JPS63129662A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63129662A
JPS63129662A JP27697186A JP27697186A JPS63129662A JP S63129662 A JPS63129662 A JP S63129662A JP 27697186 A JP27697186 A JP 27697186A JP 27697186 A JP27697186 A JP 27697186A JP S63129662 A JPS63129662 A JP S63129662A
Authority
JP
Japan
Prior art keywords
layer
alloy
solid phase
phase epitaxial
electrode wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27697186A
Other languages
Japanese (ja)
Inventor
Ichiro Fujita
藤田 一朗
Kazuo Tsunoda
一夫 角田
Toshifumi Ueshima
上嶋 才史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27697186A priority Critical patent/JPS63129662A/en
Publication of JPS63129662A publication Critical patent/JPS63129662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To decrease contact resistance, in a multilayer electrode interconnection, by forming a first layer out of aluminum alloy containing a specified amount of titanium. CONSTITUTION:An electrode window is provided in an SiO2 film 2 on an Si substrate 1. A first layer 3 composed of an Al-Ti alloy contain 0.1-1% Ti is deposited. Then a second layer 4 made of TiN is formed. A third layer 5 made of Al alloy such as Al-Cu is formed thereon. In this constitution, since the Al-Ti alloy is used in the layer 3, solid phase epitaxial reaction between the substrate 1 and the layer 3 is hard to occur, and contact resistance can be decreased.

Description

【発明の詳細な説明】 〔概要〕 半導体装置の多層電極配線において、第1層にAl−T
i合金を、第2層に高融点金属の窒化物を、第3層にA
IあるいはA1合金を使用するもので、コンタクト抵抗
を低減出来、SBDの順方向立上り電圧をTi含有量で
調整出来る。
[Detailed Description of the Invention] [Summary] In a multilayer electrode wiring of a semiconductor device, Al-T is used in the first layer.
i alloy, high melting point metal nitride in the second layer, and A in the third layer.
By using I or A1 alloy, the contact resistance can be reduced, and the forward rising voltage of the SBD can be adjusted by adjusting the Ti content.

〔、産業上の利用分野〕[, Industrial application field]

本発明は半導体装置の電極配線の構造に係り、詳しくは
、第1層にアルミニウム・チタン(AtTi)を、第2
層には高融点金属の窒化物を、第3層にはA1あるいは
A1合金層をもつ多層電極配線に関する。
The present invention relates to the structure of electrode wiring of a semiconductor device, and more specifically, the present invention relates to the structure of electrode wiring of a semiconductor device, and more particularly, aluminum titanium (AtTi) is used as the first layer, and aluminum titanium (AtTi) is used as the second layer.
The present invention relates to a multilayer electrode wiring having a layer made of high-melting point metal nitride and a third layer made of A1 or an A1 alloy layer.

LSI、超LSI等の半導体装置の電極配線材料として
は、AI若しくはA1合金が多く使用されている。
AI or A1 alloy is often used as an electrode wiring material for semiconductor devices such as LSI and VLSI.

^lは電気抵抗が小さく、且つ半導体例えばシリコン(
Si )との接触抵抗を小さくなし得る等の長所を有す
るが、その反面Siと反応し易く、電極配線形成後のア
ニール工程等の加熱処理工程において、AI中へSiが
容易に析出し、その結果、固相エピタキシャル、AIス
パイク等の好ましくない現象が起こる。
^l has low electrical resistance and is a semiconductor such as silicon (
It has the advantage of being able to reduce the contact resistance with Si (Si), but on the other hand, it easily reacts with Si, and Si easily precipitates into the AI during heat treatment steps such as annealing steps after electrode wiring formation. As a result, undesirable phenomena such as solid phase epitaxial growth and AI spikes occur.

