JPS61144885A - Heatproof, thin film optoelectric transducer and production thereof - Google Patents

Heatproof, thin film optoelectric transducer and production thereof

Info

Publication number
JPS61144885A
JPS61144885A JP59267256A JP26725684A JPS61144885A JP S61144885 A JPS61144885 A JP S61144885A JP 59267256 A JP59267256 A JP 59267256A JP 26725684 A JP26725684 A JP 26725684A JP S61144885 A JPS61144885 A JP S61144885A
Authority
JP
Japan
Prior art keywords
layer
thin film
silicide
semiconductor
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59267256A
Other languages
Japanese (ja)
Other versions
JPH065770B2 (en
Inventor
Jun Takada
純 高田
Yoshinori Yamaguchi
美則 山口
Yoshihisa Owada
太和田 喜久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP59267256A priority Critical patent/JPH065770B2/en
Priority to CA483934A priority patent/CA1270931C/en
Priority to AU43651/85A priority patent/AU576594B2/en
Priority to KR1019850004216A priority patent/KR910005761B1/en
Priority to EP85107371A priority patent/EP0165570B1/en
Priority to DE8585107371T priority patent/DE3581561D1/en
Priority to CN85104921A priority patent/CN1003267B/en
Publication of JPS61144885A publication Critical patent/JPS61144885A/en
Priority to US06/942,644 priority patent/US4765845A/en
Publication of JPH065770B2 publication Critical patent/JPH065770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent the reduction of the characteristics when an optoelectric transducer is used at high-temperature, by providing a silicide forming element layer with specified thickness between a semiconductor and at least other elec trode. CONSTITUTION:A p-layer, an i-layer, an an n-layer made of amorphous Si are formed on a transparent substrate provided with a transparent electrode. Then, Cr which is one of the silicide constituting elements is evaporated to the thickness of 5-100Angstrom . Then, a back side electrode is laminated and heat- treated for 0.5-4hr at the temperature of about 180 deg.C to transform it to silicide so as to improve the contact with the back electrode and Si layer, thereby providing a heatproof, thin film, optoelectric transducer.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は耐熱性簿膜光電変換素子およびその製法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a heat-resistant film photoelectric conversion element and a method for manufacturing the same.

[従来の技術] 従来、薄膜光電変換素子の電気的接続のために、たとえ
ば透明基板と半導体との間にITO。
[Prior Art] Conventionally, ITO has been used between a transparent substrate and a semiconductor, for example, for electrical connection of a thin film photoelectric conversion element.

ITO/5n02.5n02、In2O3、Cd  S
nOy(x−0,5〜2、y−12〜4)、Ir O(
z−0,33〜0.5)な  i−z どからなる金属化合物層が形成され、透明電極として用
いられたり、半導体上にA1、SUS 1鉄、Ni、 
Cu、 Llんちゆう、Zn、 Agなどの金属層が形
成され、裏面電極として用いられたりしている。
ITO/5n02.5n02, In2O3, CdS
nOy (x-0, 5~2, y-12~4), IrO(
A metal compound layer consisting of i-z such as z-0,33~0.5) is formed and used as a transparent electrode, or a metal compound layer consisting of A1, SUS 1 iron, Ni, etc. is formed on the semiconductor.
A metal layer such as Cu, aluminum, Zn, or Ag is formed and used as a back electrode.

しかし、このようにして製造された薄膜光電変換素子を
50℃程度以上の温度で使用すると、電気的接続に用い
た金属化合物あるいは金属が半導体中に拡散し、半導体
特性が低下する。とくに金属化合物層や金属層が接触す
る半導体が非晶質のばあいには、半導体特性の低下が著
しい。とりわけ屋外に設置されるアモルファスシリコン
(以下、a−8iという)系太陽電池のばあいには約8
0℃にもなり、太陽電池特性の低下が著しい。
However, if the thin film photoelectric conversion element manufactured in this manner is used at a temperature of about 50° C. or higher, the metal compound or metal used for electrical connection will diffuse into the semiconductor, and the semiconductor characteristics will deteriorate. Particularly when the semiconductor with which the metal compound layer or metal layer is in contact is amorphous, the semiconductor properties are significantly deteriorated. In particular, in the case of amorphous silicon (hereinafter referred to as A-8I) solar cells installed outdoors, approximately 8
At temperatures as low as 0°C, the solar cell characteristics are significantly degraded.

