JPS60211880A - Manufacture of photoelectric conversion device - Google Patents

Manufacture of photoelectric conversion device

Info

Publication number
JPS60211880A
JPS60211880A JP59068327A JP6832784A JPS60211880A JP S60211880 A JPS60211880 A JP S60211880A JP 59068327 A JP59068327 A JP 59068327A JP 6832784 A JP6832784 A JP 6832784A JP S60211880 A JPS60211880 A JP S60211880A
Authority
JP
Japan
Prior art keywords
chromium
semiconductor
conductive film
light
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59068327A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP59068327A priority Critical patent/JPS60211880A/en
Publication of JPS60211880A publication Critical patent/JPS60211880A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To prevent a change into a polycrystal by using a material mainly comprising chromium as a metal capable of forming an open groove through a mask-less process and forming a non-oxide light-transmitting conductive film by a reaction between chromium and a semiconductor. CONSTITUTION:A light-transmitting conductive film is formed extending over the upper surface of a light-transmitting substrate 1 with an insulating surface, projecting laser beams are scanned to form an opened groove 13, and electrodes 2 are prepared to each inter-element region 31, 11. Nonsingular crystal semiconductor layers 3 generating photovoltage by beam projection are shaped to the upper surfaces of the electrodes 2 and the opened groove 13. An opened groove 18 is formed extending over the left direction side of the opened groove 13, and the side surfaces 8 or side surfaces and upper surfaces 9 of the electrodes are exposed. Chromium to which silver and copper are added is laminated as metals 46, 46' on a semiconductor, and thermally treated at a temperature of 100-300 deg.C and a light-transmitting conductive film composed of the oxide of an intermetallic compound is shaped between chromium and the semiconductor. Accordingly, reflection on a chromium surface to the long-wave length beams of incident beams 10 is accelerated, the reflection of long-wave length beams is increased, and a reaction does not progress for a prolonged term, thus improving reliability.

Description

【発明の詳細な説明】 この発明は、光照射により光起電力を発生するアモルフ
ァス半導体を含む非単結晶半導体を透光性絶縁基板上に
設けた光電変換素子(単に素子ともいう)を複数個電気
的に直列接続し、高い電圧を発生させる充電変換装置に
おける第2の電極の作製方法に関する。
Detailed Description of the Invention The present invention comprises a plurality of photoelectric conversion elements (also simply referred to as elements) in which a non-single crystal semiconductor including an amorphous semiconductor that generates photovoltaic force upon irradiation with light is provided on a transparent insulating substrate. The present invention relates to a method for manufacturing a second electrode in a charging conversion device that is electrically connected in series and generates a high voltage.

本発明の装置における素子の配置、大きさ、形状は設計
仕様によって決められる。しかし、本発明の内容を簡単
にするため、以下の詳細な説明においては、第1の素子
の下側(基板側)の第1の電極と、その右隣りに配置し
た第2の素子の第2の電極(半導体上即ち基板から離れ
た側)とを電気的に直列接続させた場合を基として記す
The arrangement, size, and shape of elements in the device of the present invention are determined by design specifications. However, in order to simplify the content of the present invention, in the following detailed description, the first electrode on the lower side (substrate side) of the first element and the second electrode on the right side of the first electrode will be described. The following description is based on the case where two electrodes (on the semiconductor, that is, on the side away from the substrate) are electrically connected in series.

かかる構成において、本発明は第1の素子および第2の
素子のそれぞれの第2の電極間を互いに分離するだめの
第3の開溝を、PまたはN型の非単結晶半導体層に密接
して半導体と金属との化合物(混合物)、特にクロム・
シリサイドを設け、該導電膜上にクロムまたはクロムを
主成分とする金属膜(以下単にクロムともいう)を積層
して構成せしめた導電膜に形成することを特徴とする。
In such a configuration, the present invention provides that the third groove for separating the second electrodes of the first element and the second element from each other is brought into close contact with the P or N type non-single crystal semiconductor layer. Compounds (mixtures) of semiconductors and metals, especially chromium.
A conductive film is formed by providing silicide and laminating chromium or a metal film containing chromium as a main component (hereinafter simply referred to as chromium) on the conductive film.