このような問題を防止するため、チタン・タングステン
(TiW)がAtとも、またSiとも反応し難いことを
利用し、電極配線層を多層となし、第1層と第3層はA
IもしくはA1合金層とし、その間に第2層としてTi
Wの中間層を形成する。第1層は薄く形成し、Siと反
応するAI量を少量に限定し、もってStの析出量を一
定量以下に制限し得るようにしたものがある。
In order to prevent such problems, the electrode wiring layer is made into a multilayer structure by taking advantage of the fact that titanium/tungsten (TiW) hardly reacts with At or Si, and the first and third layers are made of A.
I or A1 alloy layer, with Ti as a second layer between them.
A W intermediate layer is formed. The first layer is formed thinly, and the amount of AI that reacts with Si is limited to a small amount, thereby making it possible to limit the amount of St precipitated to a certain amount or less.

しかしながら、上記TiW層を形成するには、通常スパ
ッタリング法によるが、TiWは合金でなく複合物であ
るため、TiとWのスパッタレートが一定でなく、また
TiWの焼結体ターゲットから微粉末が発生飛散し、基
板表面に付着する等の問題がある。
However, sputtering is usually used to form the TiW layer, but since TiW is not an alloy but a composite, the sputtering rate of Ti and W is not constant, and fine powder is collected from the TiW sintered target. There are problems such as generation, scattering, and adhesion to the substrate surface.

従って、本発明者等はさきに特願昭56−144393
において、前記TiW層形成時の問題点を解決するもの
として、TiWの替わりにTiN等の高融点金属の窒化
物を用いた“AI(或いはAI合金)−高融点金属の窒
化物−AI(或いはAI合金)”系の3層電極配線層を
発明した。
Therefore, the present inventors first applied for patent application No. 56-144393.
In order to solve the problems in forming the TiW layer, "AI (or AI alloy) - nitride of high melting point metal - AI (or We have invented a three-layer electrode wiring layer based on AI alloy).

即ち、高融点金属の窒化物はSiと合金を作らず、また
Alとも反応しない性質を有し、しかもその被膜形成は
、金属単体よりなるターゲットを用いアルゴン(Ar)
と窒素(N2)の混合雰囲気中でスパツクを行えば、良
質の被膜を安定して得ることが出来る。
In other words, nitrides of high-melting metals do not form alloys with Si or react with Al, and the film can be formed using argon (Ar) using a target made of a single metal.
If sprinkling is performed in a mixed atmosphere of nitrogen (N2) and nitrogen (N2), a high quality film can be stably obtained.

然しなから、この場合、Si基板のSiとコンタクトす
る第1層として用いられる金属はAI或いはAI合金で
、ここにおけるAI合金は通常のAl−3i等で、第1
層とSi基板面との間で生起する固相エピタキシャルの
問題に対しては未だ充分なる解決を与える至っていなか
った。
However, in this case, the metal used as the first layer in contact with the Si of the Si substrate is AI or an AI alloy, and the AI alloy here is ordinary Al-3i etc.
No satisfactory solution has yet been provided to the problem of solid phase epitaxial growth occurring between the layer and the Si substrate surface.

本発明は、Si基板面との間の固相エピタキシャル発生
の少ない第1層用AI合金をもつ多層電極配線を有する
半導体装置を提供しようとするものである。
The present invention aims to provide a semiconductor device having a multilayer electrode interconnection using an AI alloy for the first layer that is less likely to cause solid phase epitaxial formation between the first layer and the Si substrate surface.

〔従来の技術〕[Conventional technology]

第5図は従来例における電極配線構造模式図を示す。 FIG. 5 shows a schematic diagram of an electrode wiring structure in a conventional example.

この図に示すものは、前述の特願昭56−144393
におけるものであるが、Si基板1面上のSiO□膜2
に電極窓を開口し、スパッタリング法により第1層のA
I膜層6を厚さ約150μm被着する。ついで、Tiを
ターゲットとしてArとNZの雰囲気中でのりアクティ
ブスパッタリング法により、厚さ約2000人の第2層
のTiN膜層4を形成する。
What is shown in this figure is the above-mentioned patent application No. 56-144393.
, the SiO□ film 2 on one surface of the Si substrate
An electrode window is opened in the first layer A by sputtering.
An I film layer 6 is deposited to a thickness of approximately 150 μm. Next, a second TiN film layer 4 having a thickness of approximately 2000 layers is formed by active sputtering using Ti as a target in an atmosphere of Ar and NZ.

