, and tantalum.
(2)特許請求の範囲第1項記載の半導体装置に於いて
、配線層は真空中にて第1層金属形成後、同真空中にて
連続的に第2層金属が形成され、途中大気に触れること
のない形成法により設けられることを特徴とする半導体
装置。
(2) In the semiconductor device according to claim 1, the wiring layer is formed by forming a first layer metal in a vacuum, and then continuously forming a second layer metal in the same vacuum, with the wiring layer being exposed to air in the middle. A semiconductor device characterized in that it is provided by a formation method that does not touch the semiconductor device.
JP26839384A 1984-12-21 1984-12-21 Semiconductor device Pending JPS61147549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26839384A JPS61147549A (en) 1984-12-21 1984-12-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26839384A JPS61147549A (en) 1984-12-21 1984-12-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61147549A true JPS61147549A (en) 1986-07-05

Family

ID=17457848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26839384A Pending JPS61147549A (en) 1984-12-21 1984-12-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61147549A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206852A (en) * 1986-03-07 1987-09-11 Agency Of Ind Science & Technol Manufacture of semiconductor device
JPS62219945A (en) * 1986-03-22 1987-09-28 Agency Of Ind Science & Technol Manufacture of semiconductor device
JPS63100746A (en) * 1986-10-17 1988-05-02 Hitachi Ltd Method and apparatus thereof for wiring laying

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206852A (en) * 1986-03-07 1987-09-11 Agency Of Ind Science & Technol Manufacture of semiconductor device
JPH0577290B2 (en) * 1986-03-07 1993-10-26 Kogyo Gijutsuin
JPS62219945A (en) * 1986-03-22 1987-09-28 Agency Of Ind Science & Technol Manufacture of semiconductor device
JPH0582968B2 (en) * 1986-03-22 1993-11-24 Kogyo Gijutsuin
JPS63100746A (en) * 1986-10-17 1988-05-02 Hitachi Ltd Method and apparatus thereof for wiring laying

Similar Documents

Publication Publication Date Title
US4937652A (en) Semiconductor device and method of manufacturing the same
US4566026A (en) Integrated circuit bimetal layer
US6451664B1 (en) Method of making a MIM capacitor with self-passivating plates
JPS61142739A (en) Manufacture of semiconductor device
Schnable et al. Aluminum metallization—Advantages and limitations for integrated circuit applications
JPH0547760A (en) Semiconductor integrated circuit device and its manufacture and sputtering target for the manufacture
JPS58500680A (en) Semiconductor device with low resistance synthetic metal conductor and method for manufacturing the same
JPS61152042A (en) Metalization pattern of semiconductor element and method thereof
JPS61147549A (en) Semiconductor device
JPH04369861A (en) Manufacture of compound semiconductor integrated circuit capacitor
JPS62113421A (en) Manufacture of semiconductor device
JPS61242039A (en) Semiconductor device
JPH11145138A (en) Semiconductor device and manufacture thereof
JPS61214538A (en) Wiring structure and its manufacture
JP2850380B2 (en) Method for manufacturing semiconductor device
JPH04127454A (en) Semiconductor device
JP3321896B2 (en) Al-based material forming method, Al-based wiring structure, method of manufacturing semiconductor device, and semiconductor device
JPH04209572A (en) Semiconductor device
TW388938B (en) Method for increasing etch selectivity of metal wire
JPH02186634A (en) Manufacture of integrated circuit device
JPS63156340A (en) Manufacture of semiconductor device
JPH1140516A (en) Manufacture of semiconductor device
JPH05102156A (en) Semiconductor device
JPS63129662A (en) Semiconductor device
JPS61150235A (en) Manufacture of multilayer interconnection structure