本発明は、半導体上に設けられた第2の電極用導電膜を
レーザ光を用いてスクライブせしめ、それぞれの電極に
分離形成せしめるものである。その際、1800℃もの
高温のレーザ光の照射に対し、その下側の非単結晶半導
体特に水素化アモルファス半導体が多結晶化され、導電
性になってしまうことを防くため、昇華性を有し、かつ
熱伝導率が比較的小さい金属クロムとその下にこのクロ
ムを加熱処理して、その下の半導体と反応させて作られ
た非酸化物透光性導電膜特にクロム・シリサイドとを積
層し、かかる導電膜に対しLSを施すことにより第3の
開溝下の半導体をも同時に除去してしまうことなく残存
せしめ、この開溝部での半導体のレーザアニールによる
多結晶化を防いだものである。
In the present invention, a second electrode conductive film provided on a semiconductor is scribed using a laser beam to form separate electrodes. At that time, in order to prevent the underlying non-single crystal semiconductor, especially the hydrogenated amorphous semiconductor, from becoming polycrystalline and becoming conductive when irradiated with laser light at a temperature as high as 1800 degrees Celsius, sublimation is required. Chromium metal, which has relatively low thermal conductivity, is laminated with a non-oxide transparent conductive film, especially chromium silicide, made by heat-treating the chromium and reacting it with the semiconductor underneath. However, by applying LS to such a conductive film, the semiconductor under the third groove is left without being removed at the same time, and polycrystallization of the semiconductor due to laser annealing in this groove is prevented. It is.

即ち、従来は裏面電極としては単に光の反射性金属であ
る銀またはアルミニュームが用いられていた。しかし銀
は密着性が悪く、容易にはがれてしまう。アルミニュー
ムは半導体と界面で反応しまたアルミニュームが半導体
中にマイブレイトしてしまう。これらのことより、裏面
電極の改良がめられていた。
That is, conventionally, silver or aluminum, which is a light reflective metal, has been used as the back electrode. However, silver has poor adhesion and easily peels off. Aluminum reacts with the semiconductor at the interface, and the aluminum migrates into the semiconductor. For these reasons, improvements to the back electrode have been sought.

本発明はかかる目的のため、マスクレスプロセス即ちし
Sにより開溝を作り得る金属としてクロムを主成分とす
る材料を用いたものである。さらにこのクロムと半導体
との反応による非酸化物透光性導電膜である金属間化合
物を形成させ、半導体金属間の界面反応をさらに防止し
たものである。
For this purpose, the present invention uses a material containing chromium as a main component as a metal capable of forming grooves by a maskless process. Furthermore, an intermetallic compound, which is a non-oxide transparent conductive film, is formed by the reaction between the chromium and the semiconductor, thereby further preventing an interfacial reaction between the semiconductor metals.

例えば非単結晶半導体上にクロムを300〜3000人
の厚さに形成させた。するとクロムが耐熱性(融点18
00℃、沸点2660’C)およびレーザ光に対する昇
華性を有し、かつ100〜300℃代表的には200 
’Cの温度での熱処理により下地珪素材料との反応をお
こしてもきわめて安定なりロム・シリサイド(Cr 約
5%、Si 約95%)を30〜200人の厚さで構成
し、きわめて安定なハ・/ファを構成させ得ることが実
験的に判明した。さらにNまたはP型半導体層とのオー
ム接触の抵抗も低く、きわめて望ましいものであった。
For example, chromium was formed to a thickness of 300 to 3,000 layers on a non-single crystal semiconductor. Then, chromium becomes heat resistant (melting point 18
00°C, boiling point 2660'C) and has sublimability to laser light, and has a boiling point of 100 to 300°C, typically 200°C.
It is extremely stable even if it reacts with the underlying silicon material by heat treatment at a temperature of It has been experimentally found that it is possible to construct ha/fa. Furthermore, the resistance of the ohmic contact with the N- or P-type semiconductor layer was also low, which was highly desirable.

以下に図面に従って本発明の詳細を示す。The details of the invention are shown below in accordance with the drawings.

第1図は本発明の製造工程を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing the manufacturing process of the present invention.

