JPS61283174A - Heat resistant thin film photoelectric converter and manufacture thereof - Google Patents

Heat resistant thin film photoelectric converter and manufacture thereof

Info

Publication number
JPS61283174A
JPS61283174A JP60124789A JP12478985A JPS61283174A JP S61283174 A JPS61283174 A JP S61283174A JP 60124789 A JP60124789 A JP 60124789A JP 12478985 A JP12478985 A JP 12478985A JP S61283174 A JPS61283174 A JP S61283174A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor
silicide layer
layer
film photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60124789A
Other languages
Japanese (ja)
Other versions
JPH088368B2 (en
Inventor
Jun Takada
純 高田
Yoshinori Yamaguchi
美則 山口
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP60124789A priority Critical patent/JPH088368B2/en
Publication of JPS61283174A publication Critical patent/JPS61283174A/en
Publication of JPH088368B2 publication Critical patent/JPH088368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce the deterioration in the characteristics of a thin film photoelectric converter by forming a thin silicide layer between a semiconductor and a back surface electrode, and preventing a metal component for forming a back surface electrode and a metal compound for forming the electrode of a light incident side from diffusing in the semiconductor even when the converter is used at high temperature. CONSTITUTION:An amorphous p-type layer, an i-type layer and an n-type layer are formed by a normal method on a transparent substrate formed with transparent electrodes, and a silicide layer is formed in the prescribed thickness by a sputtering method by a silicide target. Then, a back surface electrode is accumulated by a normal method to form a heat resistant thin film photoelectric converter. The converter has less decrease in the characteristics due to the heating as it is and preferable characteristics. When heat treated at 180 deg.C - film forming temperature for 0.5-4hr, the contacts of the silicide layer and the semiconductor, the silicide layer and the electrode are improved to reduce the series resistance of the boundary.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐熱性薄膜光電変換素子およびその製法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat-resistant thin film photoelectric conversion element and a method for manufacturing the same.

[従来の技術] 従来、薄膜光電変換素子の電気的接続のために、たとえ
ば透明基板と半導体との間にITO1ITO/5nOx
、5no2、friz 03、Cdx5nOy(x=0
.5〜2、y=12〜4)、Ir、0   (z−0,
33〜0.5)な  1−Z どからなる金属化合物層が形成され、透明電極として用
いられたり、半導体上にM、 Au、 Cu。
[Prior Art] Conventionally, for electrical connection of thin film photoelectric conversion elements, for example, ITO1ITO/5nOx was used between a transparent substrate and a semiconductor.
, 5no2, friz 03, Cdx5nOy (x=0
.. 5-2, y=12-4), Ir, 0 (z-0,
A metal compound layer consisting of 1-Z (33-0.5) or the like is formed and used as a transparent electrode, or on a semiconductor with M, Au, or Cu.

しんちゅう、Zn、 Agなとの金属層が形成され、裏
面電極として用いられたりしている。
A metal layer such as brass, Zn, or Ag is formed and used as a back electrode.

しかし、このようにして製造された薄膜光電変換素子を
50℃程度以上の温度で使用すると、電気的接続に用い
た金属化合物あるいは金属が半導体中に拡散し、半導体
特性が低下する。とくに金属化合物層や金属層が接触す
る半導体が非晶質のばあいには、半導体特性の低下が著
しい。とりわけ屋外に設置されるアモルファスシリコン
(以下、a−8iという)系太陽電池のばあいには約8
0℃にもなり、太陽電池特性の低下が著しい。
However, if the thin film photoelectric conversion element manufactured in this manner is used at a temperature of about 50° C. or higher, the metal compound or metal used for electrical connection will diffuse into the semiconductor, and the semiconductor characteristics will deteriorate. Particularly when the semiconductor with which the metal compound layer or metal layer is in contact is amorphous, the semiconductor properties are significantly deteriorated. In particular, in the case of amorphous silicon (hereinafter referred to as A-8I) solar cells installed outdoors, approximately 8
At temperatures as low as 0°C, the solar cell characteristics are significantly degraded.