ついで、第3層のAI膜層5を厚さ約6000人形成す
る。
Next, a third AI film layer 5 is formed to a thickness of about 6,000 layers.

その後、通常のりソグラフィ技術と異方性エツチングに
より、配線層を工・ノチングしてバターニングする。
Thereafter, the wiring layer is processed, notched, and patterned using normal lithography technology and anisotropic etching.

第2層に使用したTiN膜層4はStおよびAIと反応
し難く且つ導電性も良好であり、被膜形成時のターゲッ
ト粉末の付着等の問題もない。
The TiN film layer 4 used as the second layer does not easily react with St and AI, has good conductivity, and has no problems such as adhesion of target powder during film formation.

しかし、第1層に厚さ150人のA1膜層6を使用して
いるので、電極形成後の熱処理によりSi基板l中のS
tがAI膜層6との界面において、A1の中に析出する
。これが冷えるとき界面に、AIを含有したSiのエピ
タキシャル層が形成される固相エピタキシャル現象が発
生し、これがコンタクト抵抗を変化増大せしめる。これ
によりコンタクト抵抗が大きくなり且つコンタクト抵抗
のバラツキの原因となる。
However, since the A1 film layer 6 with a thickness of 150 μm is used as the first layer, the S in the Si substrate 1 is removed by heat treatment after electrode formation.
t precipitates in A1 at the interface with the AI film layer 6. When this cools, a solid-phase epitaxial phenomenon occurs in which an epitaxial layer of Si containing AI is formed at the interface, which changes and increases the contact resistance. This increases contact resistance and causes variations in contact resistance.

又第1層をAl−5i(Si 1%)の合金層としても
、AIスパイクについては効果があるも、固相エピタキ
シャル化に対しては、殆ど純AIの場合とかわりない。
Even if the first layer is an alloy layer of Al-5i (Si 1%), it is effective for AI spikes, but it is almost the same as pure AI for solid phase epitaxialization.

このような電極配線は、例えば、ショットキーバリアダ
イオード(SBD)に使用した場合、熱処理工程により
順方向電圧が大きくなり、且つそのバラツキも大きくな
るので、特性の揃った半導体装置を得るためには好まし
くない。
For example, when such electrode wiring is used in a Schottky barrier diode (SBD), the forward voltage increases due to the heat treatment process, and its variation also increases, so it is necessary to obtain a semiconductor device with uniform characteristics. Undesirable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第1層の金属として固相反応の起こり難い材料を使用し
、コンタクト抵抗を小さくする。
A material that is unlikely to undergo a solid phase reaction is used as the first layer metal to reduce contact resistance.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、シリコン基板表面より導出された
電極配線層が第1層がチタンを0.1〜1%を含有する
アルミニウム合金でなり、第2層が高融点金属の窒化物
膜層でなり、第3Nがアルミニウムあるいはアルミニウ
ム合金層よりなるものを有している本発明による半導体
装置により達成される。
The solution to the above problem is that the first layer of the electrode wiring layer led out from the silicon substrate surface is made of an aluminum alloy containing 0.1 to 1% titanium, and the second layer is a nitride film layer of a high melting point metal. This is achieved by the semiconductor device according to the present invention, in which the third N is made of aluminum or an aluminum alloy layer.

〔作用〕[Effect]

電極配線のコンタクト窓において、第1層のAl−Ti
合金層とSiとの同相エピタキシャル反応が起こり難く
、コンタクト抵抗を低減することが出来る。
In the contact window of the electrode wiring, the first layer of Al-Ti
In-phase epitaxial reaction between the alloy layer and Si is less likely to occur, and contact resistance can be reduced.

〔実施例〕〔Example〕

第1図は本発明における電極配線構造模式図を示す。 FIG. 1 shows a schematic diagram of the electrode wiring structure in the present invention.