[発明が解決しようとする問題点] 本発明は薄膜光電変換素子を高温で使用したばあいに生
ずる、電気的接続用の金属化合物層や金属層の半導体中
への拡散による薄膜光電変換素子の特性の低下を、電極
面での反射光の損失をおこさないようにして少なくする
ためになされたものである。
[Problems to be Solved by the Invention] The present invention solves problems in thin film photoelectric conversion elements due to diffusion of metal compound layers and metal layers for electrical connection into semiconductors, which occurs when thin film photoelectric conversion elements are used at high temperatures. This was done in order to reduce the deterioration of the characteristics by preventing loss of reflected light on the electrode surface.

[問題点を解決するための手段] 本発明は、半導体とすくなくとも一方の電極との間に、
厚さ5〜100人のシリサイド形成元素層を設けたこと
を特徴とする耐熱性薄膜光電変換素子、および半導体と
少なくとも一方の電極との間に厚さ5〜100人のシリ
サイド形成元素層を設けた耐熱性薄膜光電変換素子を製
造する際に、半導体−5〜100へのシリサイド形成元
素層−電極からなる層を形成したのち、180℃〜成膜
瀉度で0.5〜4時間熱処理することを特徴とする耐熱
性WIWA光電変換素子の製法に関する。
[Means for Solving the Problems] The present invention provides a structure in which a semiconductor is connected between a semiconductor and at least one electrode.
A heat-resistant thin film photoelectric conversion element characterized in that a silicide-forming element layer with a thickness of 5 to 100 people is provided, and a silicide-forming element layer with a thickness of 5 to 100 people is provided between a semiconductor and at least one electrode. When manufacturing a heat-resistant thin film photoelectric conversion element, a layer consisting of a silicide-forming element layer and an electrode is formed on the semiconductor -5 to 100, and then heat treated at 180°C to a film formation temperature for 0.5 to 4 hours. The present invention relates to a method for manufacturing a heat-resistant WIWA photoelectric conversion element.

[実施例] 本発明の耐熱性薄膜光電変換素子においては、入光側の
電極または裏面電極と半導体層との間にシリサイド形成
元素層が設けられている。
[Example] In the heat-resistant thin film photoelectric conversion element of the present invention, a silicide-forming element layer is provided between the light incident side electrode or back electrode and the semiconductor layer.

本発明に用いる半導体としては、非晶質または結晶質を
含む非晶質半導体であればとくに限定はない。このよう
な半導体の具体例としては、a−8i:H、a−3i:
 F : H、a−3iGe: H、a−8iSn:H
、a−8iN : H、a−8iGe: F : H、
a−3iSn: F :H、a−8i:N  :F  
:H、a−8iC:H、a−8iC:F :H、a−8
iO:H、a−8iO:F :Hなどがあげれらる。前
記半導体は、p型、n型、真性のいずれであってもよい
The semiconductor used in the present invention is not particularly limited as long as it is amorphous or an amorphous semiconductor containing crystalline. Specific examples of such semiconductors include a-8i:H, a-3i:
F: H, a-3iGe: H, a-8iSn:H
, a-8iN: H, a-8iGe: F: H,
a-3iSn: F:H, a-8i:N:F
:H, a-8iC:H, a-8iC:F :H, a-8
Examples include iO:H and a-8iO:F:H. The semiconductor may be p-type, n-type, or intrinsic.

前記シリサイド形成元素としては、たとえばLi1Ha
、にa、 Rh、 Cs、 t+o、ca、 Sr、B
a1Sc、 Y 。
As the silicide forming element, for example, Li1Ha
, nia, Rh, Cs, t+o, ca, Sr, B
a1Sc, Y.