[発明が解決しようとする問題点] 本発明は薄膜光電変換素子を高温で使用したばあいに生
ずる、電気的接続用の金属化合物層や金属層の半導体中
への拡散による薄膜光電変換素子の特性の低下を少なく
するためになされたものである。
[Problems to be Solved by the Invention] The present invention solves problems in thin film photoelectric conversion elements due to diffusion of metal compound layers and metal layers for electrical connection into semiconductors, which occurs when thin film photoelectric conversion elements are used at high temperatures. This was done to reduce the deterioration of characteristics.

[問題点を解決するための手段] 本発明は、半導体と少なくとも一方の電極との間にシリ
サイド層を設けたことを特徴とする耐熱性薄膜光電変換
素子、および半導体と少なくとも一方の電極との間にシ
リサイド層を設けた耐熱性Ill光電変換素子を製造す
る際に、半導体−シリサイド層−電極からなる層を形成
したのち、180℃〜成膜温度で0,5〜4時間熱処理
することを特徴とする耐熱性WjrI!A光電変換素子
の製法に関する。
[Means for Solving the Problems] The present invention provides a heat-resistant thin film photoelectric conversion element characterized in that a silicide layer is provided between a semiconductor and at least one electrode, and a heat-resistant thin film photoelectric conversion element characterized in that a silicide layer is provided between a semiconductor and at least one electrode. When manufacturing a heat-resistant Ill photoelectric conversion element with a silicide layer provided between them, it is recommended that after forming a layer consisting of a semiconductor, a silicide layer, and an electrode, heat treatment is performed at a temperature of 180° C. to film formation temperature for 0.5 to 4 hours. Features heat resistance WjrI! A: Regarding a method for manufacturing a photoelectric conversion element.

[実施例] 本発明の耐熱性簿膜光電変換素子においては、入光側の
電極または裏面電極と半導体層との間にシリサイド層が
設けられている。
[Example] In the heat-resistant film photoelectric conversion element of the present invention, a silicide layer is provided between the light incident side electrode or back electrode and the semiconductor layer.

本発明に用いる半導体としては、非晶質または結晶質を
含む非晶質半導体であればとくに限定はない。このよう
な半導体の具体例としては、a−3i:H、a−3i:
 F : H、a−8iGe:H5a−8iSn:H、
a−3iN :H、a−8tGe:F :H、a−8i
Sn:F :H1a−8i:N :F :H、a−3i
C:H1a−8iC:F :tl 、 a−8iO:H
、a−8iO:F :Hなどがあげれらる。前記半導体
は、p型、n型、真性のいずれであってもよい。
The semiconductor used in the present invention is not particularly limited as long as it is amorphous or an amorphous semiconductor containing crystalline. Specific examples of such semiconductors include a-3i:H, a-3i:
F: H, a-8iGe:H5a-8iSn:H,
a-3iN:H, a-8tGe:F:H, a-8i
Sn:F:H1a-8i:N:F:H, a-3i
C:H1a-8iC:F:tl, a-8iO:H
, a-8iO:F:H, and the like. The semiconductor may be p-type, n-type, or intrinsic.

前記シリサイドとしては、たとえばRb、 C3゜HQ
、ca、 Sr、 Ba、 sc、 Y 1La、 T
i、Zr、 Hf、 V 。
Examples of the silicide include Rb, C3゜HQ
, ca, Sr, Ba, sc, Y 1La, T
i, Zr, Hf, V.

Nb1TaSCr、 No、W 、Hn、 Re、 F
e1Ru、 Os、 co。
Nb1TaSCr, No, W, Hn, Re, F
e1Ru, Os, co.

R11、Ir1Nt、Pd、 Ptなどのシリサイドが
アケラれる。
Silicides such as R11, Ir1Nt, Pd, and Pt are removed.

前記入光側の電極としては、たとえばITO。The electrode on the light input side is made of, for example, ITO.