図面において絶縁表面を有する透光性基板(1)例えば
ガラス板(例えば厚さ0.5〜2 、2mn+例えば1
.2mm 、長さく図面では左右方向) 60cm、巾
20cm)を用いた。さらにこの上面に全面にわたって
透光性導電膜例えばITO(酸化インジューム酸化スズ
混合物、即ち酸化ススを酸化インジューム中に10重量
%添加した膜〉〈約1500人) +SnO,(200
〜400人)または弗素等のハロゲン元素が添加された
酸化スズを主成分とする透光性導電膜(1500〜20
00人)をスパッタ法特にマグネトロンスパック法、真
空芸着法、LI’CV D法、プラズマCVD法または
スプレー法により形成させた。
In the drawing, a transparent substrate (1) having an insulating surface, for example, a glass plate (for example, thickness 0.5-2, 2mm+for example, 1
.. 2 mm (in the drawing, the length is 60 cm in the left and right direction) and the width is 20 cm). Further, a light-transmitting conductive film such as ITO (indium oxide/tin oxide mixture, i.e., a film in which 10% by weight of soot is added to indium oxide) is applied over the entire upper surface.
~400 people) or a transparent conductive film whose main component is tin oxide doped with a halogen element such as fluorine (1500~200 people)
00 persons) was formed by a sputtering method, particularly a magnetron sputtering method, a vacuum sputtering method, a LI'CVD method, a plasma CVD method, or a spray method.

この後、WAGレーザ加工tfi! (日本レーザ製 
波長1,06μまたは0.53μ)により平均出力0.
1〜3W(焦点距Mtt40mm)をQスイッチをかけ
て加えて開溝を形成した。このスポット径は20〜70
μφ代表的には50μψにマイクロコンピュータにより
制御した。かくしてCTFにこの照射レーザ光を走査さ
せ、スクライブラインである第1の開?!(13)を形
成させ、各素子間領域(31)、(11)に第1の電極
(2)を作製した。
After this, WAG laser processing tfi! (Made by Nippon Laser)
Depending on the wavelength (1.06μ or 0.53μ), the average output is 0.
An open groove was formed by applying 1 to 3 W (focal length Mtt 40 mm) using a Q switch. This spot diameter is 20-70
μφ was typically controlled to 50 μφ by a microcomputer. In this way, the CTF is scanned with this irradiated laser beam, and the first open line, which is the scribe line, is scanned. ! (13) was formed, and the first electrode (2) was produced in each inter-element region (31), (11).

この第1のLSにより形成された第1の開溝(■3)は
、巾約50μ長さ20cm深さは第1のCTFの電極そ
れぞれを完全に切断して電気的に分離した。
The first open groove (3) formed by this first LS was approximately 50 μm wide and 20 cm deep to completely cut and electrically isolate each electrode of the first CTF.

この後、この電極(2)、開溝(13)の上面にプラズ
マCVD法またはLPCV D法により光照射により光
起電力を発生させる非単結晶半導体層(3)を0.3〜
1.0μ代表的には0.7μの平均厚さに形成させた。
After that, a non-single crystal semiconductor layer (3) that generates photovoltaic force by light irradiation is formed on the upper surface of the electrode (2) and the groove (13) by plasma CVD or LPCVD.
It was formed to an average thickness of 1.0μ, typically 0.7μ.

その代表例はP型半導体(SixC1−)< x=0.
8約200人)−1型アモルファスまたはセミアモルフ
ブスのシリコン半導体(約0.7μ)−N型の微結晶(
約500人)を有する半導体珪素、さらにこの上に5i
xC+−x (x =0.9約50人)を積層させて一
つのPIN接合を有する非単結晶半導体、またはP型半
導体(SixC+−x) −1型、N型、P型St半導
体−I型5ixGe l−x半導体−N型Si半導体よ
りなる2つのPIN接合と1つのPN接合を有するタン
デム型のPrNPIN、、、、、PIN接合の半導体(
3)である。
A typical example is a P-type semiconductor (SixC1-) < x=0.
8 about 200 people) - Type 1 amorphous or semiamorphous silicon semiconductor (about 0.7 μ) - N type microcrystal (
500 people), and on top of this, 5i
Non-single-crystal semiconductor or P-type semiconductor (SixC+-x) -1 type, N-type, P-type St semiconductor - I Tandem type PrNPIN having two PIN junctions and one PN junction made of type 5ix Ge l-x semiconductor-N type Si semiconductor, ...
3).

さらに第1図(B)に示されるごとく、第1の開溝(1
3)の左方向側(第1の素子側)にわたって第2の開溝
(18)を第2のLSI程により形成させた。
Furthermore, as shown in FIG. 1(B), a first open groove (1
A second open groove (18) was formed over the left side (first element side) of 3) by the second LSI process.

この図面では第1および第2の開溝(13)、(18)
の中心間を100μずらしている。その直線状の開溝は
周辺部では半導体を切断することなく設けた。
In this drawing, the first and second open grooves (13), (18)
The centers of the two are shifted by 100μ. The linear groove was provided without cutting the semiconductor at the peripheral portion.