La、 Ti、 Zr、Hf、 V 、 Nb、 Ta
、 Cr、No、 W 、Hn。
La, Ti, Zr, Hf, V, Nb, Ta
, Cr, No., W, Hn.

Re、 Fe、 Ru、 Os、 Co、 Rh、 I
r、 Ni、pa、 piなどがあげられる。
Re, Fe, Ru, Os, Co, Rh, I
Examples include r, Ni, pa, pi, etc.

前記入光側の電極としては、たとえばITO1ITO/
5n02、SnO2、In2O3、Cd  SnO(x
−0,5〜y 2、■−2〜4)、lr O(z−0,33〜0.5)
な  1−z どからなる金属化合物層からなる電極が代表例としてあ
げられるが、これらに限定されるものではない。
As the electrode on the light input side, for example, ITO1ITO/
5n02, SnO2, In2O3, Cd SnO(x
-0,5~y2, ■-2~4), lr O(z-0,33~0.5)
Typical examples include electrodes made of metal compound layers such as 1-z, but are not limited thereto.

前記裏面電極としては、通常裏面電極として用いられる
金属、合金などから形成される裏面電極であればとくに
限定なく使用されつるが、前記シリサイド形成元素以外
の元素からなる裏面電極あるいは前記シリカサイド形成
元素を含まない合金などから形成されている電極である
ことが、形成されるシリサイド層の厚さなどを所望の値
にしやすく、経時変化が少ないなどの点から好ましい。
The back electrode may be used without particular limitation as long as it is a back electrode formed from a metal, alloy, etc. that is normally used as a back electrode, but it may be a back electrode made of an element other than the silicide-forming element or the silica side-forming element. It is preferable that the electrode be made of an alloy or the like that does not contain .

前記裏面電極の具体例としては、AI、AQ、All。Specific examples of the back electrode include AI, AQ, and All.

SO8、Ni、 Cu、 Llんちゅう、鉄、In、T
iなど、好ましくは波長0.6.以上の光に対する反射
率が20〜99%、さらに好ましくは45〜99%と高
く、電気伝導度が0.1xlO! 〜6.2x1O5(
Ω−cm)−1と大きい金属から形成された電極があげ
られるが、これらに限定されるものではない。前記光に
対する反射率が高く、電気伝導度の大きい裏面電極とし
ては、Cu、 AQなどの金属から形成された裏面電極
があげられる。なお裏面電極は単層であってもよく、多
層であってもよいが、多層のばあいにはシリサイド形成
元素層に接する層が前記光に対する反射率が高く、電気
伝導度の大きい金属層であることが、反射光の有効利用
、直列抵抗の低下などの点から好ましい。
SO8, Ni, Cu, Llinchu, Iron, In, T
i, etc., preferably with a wavelength of 0.6. The reflectance for the above light is as high as 20-99%, more preferably 45-99%, and the electrical conductivity is 0.1xlO! ~6.2x1O5(
Examples include, but are not limited to, electrodes formed from metals having a large resistance (Ω-cm)-1. Examples of the back electrode having a high reflectance to light and high electrical conductivity include back electrodes made of metals such as Cu and AQ. Note that the back electrode may be a single layer or a multilayer, but in the case of a multilayer, the layer in contact with the silicide-forming element layer is a metal layer that has a high reflectance to the light and a high electrical conductivity. It is preferable that there be 100% from the viewpoint of effective use of reflected light, reduction in series resistance, etc.

なお本発明においては半導体と少なくとも−方の電極と
の間にシリサイド形成元素層が設けられていればよいが
、以下の説明は裏面電極と半導体との間にシリサイド形
成元素層が設けられたばあいについて行なう。
Note that in the present invention, it is sufficient that a silicide-forming element layer is provided between the semiconductor and at least the negative electrode, but the following explanation applies only when a silicide-forming element layer is provided between the back electrode and the semiconductor. Follow Ai.