ITO/SnO2,5no2、Inz Os、Cd  
SnOy(x−0,5〜2、y−2〜4)、Ir O(
Z=0.33〜0.5)なZ    1−Z どからなる金属化合物層からなる電極が代表例としてあ
げられるが、これらに限定されるものではない。
ITO/SnO2, 5no2, Inz Os, Cd
SnOy (x-0, 5~2, y-2~4), IrO (
A typical example is an electrode made of a metal compound layer such as Z 1-Z where Z=0.33 to 0.5), but is not limited thereto.

前記裏面電極としては、通常裏面電極として用いられる
金属、合金などから形成される裏面電極であればとくに
限定なく使用されうる。
The back electrode may be any back electrode made of a metal, alloy, or the like that is normally used as a back electrode.

前記裏面電極の具体例としては、#、 Ag、 AU、
Cu、しんちゅう、Znなど、好ましくは波長0.6ρ
以上の光に対する反射率が20〜99%、さらに好まし
くは45〜99%と高く、電気伝導度が0.1×10S
〜6.2X10S  (Ω・cm) −’と大きい金属
から形成された電極があげられるが、これらに限定され
るものではない。前記光に対する反射率が高く、電気伝
導度の大きい裏面電極としては、Cu、 Agなとの金
属から形成された仮面電極があげられる。なお裏面電極
は単層であってもよく、多層であってもよいが、多層の
ばあいにはシリサイド層に接する層が前記光に対する反
射率が高く、電気伝導度の大きい金属層であることが、
反射光の有効利用、直列抵抗の低下などの点から好まし
い。
Specific examples of the back electrode include #, Ag, AU,
Cu, brass, Zn, etc., preferably wavelength 0.6ρ
The reflectance for the above light is as high as 20-99%, more preferably 45-99%, and the electrical conductivity is 0.1 x 10S.
An example is an electrode made of a metal with a diameter of 6.2×10S (Ω·cm) −′, but the electrode is not limited thereto. Examples of the back electrode having a high reflectance to light and high electrical conductivity include mask electrodes made of metals such as Cu and Ag. Note that the back electrode may be a single layer or a multilayer, but in the case of a multilayer, the layer in contact with the silicide layer should be a metal layer that has a high reflectance to the light and a high electrical conductivity. but,
This is preferable from the viewpoints of effective use of reflected light and reduction in series resistance.

なお本発明においては半導体と少なくとも一方の電極と
の間にシリサイド層が設けられていればよいが、以下の
説明は裏面電極と半導体との間にシリサイド層が設けら
れたばあいについて行なう。
In the present invention, it is sufficient that a silicide layer is provided between the semiconductor and at least one of the electrodes, but the following description will be made regarding the case where the silicide layer is provided between the back electrode and the semiconductor.

本発明においては、半導体と裏面電極との間に厚さ5〜
300人、好ましくは7〜100人のシリサイド層が設
けられている。該シリサイド層の厚さが5人未満になる
と、均一で品質のよい層がえられなくなったり、裏面電
極を形成する金属の半導体中への熱による拡散を充分防
止することができなくなったりする傾向が生ずる。
In the present invention, the thickness between the semiconductor and the back electrode is 5 to 5.
A silicide layer of 300, preferably 7 to 100, is provided. When the thickness of the silicide layer is less than 5 layers, it becomes impossible to obtain a uniform and high-quality layer, and it tends to become impossible to sufficiently prevent the metal forming the back electrode from diffusing into the semiconductor due to heat. occurs.

また層の厚さが300人をこえると、該層が存在するた
めに直列電気抵抗が増したり、光の吸収が増し、裏面電
極面での反射光が少なくなったり、シリサイド層の形成
に時間がかかったりするという問題が生ずる傾向にある
Furthermore, if the thickness of the layer exceeds 300 layers, the presence of the layer increases the series electrical resistance, increases the absorption of light, reduces the amount of light reflected on the back electrode surface, and takes time to form the silicide layer. There is a tendency for problems such as problems such as

シリサイド層の厚さは蒸着時の撮動子モニター値を用い
て測定してもよいし、SIMSなどの表面分析から求め
た厚さの検量線を利用して測定してもよい。
The thickness of the silicide layer may be measured using a sensor monitor value during vapor deposition, or may be measured using a thickness calibration curve obtained from surface analysis such as SIMS.