この図において、第5図と同じ対象物は同じ符号で示す
In this figure, the same objects as in FIG. 5 are designated by the same reference numerals.

Si基板1面上のSing膜2に電極窓を開口し、Ti
含有量0.1〜1%のAt−Ti合金をターゲットとし
たスパッタリング法により第1層のAl−Ti合金膜層
3を厚さ約150μm被着する。
An electrode window is opened in the Sing film 2 on the Si substrate 1 surface, and the Ti
A first Al-Ti alloy film layer 3 having a thickness of about 150 μm is deposited by sputtering using an At-Ti alloy with a content of 0.1 to 1% as a target.

TiをターゲットとしてArとN2の雰囲気中でのりア
クティブスパッタリング法により、厚さ約20OO人の
第2層のTiN膜層4を形成する。
A second TiN film layer 4 having a thickness of about 200 mm is formed by active sputtering using Ti as a target in an atmosphere of Ar and N2.

ついで、第3層のAI膜層5を厚さ約6000人形成す
る。
Next, a third AI film layer 5 is formed to a thickness of about 6,000 layers.

また、第3層5としてはAI−Cu(Cu 1%)等の
A1合金層を使用してもよい。
Further, as the third layer 5, an A1 alloy layer such as AI-Cu (Cu 1%) may be used.

その後、通常のりソグラフィ技術と異方性エツチングに
より、配線層をエツチングしてパターニングする。
Thereafter, the wiring layer is etched and patterned using normal lithography technology and anisotropic etching.

この場合、第1HにAl−Ti合金を使用しているので
、Si基板1と第1層の間で発生ずる固相エピタキシャ
ル現象を少なくすることが出来る。この状況を第2図に
示す。
In this case, since an Al--Ti alloy is used for the first H, it is possible to reduce the solid phase epitaxial phenomenon that occurs between the Si substrate 1 and the first layer. This situation is shown in Figure 2.

第2図は電極厚さと固相エピタキシャル率関係図を示す
FIG. 2 shows a relationship between electrode thickness and solid phase epitaxial rate.

この図において、横軸は電極配線の厚さ、縦軸は固相エ
ピタキシャル率を示す。図中、A−12はTi含有N0
81%および0.5%のAl−Ti合金の電極配線を形
成後、450℃、30分の熱処理工程を12回行ったも
のである。又、B−6は純Atの電極配線を形成後、同
様な450℃、30分の熱処理工程を6凹行ったもので
、B−12は純A1電極配線を形成後、450℃、30
分の熱処理工程を12回行ったものである。
In this figure, the horizontal axis shows the thickness of the electrode wiring, and the vertical axis shows the solid phase epitaxial rate. In the figure, A-12 is Ti-containing N0
After forming electrode wirings of 81% and 0.5% Al-Ti alloys, a heat treatment process of 450° C. for 30 minutes was performed 12 times. In addition, B-6 was formed by forming a pure At electrode wiring and then subjected to a similar heat treatment process at 450°C for 30 minutes, and B-12 was formed by forming a pure A1 electrode wiring and then subjected to a heat treatment process at 450°C for 30 minutes.
The heat treatment process was performed 12 times.

これらは、いずれも2μm角の大きさの電極窓をもつ試
料100個についてのものであり、また電極窓の面積の
173以上が固相エピタキシャル化しているものをカウ
ントして、固相エピタキシャル率とした。
These are all for 100 samples with electrode windows of 2 μm square size, and samples in which 173 or more of the area of the electrode windows are solid phase epitaxial are counted, and the solid phase epitaxial rate is calculated. did.

固相エピタキシャルの判定は熱処理後、電極配線をエツ
チング除去して顕微鏡で目視する方法によった。
Solid phase epitaxiality was determined by a method of removing electrode wiring by etching after heat treatment and visually observing it with a microscope.

この図でわかるように、Al−Ti合金のものは、Ti
量0.1%、1%の両方共、12回熱処理しても尚、純
AIの6回のものより固相エピタキシャル率が低いこと
を示している。
As you can see in this figure, the Al-Ti alloy has Ti
Both amounts of 0.1% and 1% show that even after 12 heat treatments, the solid phase epitaxial rate is still lower than that of pure AI with 6 heat treatments.