本発明においては、半導体と裏面電極との間に厚さ5〜
100人、好ましくは1〜40人のシリサイド形成元素
層が設けられている。該シリサイド形成元素層の厚さが
5人未満になると、均一で品質のよい層がえられなくな
ったり、裏面電極を形成する金属の半導体中への熱によ
る拡散を充分防止することができなくなったりする。
In the present invention, the thickness between the semiconductor and the back electrode is 5 to 5.
A layer of 100, preferably 1 to 40, silicide-forming elements is provided. If the thickness of the silicide-forming element layer is less than 5 layers, it may become impossible to obtain a uniform and high-quality layer, or it may become impossible to sufficiently prevent the metal forming the back electrode from diffusing into the semiconductor due to heat. do.

また層の厚さが100人をこえると、該層が存在するた
めに直列電気抵抗が増したり、光の吸収が増し、裏面電
極面での反射光が少な(なったり、シリサイド形成元素
層の形成に時間がかかつたりするという問題が生ずる。
Furthermore, if the thickness of the layer exceeds 100 layers, the presence of the layer increases the series electrical resistance, increases the absorption of light, and reduces the amount of light reflected on the back electrode surface, or the silicide-forming element layer increases. A problem arises in that it takes a long time to form.

シリサイド形成元素層の厚さは蒸着時の振動子モニター
値を用いて測定してもよいし、8188などの表面分析
から求めた厚さの検量線を利用して測定してもよい。
The thickness of the silicide-forming element layer may be measured using a vibrator monitor value during vapor deposition, or may be measured using a thickness calibration curve obtained from surface analysis such as 8188.

つぎに本発明の耐熱性薄膜光電変換素子の製法を、光入
射側から順にp型、i型、n型の半導体を設けた太陽電
池を例にとり説明する。
Next, a method for manufacturing a heat-resistant thin film photoelectric conversion element of the present invention will be explained using as an example a solar cell in which p-type, i-type, and n-type semiconductors are provided in order from the light incident side.

なお本明細書にいう薄膜充電変換素子とは、厚さ102
〜106A程度の半導体層、好ましくは0、02〜10
0−の非晶質半導体層を含む、たとえば太陽電池、光検
出素子、光電面ドラム、レーザー、エレクトロルミネッ
センス素子などで代表される光電変換素子を意味する。
Note that the thin film charge conversion element referred to in this specification refers to a thickness of 102
~106A semiconductor layer, preferably 0.02~10
It means a photoelectric conversion element including a 0- amorphous semiconductor layer, such as a solar cell, a photodetection element, a photocathode drum, a laser, an electroluminescence element, etc.

まず透明電極を設けた透明基板上に、常法により非晶質
のp層、i層、n層を形成する。そののちシリサイド形
成元素の1種であるクロムを用いて通常の電子ビーム蒸
着法により、所定の厚さの層を形成する。もちろんクロ
ムをスパッター用ターゲットを用いてスパッター法によ
り堆積させてもよい。
First, amorphous p-layer, i-layer, and n-layer are formed by a conventional method on a transparent substrate provided with a transparent electrode. Thereafter, a layer of a predetermined thickness is formed using chromium, which is one of the silicide-forming elements, by a normal electron beam evaporation method. Of course, chromium may be deposited by sputtering using a sputtering target.

そののち裏面電極を常法により堆積させることにより、
本発明の耐熱性薄膜光電変換素子がえられる。
After that, by depositing the back electrode by a conventional method,
A heat-resistant thin film photoelectric conversion element of the present invention can be obtained.

上記説明ではpin型太陽電池について説明したが、シ
ョットキ型やpn型の太陽電池あるいは他の光電変換素
子についても同様である。また太烏電池はへテロ接合の
太陽電池であってもよく、ホモ接合の太陽電池であって
もよい。
In the above description, a pin type solar cell has been described, but the same applies to Schottky type or pn type solar cells or other photoelectric conversion elements. Furthermore, the Taikarasu cell may be a heterojunction solar cell or a homojunction solar cell.