つぎに本発明の耐熱性薄膜光電変換素子の製法を、光入
射側から順にp型、i型、n型の半導体を設けた太陽電
池を例にとり説明する。
Next, a method for manufacturing a heat-resistant thin film photoelectric conversion element of the present invention will be explained using as an example a solar cell in which p-type, i-type, and n-type semiconductors are provided in order from the light incident side.

なお本明細書にいうF4m光電変換素子とは、厚さ10
2〜106人程度の半導体層、好ましくは0.02〜1
00虜の非晶質半導体層を含む、たとえば太陽電池、光
検出素子、光電面ドラム、レーザー、エレクトロルミネ
ッセンス素子などで代表される光電変換素子を意味する
Note that the F4m photoelectric conversion element referred to in this specification refers to a thickness of 10
2 to 106 semiconductor layers, preferably 0.02 to 1
It refers to a photoelectric conversion element, such as a solar cell, a photodetector, a photocathode drum, a laser, an electroluminescent element, etc., which contains an amorphous semiconductor layer.

まず透明電極を設けた透明基板上に、常法により非晶質
のp層、1層、n層を形成し、そののちシリサイドター
ゲットを用いてスパッター法により所定の厚さにシリサ
イド層を形成する。
First, amorphous p-layer, 1-layer, and n-layer are formed by a conventional method on a transparent substrate provided with a transparent electrode, and then a silicide layer is formed to a predetermined thickness by sputtering using a silicide target. .

シリサイドターゲットのかわりにシリコンとシリサイド
形成金属とのロスバッターを行ないシリサイド層を形成
してもよい。もちろんシリサイド層の形成を電子ビーム
法で行なってもよい。
Instead of using a silicide target, a silicide layer may be formed by performing loss battering between silicon and a silicide forming metal. Of course, the silicide layer may be formed by an electron beam method.

そののち裏面電極を常法により堆積させることにより、
本発明の耐熱性Nil光電変換素子がえられる。
After that, by depositing the back electrode by a conventional method,
A heat-resistant Nil photoelectric conversion element of the present invention can be obtained.

上記説明ではpin型太11iT!1池について説明し
たが、ショットキ型やpn型の太陽電池あるいは他の光
電変換素子についても同様である。また太陽電池はへテ
ロ接合の太陽電池であってもよく、ホモ接合の太陽電池
であってもよい。
In the above explanation, the pin type is 11iT! Although the description has been made for one cell, the same applies to Schottky type or pn type solar cells or other photoelectric conversion elements. Further, the solar cell may be a heterojunction solar cell or a homojunction solar cell.

このようにして作製された本発明の耐熱性薄膜光電変換
素子は、このままでも加熱による光電変換素子特性の低
下が少なく良好な特性を有するものであるが、さらに1
80℃〜成膜温度(180〜400℃程度)で0.5〜
4時間時間熱処理すると、シリサイド層と半導体および
シリサイド層と電極との接触をよくすることができ、そ
の界面の直列抵抗を減少させることができる。
The heat-resistant thin film photoelectric conversion device of the present invention thus produced has good properties with little deterioration in photoelectric conversion device characteristics due to heating even as it is;
0.5 to 80℃ to film formation temperature (approximately 180 to 400℃)
Heat treatment for 4 hours can improve the contact between the silicide layer and the semiconductor and the silicide layer and the electrode, and can reduce the series resistance at the interface.