又、同じ組成の電極配線では厚さが厚くなると同相エピ
タキシャル率が増大しているが、これは、AIまたはA
1合金の電極配線が厚い程、より多くのSiが溶は込み
、析出するためである。
In addition, the in-phase epitaxial rate increases as the thickness increases for electrode wirings with the same composition, but this is due to the fact that AI or
This is because the thicker the electrode wiring of 1 alloy, the more Si penetrates and precipitates.

第3図は固相エピタキシャル面積率と抵抗比の関係図で
ある。
FIG. 3 is a diagram showing the relationship between the solid phase epitaxial area ratio and the resistance ratio.

この図において、横軸は固相エピタキシャル面積率を、
縦軸は抵抗比を示す。電極窓に固相エピタキシャルが認
められない場合の固相エピタキシャル面積率はOで、こ
のときの抵抗を1として固相エピタキシャル面積率と抵
抗との関係を示すもので、固相エピタキシャル面積率が
1となると、即ち全面が固相エピタキシャル化すると、
抵抗比は略5程度となることを示す。
In this figure, the horizontal axis represents the solid phase epitaxial area ratio,
The vertical axis shows the resistance ratio. The solid phase epitaxial area ratio when no solid phase epitaxial is observed in the electrode window is O, and the relationship between the solid phase epitaxial area ratio and resistance is shown assuming that the resistance at this time is 1, and the solid phase epitaxial area ratio is 1. In other words, when the entire surface becomes solid-phase epitaxial,
This indicates that the resistance ratio is about 5.

また、第2図に示すように電極配線層の膜厚を薄くする
と固相エピタキシャル率は小さくなっているが、50μ
m以下に薄くすると、別の問題が生ずる。即ち3層構造
とした場合でも、第2層はTiN層であるため、コンタ
クト抵抗が高くなって了う。
Furthermore, as shown in Fig. 2, when the thickness of the electrode wiring layer is made thinner, the solid phase epitaxial rate becomes smaller;
When the thickness is reduced to less than m, another problem arises. That is, even in the case of a three-layer structure, since the second layer is a TiN layer, the contact resistance becomes high.

従って、第1層の厚さとしては50〜150μm程度と
するのが最もコンタクト抵抗の低い電極配線層を得るこ
とが出来る。
Therefore, it is possible to obtain an electrode wiring layer with the lowest contact resistance by setting the thickness of the first layer to about 50 to 150 μm.

このAl−Ti合金で−Ti含有量を0.1〜1%に限
定する理由は、0.1%以下ではTiを含有せしめる効
果が少ないためであり、また1%以上とすると、ターゲ
ット材料のAl−Ti合金に偏析が生じ均一組成のもの
が作りにくいためである。
The reason why the -Ti content is limited to 0.1 to 1% in this Al-Ti alloy is that if it is less than 0.1%, the effect of containing Ti is small, and if it is more than 1%, the target material This is because segregation occurs in the Al-Ti alloy, making it difficult to produce one with a uniform composition.

第4図はSBDにおけるAl−Ti電極のTi含有量と
VFとの関係図である。
FIG. 4 is a diagram showing the relationship between the Ti content of the Al-Ti electrode and VF in SBD.

この図は、横軸は順方向電流、縦軸は順方向電圧VF、
パラメーターとしてAt−Ti電極配線のAt含有量を
とって示している。
In this figure, the horizontal axis is the forward current, the vertical axis is the forward voltage VF,
The At content of the At-Ti electrode wiring is taken as a parameter.

この図によると、Ti量が増すに従って順方向立上り電
圧を小さくすることが出来るので、Ti量を加減するこ
とによって、順方向立上り電圧を調節することが可能と
なり、SBDの設計が容易となる。
According to this figure, as the amount of Ti increases, the forward rising voltage can be reduced, so by adjusting the amount of Ti, the forward rising voltage can be adjusted, which facilitates the design of the SBD.