このようにして作製された本発明の耐熱性薄膜充電変換
素子は、このままでも加熱による光電変換素子特性の低
下が少なく良好な特性を有するものであるが、さらに1
80℃〜成膜温度(180〜400℃程度)でO,S〜
4時間程度熱処理すると、シリサイド形成元素層がシリ
サイド化し、裏面電極や半導体であるSi層との接触を
よくすることができ、その界面の直列抵抗を減少させる
ことができる。
The heat-resistant thin film charging/converting device of the present invention produced in this manner has good characteristics with little deterioration in photoelectric conversion device characteristics due to heating even as it is;
O, S ~ at 80℃ ~ film forming temperature (approximately 180~400℃)
When the heat treatment is performed for about 4 hours, the silicide-forming element layer becomes silicide, making it possible to improve contact with the back electrode and the semiconductor Si layer, and reducing the series resistance at the interface.

このようにして製造される本発明の耐熱性薄膜光電変換
素子は、たとえば50℃以上のような高温で使用される
、あるいは使用中に50℃以上になることがあるような
用途に使用される太陽電池や光検出素子などとして好適
に使用される。
The heat-resistant thin film photoelectric conversion element of the present invention manufactured in this way is used at high temperatures such as 50°C or higher, or used in applications where the temperature may reach 50°C or higher during use. Suitable for use as solar cells, photodetecting elements, etc.

とくに屋外に設置され、使用温度が80℃にもなる太陽
電池に用いたばあいに、本発明の効果が大きく発揮され
る。またシリサイド層が薄いため、長波長光の裏面電極
面での反射ロスが極めて少ない。
The effects of the present invention are particularly effective when used in solar cells that are installed outdoors and have operating temperatures of as much as 80°C. Furthermore, since the silicide layer is thin, there is extremely little reflection loss of long-wavelength light on the back electrode surface.

つぎに本発明の耐熱性WIia光電変換素子を実施例に
もとづき説明する。
Next, the heat-resistant WIia photoelectric conversion element of the present invention will be explained based on Examples.

実施例1 厚さ1000人のITO/ 5nOz透明電極を設けた
厚さ1履の青板ガラス基板上に、基板温度約200℃、
圧力的1TOrrにて、SiH4、B2H,からなる混
合ガス、31)I4、H2からなる混合ガス、5tHa
 、PH3からなる混合ガスをこの順に用いて、グロー
放電分解法にてそれぞれアモルファスタイプのplを1
20人、i層を5000人、0層を300人の厚さにな
るように堆積させた。
Example 1 A 1000-thick ITO/5nOz transparent electrode was placed on a 1-layer-thick blue plate glass substrate at a substrate temperature of about 200°C.
At a pressure of 1 TOrr, a mixed gas consisting of SiH4, B2H, 31) A mixed gas consisting of I4, H2, 5tHa
, PH3 was used in this order, and 1 pl of each amorphous type was obtained by glow discharge decomposition method.
The layers were deposited to a thickness of 20 layers, an i layer of 5000 layers, and a 0 layer of 300 layers.

そののち、クロム層を電子ビーム蒸着法にて104 T
Orrで厚さが20人になるようにn層上に堆積させた
のち、つづいてA(lを1000人の厚さに堆積させた
。ついで200℃で2R間熱処理して太陽電池を製造し
た。
After that, a chromium layer was deposited at 104 T using an electron beam evaporation method.
Orr was deposited on the n layer to a thickness of 20 layers, followed by A(l) deposited to a thickness of 1000 layers.Then, heat treatment was performed at 200° C. for 2R to produce a solar cell. .

えられた太陽電池のp層、i層、n層、クロム層および
^g層はそれぞれ120^、5ooo人、3GOA 、
 20人、1000人f)厚すテアッタ。
The p-layer, i-layer, n-layer, chromium layer and g-layer of the obtained solar cell are respectively 120^, 5ooo, 3GOA,
20 people, 1000 people f) Atsushitaatta.