このようにして製造される本発明の耐熱性基、膜光電変
換素子は、たとえば50℃以上゛のような高温で使用さ
れる、あるいは使用中に50℃以上になることがあるよ
うな用途に使用される太陽電池や光検出素子などとして
好適に使用される。
The heat-resistant group/film photoelectric conversion device of the present invention produced in this way can be used at high temperatures of 50°C or higher, or for applications where the temperature may reach 50°C or higher during use. It is suitably used as a solar cell, a photodetector element, etc.

とくに屋外に設置され、使用温度が80℃にもなる太陽
電池に用いたばあいに、本発明の効果が大きく発揮され
る。またシリサイド層が薄いため、長波長光の裏面電極
面での反射ロスが極めて少ない。
The effects of the present invention are particularly effective when used in solar cells that are installed outdoors and have operating temperatures of as much as 80°C. Furthermore, since the silicide layer is thin, there is extremely little reflection loss of long-wavelength light on the back electrode surface.

つぎに本発明の耐熱性薄膜光電変換素子を実施例にもと
づき説明する。
Next, the heat-resistant thin film photoelectric conversion element of the present invention will be explained based on Examples.

実施例1 厚さ1000人のITO/ SnO□透明電極を設けた
厚さ1#lの青板ガラス基板上に、基板温度約200℃
、圧力的I Torrにて、S!Ha 、CHa、B2
H6からなる混合ガス、5iHa、H2からなる混合ガ
ス、5iHa 、PH3からなる混合ガスをこの順に用
いて、グロー放電分解法にてそれぞれアモルファスタイ
プのp層を120人、i層を5000人、nWIを30
0人の厚さになるように堆積させた。
Example 1 A substrate temperature of about 200°C was placed on a 1#l thick blue plate glass substrate on which a 1000-thick ITO/SnO□ transparent electrode was provided.
, at pressure I Torr, S! Ha, CHa, B2
Using a mixed gas consisting of H6, 5iHa, a mixed gas consisting of H2, 5iHa, and PH3 in this order, an amorphous type p-layer was formed by 120 people, an i-layer by 5000 people, and nWI using the glow discharge decomposition method. 30
It was deposited to a thickness of 0.

そののち、モリブデン含有率15atm%のモリブデン
シリサイドターゲットをスパッターし、厚さが30人に
なるようにn層上に堆積させたのち、つづいてAQを1
000人の厚さに電子ビーム法で堆積させた。ついで2
00℃で2時間熱処理して太陽電池をえた。
After that, a molybdenum silicide target with a molybdenum content of 15 atm% was sputtered and deposited on the n layer to a thickness of 30 mm, and then AQ was 15 atm%.
The film was deposited to a thickness of 1,000 mm using an electron beam method. Then 2
A solar cell was obtained by heat treatment at 00°C for 2 hours.

えられた太陽電池のp層、1層、n層、モリブデンシリ
サイド層およびA(Illはそれぞれ120人、500
0人、300人、30人、1000人の厚さであった。
The p-layer, 1-layer, n-layer, molybdenum silicide layer and A (Ill are 120 and 500 layers, respectively) of the obtained solar cell.
The thickness was 0, 300, 30, and 1000.

えられた太陽電池の特性および230℃で6時間加熱し
たのちの特性をAH−1,10h+14/1:1!のソ
ーラーシミュレーターを用いて測定した。その結果を第
1表に示す。
The characteristics of the obtained solar cell and the characteristics after heating at 230°C for 6 hours are AH-1, 10h+14/1:1! Measured using a solar simulator. The results are shown in Table 1.

実施例2 200℃で2時間熱処理しなかったほかは実施例1と同
様にして太陽電池を作製し、えられた太陽電池の特性を
測定した。その結果を第1表に示す。
Example 2 A solar cell was produced in the same manner as in Example 1, except that the heat treatment at 200° C. for 2 hours was not performed, and the characteristics of the obtained solar cell were measured. The results are shown in Table 1.