また、この実施例では、第2層として、TiNなるTi
の窒化物としたが、これは他の高融点金属、例えば、T
a、、 W% Hf、、 MO% Zr、、 Nb、■
およびCrの中の一つの金属の窒化物を使用しても、同
様な固相エピタキシャル率の小さい、コンタクト抵抗の
低い電極配線層を得ることが出来る。
In addition, in this embodiment, the second layer is made of TiN.
The nitride of T
a,, W% Hf,, MO% Zr,, Nb, ■
Even if a nitride of one metal among Cr and Cr is used, it is possible to obtain a similar electrode wiring layer with a low solid phase epitaxial rate and a low contact resistance.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の電極配線を有する
半導体装置によれば、電極コンタクト部における固相エ
ピタキシャルの少なくすることが出来、従って、コンタ
クト抵抗が低減出来る。
As described above in detail, according to the semiconductor device having the electrode wiring of the present invention, it is possible to reduce solid phase epitaxial formation in the electrode contact portion, and therefore, the contact resistance can be reduced.

また、SBDに適用すれば、Ti量により順方向立上り
電圧を調節することが可能となる。
Moreover, if applied to SBD, it becomes possible to adjust the forward rising voltage by adjusting the amount of Ti.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における電極配線構造模式図、第2図は
電極厚さと固相エピタキシャル率関係図、 第3図は固相エピタキシャル面積率と抵抗比の関係図、 第4図はSBDにおける旧−Ti電極のTi含を量とV
Fとの関係図、 第5図は従来例における電極配線構造模式図を示す。 これら図において1. 1はシリコン基板(Si基板)、 2は酸化シリコン膜(SiOzll莫)、3は第1層(
AI−Ti)、 4は第2層(TiN)、 脈発日月(こお゛けろ電lj面己繰構1模式回第1 図 厚:? <A>  − 屯感厚ゴビ固相エビタAンヤル率関係口第2 回 因相工じ9モジでル位目i牢ヒオ医1毘じし力団任図嘱
 3 m ・・項方向東5LCpA) SBDに8【アろへ!−丁し1ヒタシβ丁しイ計塙1璽
=Thヒ力関係日    毛4回 右り贋(イ々・11(ス・1する1L極白乙繰力4ヱL
模に日射5 圓
Fig. 1 is a schematic diagram of the electrode wiring structure in the present invention, Fig. 2 is a relation diagram between electrode thickness and solid phase epitaxial ratio, Fig. 3 is a relation diagram between solid phase epitaxial area ratio and resistance ratio, and Fig. 4 is a diagram showing the relationship between solid phase epitaxial area ratio and resistance ratio. - Ti content of Ti electrode and V
FIG. 5 shows a schematic diagram of the electrode wiring structure in a conventional example. In these figures, 1. 1 is a silicon substrate (Si substrate), 2 is a silicon oxide film (SiOzllmo), and 3 is a first layer (
AI-Ti), 4 is the second layer (TiN), pulsation sun and moon (Ko-o-kero-kero-lj-plane-regeneration-structure-1-schematic-1st Figure thickness: ? <A> - Thickness of solid phase Evita A Nyaru rate related mouth 2nd time, 9th mod, 1st time, 1st time, 3 m...7 direction East 5LCpA) 8 to SBD [Arohe! -Dish 1 Hitashi β Dish I Keihan 1 Sei = Th power related day Hair 4 times right counterfeit (I, 11 (S, 1 Suru 1L Gokuhaku Otsuri force 4ヱL)
Simulated solar radiation 5 circles

Claims (1)