えられた太陽電池の特性および230℃で6時間加熱し
たのちの特性をAH−1,100+eW/iのソーラー
シミュレーターを用いて測定した。その結果を第1表に
示す。
The characteristics of the obtained solar cell and the characteristics after heating at 230° C. for 6 hours were measured using an AH-1,100+eW/i solar simulator. The results are shown in Table 1.

実施例2 200℃で2時間熱処理しなかったほかは実施例1と同
様にして太陽電池を作製し、えられた太陽電池の特性を
測定した。その結果を第1表に示す。
Example 2 A solar cell was produced in the same manner as in Example 1, except that the heat treatment at 200° C. for 2 hours was not performed, and the characteristics of the obtained solar cell were measured. The results are shown in Table 1.

比較例1 クロム層を設けなかったほかは実施例1と同様にして太
陽電池を作製し、えられた太Fig池の特性および23
0℃で6時間加熱したのちの特性を測定した。その結果
を第1表に示す。
Comparative Example 1 A solar cell was produced in the same manner as in Example 1 except that the chromium layer was not provided, and the characteristics of the obtained solar cell and 23
The characteristics were measured after heating at 0° C. for 6 hours. The results are shown in Table 1.

C以下余白) [発明の効果] 以上説明したように、薄膜光電変換素子を製造するばあ
いに、半導体と裏面電極との間に薄いシリサイド形成元
素層を設けることにより、薄膜光電変換素子を高温で使
用したばあいにも、裏面電極を構成する金属成分や入光
側の電極を構成する金属化合物成分が半導体中に拡散す
ることを防ぎ、薄膜光電変換素子の低下を少なくするこ
とができる。さらにシリサイド形成元素層を5〜100
人、好ましくは7〜40Aというように薄(形成するた
め、太陽電池のばあいには長波長光の裏面反射光を充分
利用できるなどの効果が生ずる。また半導体−シリサイ
ド形成元素層−電極を積層させたのち180℃〜成II
温度で015〜4時間熱処理することにより、えられる
耐熱性′?1IWA光電変換素子特性(とくに太陽電池
特性のうちの短絡電流およびフィルファクター)をさら
に改良することができる。
(Blank below C) [Effects of the Invention] As explained above, when manufacturing a thin film photoelectric conversion element, by providing a thin silicide-forming element layer between the semiconductor and the back electrode, the thin film photoelectric conversion element can be heated to high temperatures. When used in the semiconductor device, it is possible to prevent the metal component constituting the back electrode and the metal compound component constituting the light incident side electrode from diffusing into the semiconductor, thereby reducing deterioration of the thin film photoelectric conversion element. Furthermore, 5 to 100 layers of silicide forming elements are added.
In the case of solar cells, effects such as the ability to fully utilize the back-reflected light of long wavelength light are produced.Also, the semiconductor-silicide-forming element layer-electrode layer is formed as thin as 7 to 40A. After laminating, 180°C ~ Formation II
Heat resistance obtained by heat treatment at a temperature of 0.15 to 4 hours. The characteristics of the 1IWA photoelectric conversion element (particularly the short circuit current and fill factor of the solar cell characteristics) can be further improved.

Claims (1)