比較例1 モリブデンシリサイド層を設けなかったほかは実施例1
と同様にして太陽電池を作製し、えられた太陽電池の特
性および230℃で6時間加熱したのちの特性を測定し
た。その結果を第1表に示す。
Comparative example 1 Example 1 except that no molybdenum silicide layer was provided
A solar cell was produced in the same manner as above, and the characteristics of the obtained solar cell and the characteristics after heating at 230° C. for 6 hours were measured. The results are shown in Table 1.

〔以下余白〕[Margin below]

[発明の効果] 以上説明したように、薄膜光電変゛換素子を製造するば
あいに、半導体と裏面電極との間に薄いシリサイド層を
設けることにより、簿膜光電変換素子を高温で使用した
ばあいにも、裏面電極を構成する金属成分や入光側の電
極を構成する金属化合物成分が半導体中に拡散すること
を防ぎ、薄膜光電変換素子の低下を少なくすることがで
きる。さらにシリサイド層を5〜300人、好ましくは
7〜100人というように薄く形成するため、太陽電池
のばあいには長波長光の裏面反射光を充分利用できるな
どの効果が生ずる。
[Effects of the Invention] As explained above, when manufacturing a thin film photoelectric conversion element, by providing a thin silicide layer between the semiconductor and the back electrode, it is possible to use the thin film photoelectric conversion element at high temperatures. Even in such cases, it is possible to prevent the metal component constituting the back electrode and the metal compound component constituting the light incident side electrode from diffusing into the semiconductor, thereby reducing deterioration of the thin film photoelectric conversion element. Furthermore, since the silicide layer is formed as thin as 5 to 300 layers, preferably 7 to 100 layers, effects such as the ability to fully utilize the back-reflected light of long wavelength light are produced in the case of solar cells.

また半導体−シリサイド層−電極を積層させたのち18
0℃〜成膜温度で0.5〜4時間熱処理することにより
、えられる耐熱性薄膜光電変換素子特性(とくに太陽電
池特性のうちの短絡電流およびフィルファクター)をさ
らに改良することができる。
In addition, after laminating the semiconductor-silicide layer-electrode, 18
By heat-treating at a temperature of 0° C. to film-forming temperature for 0.5 to 4 hours, the properties of the resulting heat-resistant thin film photoelectric conversion element (particularly the short-circuit current and fill factor of the solar cell properties) can be further improved.

Claims (1)

【特許請求の範囲】 1 半導体と少なくとも一方の電極との間にシリサイド
層を設けたことを特徴とする耐熱性薄膜光電変換素子。 2 前記シリサイド層の厚さが5〜300Åである特許
請求の範囲第1項記載の耐熱性薄膜光電変換素子。 3 前記シリサイド層の厚さが7〜100Åである特許
請求の範囲第1項記載の耐熱性薄膜光電変換素子。 4 半導体が厚さ0.02〜100μmの非晶質薄膜で
ある特許請求の範囲第1項記載の耐熱性薄膜光電変換素
子。 5 半導体と電極との間にシリサイド層を設けた耐熱性
薄膜光電変換素子を製造する際に、半導体−シリサイド
層−電極からなる層を形成したのち、180℃〜成膜温
度で0.5〜4時間熱処理することを特徴とする耐熱性
薄膜光電変換素子の製法。
[Scope of Claims] 1. A heat-resistant thin film photoelectric conversion element characterized in that a silicide layer is provided between a semiconductor and at least one electrode. 2. The heat-resistant thin film photoelectric conversion element according to claim 1, wherein the silicide layer has a thickness of 5 to 300 Å. 3. The heat-resistant thin film photoelectric conversion element according to claim 1, wherein the silicide layer has a thickness of 7 to 100 Å. 4. The heat-resistant thin film photoelectric conversion element according to claim 1, wherein the semiconductor is an amorphous thin film with a thickness of 0.02 to 100 μm. 5. When manufacturing a heat-resistant thin film photoelectric conversion element in which a silicide layer is provided between a semiconductor and an electrode, after forming a layer consisting of a semiconductor, a silicide layer, and an electrode, a film formation temperature of 0.5 to 180° C. A method for producing a heat-resistant thin film photoelectric conversion element, characterized by heat treatment for 4 hours.
JP60124789A 1985-06-07 1985-06-07 Manufacturing method of heat-resistant thin film photoelectric conversion element Expired - Lifetime JPH088368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60124789A JPH088368B2 (en) 1985-06-07 1985-06-07 Manufacturing method of heat-resistant thin film photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60124789A JPH088368B2 (en) 1985-06-07 1985-06-07 Manufacturing method of heat-resistant thin film photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPS61283174A true JPS61283174A (en) 1986-12-13
JPH088368B2 JPH088368B2 (en) 1996-01-29