【特許請求の範囲】  シリコン基板(1)表面より導出された電極配線層が
第1層(3)がチタンを0.1〜1%を含有するアルミ
ニウム合金でなり、 第2層(4)が高融点金属の窒化物膜層でなり、第3層
(5)がアルミニウムあるいはアルミニウム合金層より
なるものを有している ことを特徴とする半導体装置。
[Claims] In the electrode wiring layer led out from the surface of the silicon substrate (1), the first layer (3) is made of an aluminum alloy containing 0.1 to 1% titanium, and the second layer (4) is made of an aluminum alloy containing 0.1 to 1% titanium. 1. A semiconductor device comprising a nitride film layer of a high melting point metal, the third layer (5) comprising an aluminum or aluminum alloy layer.
JP27697186A 1986-11-20 1986-11-20 Semiconductor device Pending JPS63129662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27697186A JPS63129662A (en) 1986-11-20 1986-11-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27697186A JPS63129662A (en) 1986-11-20 1986-11-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63129662A true JPS63129662A (en) 1988-06-02

Family

ID=17576964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27697186A Pending JPS63129662A (en) 1986-11-20 1986-11-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63129662A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178131A (en) * 1989-12-06 1991-08-02 Nec Corp Semiconductor device
US5747361A (en) * 1991-05-01 1998-05-05 Mitel Corporation Stabilization of the interface between aluminum and titanium nitride
KR100279011B1 (en) * 1991-05-02 2001-01-15 데이브 브라운 Stabilization of interface between aluminum and titanium nitride

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169363A (en) * 1980-05-29 1981-12-26 Fujitsu Ltd Semiconductor device
JPS59100565A (en) * 1982-11-30 1984-06-09 Fujitsu Ltd Semiconductor device
JPS60251663A (en) * 1984-05-28 1985-12-12 Mitsubishi Electric Corp Semiconductor device
JPS618971A (en) * 1984-06-23 1986-01-16 Nippon Gakki Seizo Kk Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169363A (en) * 1980-05-29 1981-12-26 Fujitsu Ltd Semiconductor device
JPS59100565A (en) * 1982-11-30 1984-06-09 Fujitsu Ltd Semiconductor device
JPS60251663A (en) * 1984-05-28 1985-12-12 Mitsubishi Electric Corp Semiconductor device
JPS618971A (en) * 1984-06-23 1986-01-16 Nippon Gakki Seizo Kk Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178131A (en) * 1989-12-06 1991-08-02 Nec Corp Semiconductor device
US5747361A (en) * 1991-05-01 1998-05-05 Mitel Corporation Stabilization of the interface between aluminum and titanium nitride
KR100279011B1 (en) * 1991-05-02 2001-01-15 데이브 브라운 Stabilization of interface between aluminum and titanium nitride

Similar Documents

Publication Publication Date Title
JP3353874B2 (en) Semiconductor device and manufacturing method thereof
JP3296708B2 (en) Multilayer Al alloy structure for metal conductor
KR900007147B1 (en) Manufacture of semiconductor device
US5703403A (en) Electrode for semiconductor device and method for producing the same
JP2789332B2 (en) Structure of metal wiring and method of forming the same
JP2004506814A (en) Sputtering target
JPS61133646A (en) Manufacture of semiconductor device
US4680854A (en) Forming low resistivity hillock free conductors in VLSI devices
JPS63129662A (en) Semiconductor device
JP2000091266A (en) Method for improvement of aluminum metallized structure for tungsten etch back process
JPH10209156A (en) Semiconductor device and its manufacture
JP2757796B2 (en) Semiconductor integrated circuit device
JPS60182133A (en) Manufacture of semiconductor device
NL9201095A (en) Method of fabricating a semiconductor device
JPH03142883A (en) Semiconductor device and manufacture thereof
JPH06204218A (en) Manufacturing method of semiconductor device
JP4221737B2 (en) Metal wiring manufacturing method
JP2976955B2 (en) Method for manufacturing semiconductor device
JPH05109656A (en) Formation of metal wiring using amorphous titanium nitride film
JP2992524B2 (en) Semiconductor element wiring forming method
JP3368629B2 (en) Semiconductor device
JP2819869B2 (en) Method for manufacturing semiconductor device
JPS62219921A (en) Semiconductor device
JPH05291560A (en) Barrier metal of semiconductor device
JPS60251663A (en) Semiconductor device