【特許請求の範囲】 1 半導体と少なくとも一方の電極との間に、厚さ5〜
100Åのシリサイド形成元素層を設けたことを特徴と
する耐熱性薄膜光電変換素子。 2 前記シリサイド形成元素層の厚さが7〜40Åであ
る特許請求の範囲第1項記載の耐熱性薄膜光電変換素子
。 3 半導体が厚さ0.02〜100μmの非晶質薄膜で
ある特許請求の範囲第1項記載の耐熱性薄膜光電変換素
子。 4 裏面電極を形成する金属の波長0.6μm以上の光
に対する反射率が20〜99%で、電気伝導度が0.1
×10^5〜6.2×10^5(Ω・cm)^−^1で
ある特許請求の範囲第1項記載の耐熱性薄膜光電変換素
子。 5 半導体と少なくとも一方の電極との間に、厚さ5〜
100Åのシリサイド形成元素層を設けた耐熱性薄膜光
電変換素子を製造する際に、半導体−厚さ5〜100Å
のシリサイド形成元素層−電極からなる層を形成したの
ち、180℃〜成膜温度で0.5〜4時間熱処理するこ
とを特徴とする耐熱性薄膜光電変換素子の製法。
[Claims] 1. Between the semiconductor and at least one electrode, there is a
A heat-resistant thin film photoelectric conversion element characterized by providing a 100 Å layer of a silicide-forming element. 2. The heat-resistant thin film photoelectric conversion element according to claim 1, wherein the silicide-forming element layer has a thickness of 7 to 40 Å. 3. The heat-resistant thin film photoelectric conversion element according to claim 1, wherein the semiconductor is an amorphous thin film with a thickness of 0.02 to 100 μm. 4 The reflectance of the metal forming the back electrode for light with a wavelength of 0.6 μm or more is 20 to 99%, and the electrical conductivity is 0.1
x10^5 to 6.2 x 10^5 (Ωcm)^-^1. The heat-resistant thin film photoelectric conversion element according to claim 1. 5 Between the semiconductor and at least one electrode, there is a thickness of 5 to
When manufacturing a heat-resistant thin film photoelectric conversion element provided with a 100 Å silicide-forming element layer, a semiconductor layer with a thickness of 5 to 100 Å is used.
A method for manufacturing a heat-resistant thin film photoelectric conversion element, which comprises forming a layer consisting of a silicide-forming element layer and an electrode, and then heat-treating the layer at a film-forming temperature of 180° C. for 0.5 to 4 hours.
JP59267256A 1984-06-15 1984-12-18 Manufacturing method of heat-resistant thin film photoelectric conversion element Expired - Lifetime JPH065770B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP59267256A JPH065770B2 (en) 1984-12-18 1984-12-18 Manufacturing method of heat-resistant thin film photoelectric conversion element
CA483934A CA1270931C (en) 1984-06-15 1985-06-13 Heat-resistant thin film photoelectric converter with diffusion blocking layer
AU43651/85A AU576594B2 (en) 1984-06-15 1985-06-13 Heat-resistant thin film photoelectric converter
DE8585107371T DE3581561D1 (en) 1984-06-15 1985-06-14 HEAT-RESISTANT PHOTOELECTRIC THICK FILM CONVERTER.
EP85107371A EP0165570B1 (en) 1984-06-15 1985-06-14 Heat-resistant thin film photoelectric converter
KR1019850004216A KR910005761B1 (en) 1984-06-15 1985-06-14 Heat-resistant thin film photo electric converter and its manufacturing method
CN85104921A CN1003267B (en) 1984-10-11 1985-06-27 Heat-pesistant thin film photoelectric converter
US06/942,644 US4765845A (en) 1984-06-15 1986-12-17 Heat-resistant thin film photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59267256A JPH065770B2 (en) 1984-12-18 1984-12-18 Manufacturing method of heat-resistant thin film photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPS61144885A true JPS61144885A (en) 1986-07-02
JPH065770B2 JPH065770B2 (en) 1994-01-19