Family

ID=14894159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60124789A Expired - Lifetime JPH088368B2 (en) 1985-06-07 1985-06-07 Manufacturing method of heat-resistant thin film photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH088368B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141565A (en) * 1976-05-20 1977-11-25 Matsushita Electric Ind Co Ltd Manufacture of semiconductor unit
JPS5471564A (en) * 1977-11-17 1979-06-08 Matsushita Electric Ind Co Ltd Production of semiconductor device
JPS5735318A (en) * 1980-08-12 1982-02-25 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS59147469A (en) * 1983-02-14 1984-08-23 Hitachi Ltd Amorphous silicon solar cell
JPS59177974A (en) * 1983-03-28 1984-10-08 Nippon Denso Co Ltd Amorphous silicon group semiconductor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141565A (en) * 1976-05-20 1977-11-25 Matsushita Electric Ind Co Ltd Manufacture of semiconductor unit
JPS5471564A (en) * 1977-11-17 1979-06-08 Matsushita Electric Ind Co Ltd Production of semiconductor device
JPS5735318A (en) * 1980-08-12 1982-02-25 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS59147469A (en) * 1983-02-14 1984-08-23 Hitachi Ltd Amorphous silicon solar cell
JPS59177974A (en) * 1983-03-28 1984-10-08 Nippon Denso Co Ltd Amorphous silicon group semiconductor element

Also Published As

Publication number Publication date
JPH088368B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
KR100237661B1 (en) Back reflector layer, method for forming it, and photovoltaic element using it and manufacturing method thereof
KR950001956B1 (en) Multi-junctional semiconductor device
US6169246B1 (en) Photovoltaic devices comprising zinc stannate buffer layer and method for making
US5770463A (en) Method of fabricating a photovoltaic device
KR910005761B1 (en) Heat-resistant thin film photo electric converter and its manufacturing method
US20070193624A1 (en) Indium zinc oxide based front contact for photovoltaic device and method of making same
US20080223430A1 (en) Buffer layer for front electrode structure in photovoltaic device or the like
US20080169021A1 (en) Method of making TCO front electrode for use in photovoltaic device or the like
US8445373B2 (en) Method of enhancing the conductive and optical properties of deposited indium tin oxide (ITO) thin films
EP0235785B1 (en) Semiconductor device
JP2003347571A (en) Photovoltaic element and photovoltaic device
US20130133734A1 (en) Photovoltaic cell
US8354586B2 (en) Transparent conductor film stack with cadmium stannate, corresponding photovoltaic device, and method of making same
JP3801342B2 (en) Solar cell substrate, manufacturing method thereof, and semiconductor element
US4956023A (en) Integrated solar cell device
JPS613471A (en) Semiconductor device
JP3025392B2 (en) Thin film solar cell and manufacturing method
JPH11274528A (en) Photovoltaic device
JPS61144885A (en) Heatproof, thin film optoelectric transducer and production thereof
JPS61283174A (en) Heat resistant thin film photoelectric converter and manufacture thereof
JPH10226598A (en) Transparent conductive titanium oxide film and its production
JPS6191973A (en) Heat resisting thin film photoelectric conversion element and manufacture thereof
JPS59144178A (en) Photoelectric converter
JPS61212070A (en) Thin film semiconductor solar cell containing amorphous material
JPH0548127A (en) Amorphous silicon solar battery and its manufacture