Family

ID=17442308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59267256A Expired - Lifetime JPH065770B2 (en) 1984-06-15 1984-12-18 Manufacturing method of heat-resistant thin film photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH065770B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225877A (en) * 1985-03-29 1986-10-07 Kyocera Corp Photovoltaic device
JPS63159851U (en) * 1987-04-08 1988-10-19
JPH0290574A (en) * 1988-09-27 1990-03-30 Kanegafuchi Chem Ind Co Ltd Heat resistant solar cell
JP2002261302A (en) * 2001-02-28 2002-09-13 Kyocera Corp THIN-FILM CRYSTALLINE Si SOLAR CELL
JP2010225735A (en) * 2009-03-23 2010-10-07 Mitsubishi Electric Corp Photosensor and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858777A (en) * 1981-10-05 1983-04-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor element
JPS5878473A (en) * 1981-11-05 1983-05-12 Seiko Epson Corp Thin film solar battery
JPS5892280A (en) * 1981-11-27 1983-06-01 Seiko Epson Corp Thin film solar cell
JPS5892281A (en) * 1981-11-27 1983-06-01 Seiko Epson Corp Thin film solar cell
JPS60210825A (en) * 1984-04-04 1985-10-23 Hitachi Ltd Solar battery
JPS60211880A (en) * 1984-04-05 1985-10-24 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric conversion device
JPS6126268A (en) * 1984-07-16 1986-02-05 Kanegafuchi Chem Ind Co Ltd Heat-resistant amorphous silicon solar cell and manufacture thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858777A (en) * 1981-10-05 1983-04-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor element
JPS5878473A (en) * 1981-11-05 1983-05-12 Seiko Epson Corp Thin film solar battery
JPS5892280A (en) * 1981-11-27 1983-06-01 Seiko Epson Corp Thin film solar cell
JPS5892281A (en) * 1981-11-27 1983-06-01 Seiko Epson Corp Thin film solar cell
JPS60210825A (en) * 1984-04-04 1985-10-23 Hitachi Ltd Solar battery
JPS60211880A (en) * 1984-04-05 1985-10-24 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric conversion device
JPS6126268A (en) * 1984-07-16 1986-02-05 Kanegafuchi Chem Ind Co Ltd Heat-resistant amorphous silicon solar cell and manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225877A (en) * 1985-03-29 1986-10-07 Kyocera Corp Photovoltaic device
JPS63159851U (en) * 1987-04-08 1988-10-19
JPH0290574A (en) * 1988-09-27 1990-03-30 Kanegafuchi Chem Ind Co Ltd Heat resistant solar cell
JP2002261302A (en) * 2001-02-28 2002-09-13 Kyocera Corp THIN-FILM CRYSTALLINE Si SOLAR CELL
JP2010225735A (en) * 2009-03-23 2010-10-07 Mitsubishi Electric Corp Photosensor and method of manufacturing the same

Also Published As

Publication number Publication date
JPH065770B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
KR100237661B1 (en) Back reflector layer, method for forming it, and photovoltaic element using it and manufacturing method thereof
KR950001956B1 (en) Multi-junctional semiconductor device
US4765845A (en) Heat-resistant thin film photoelectric converter
EP0538840B1 (en) Photovoltaic device
US5603778A (en) Method of forming transparent conductive layer, photoelectric conversion device using the transparent conductive layer, and manufacturing method for the photoelectric conversion device
US5668050A (en) Solar cell manufacturing method
JPH0656883B2 (en) Semiconductor device
US4956023A (en) Integrated solar cell device
JPS61144885A (en) Heatproof, thin film optoelectric transducer and production thereof
JPS613471A (en) Semiconductor device
JP3025392B2 (en) Thin film solar cell and manufacturing method
JP3162261B2 (en) Solar cell manufacturing method and manufacturing apparatus
JPH10226598A (en) Transparent conductive titanium oxide film and its production
JPS60210825A (en) Solar battery
JPS61212070A (en) Thin film semiconductor solar cell containing amorphous material
JPS6191973A (en) Heat resisting thin film photoelectric conversion element and manufacture thereof
CN110797428A (en) Heterojunction solar cell
JPS63503103A (en) Multi-junction semiconductor device
JP2648698B2 (en) Heat-resistant solar cell
JPH0542834B2 (en)
JPS61283174A (en) Heat resistant thin film photoelectric converter and manufacture thereof
JPH0456170A (en) Manufacture of thin-film solar cell
JP2757896B2 (en) Photovoltaic device
JPS59154081A (en) Solar battery
JP2952121B2 (en) Photovoltaic element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term