即ち、第2の開溝は半導体の内部に直線状に設けた。こ
の構造は周辺図での第1、第2の電極間のショートを防
ぐために有効であった。
That is, the second groove was provided in a straight line inside the semiconductor. This structure was effective in preventing short circuits between the first and second electrodes in the peripheral view.

かくして第1図(B)に示すごとく、第2の開溝(18
)は第1の電極の側面(8)または側面と上面(9)(
1110〜5μ)を露出させた。
Thus, as shown in FIG. 1(B), the second open groove (18
) is the side (8) or side and top surface (9) of the first electrode (
1110~5μ) was exposed.

さらにこの基板を希弗#I(48%IIFを10倍の水
で希釈した1/10肝をここでは用いた)にて10秒〜
1分代表的には30秒エツチングした。
Furthermore, this substrate was coated with diluted #I (1/10 liver prepared by diluting 48% IIF with 10 times water was used here) for 10 seconds.
Etching was performed for 1 minute, typically 30 seconds.

すると半導体(3)、 CTF (2)がLSO際、大
気中の酸素と反応して生成した低級多孔性酸化珪素を除
去することができた。
Then, during LSO, the semiconductor (3) and CTF (2) were able to remove low-grade porous silicon oxide produced by reacting with oxygen in the atmosphere.

半導体上の金属(46)、< 46′〉として検討した
クロムの特性は以下の通りである。
The properties of chromium, which was studied as a metal (46) and <46'> on a semiconductor, are as follows.

融点 沸点 熱伝導率 (’C) (’C) cal / (cm sec d
eg)Cr 1900 2640 0.2 即ち、昇華性を有し、かつ熱伝導度が小さいクロム(”
5)’、にミニAIハ0.487.Agは0.998 
> がe(わめて本発明のレーザ加工を行う電極用材料
として優れている。即ち、金員、アルミニュームは60
0Å以上となると横方向(膜方向)への熱伝導が大きず
ぎ、照射部を十分な高温に昇温できないばかりか 1そ
の下の半導体と反応をしやすく、さらに熱のため半導体
を多結晶化してしまう。また第3の開溝は半導体層を容
易に貫いて第1の導電膜をも損傷させてしまった。
Melting point Boiling point Thermal conductivity ('C) ('C) cal / (cm sec d
eg) Cr 1900 2640 0.2 In other words, chromium ("
5)', Mini AI is 0.487. Ag is 0.998
> is e (extremely excellent as an electrode material for laser processing of the present invention. Namely, gold and aluminum are 60%
If it is more than 0 Å, the heat conduction in the lateral direction (film direction) will be large, and not only will the irradiated area not be heated to a sufficiently high temperature, but it will easily react with the semiconductor underneath, and the heat will cause the semiconductor to become polycrystalline. It turns into Further, the third trench easily penetrated the semiconductor layer and also damaged the first conductive film.

またニッケルは昇華性を有さないため、レーザ加工がア
ルミニューム他と同様に好ましくなかった。
Further, since nickel does not have sublimation properties, laser processing is not preferable like aluminum and other materials.

このため半導体上には非酸化性導電膜とクロムの2層膜
が特に優れていることが判明した。
For this reason, it has been found that a two-layer film of a non-oxidizing conductive film and chromium is particularly excellent on a semiconductor.

このクロムの低い光学的反射率を向上させ、ひいては素
子の変換効率を向上させるため、Cr中に銅または銀を
0.1〜50重量%例えば2.0〜10重量添加した。
In order to improve the low optical reflectance of chromium and thus improve the conversion efficiency of the device, 0.1 to 50% by weight of copper or silver, for example 2.0 to 10% by weight, is added to Cr.

(1) Cr (300〜5000人)、(2) Cr
−Cu (2,5重量%)(300〜5000人)(3
)Cr−八g (2,5重量%)(300〜5000人
)がLSの加工性において優れていた。
(1) Cr (300-5000 people), (2) Cr
-Cu (2.5% by weight) (300-5000 people) (3
) Cr-8g (2.5% by weight) (300-5000 people) was excellent in LS processability.

これらの裏面電極において、(1)のクロムを用いる場
合は、LSにより同時にその下の半導体も完全に除去さ
せてしまうため、製造歩留りが太きい。しかし反射率が
低いため長波長光特性がよくない。
When using chromium (1) in these back electrodes, the semiconductor underneath is also completely removed by LS, resulting in a high manufacturing yield. However, because of its low reflectance, its long-wavelength light characteristics are poor.

他方(2)、< 3 )の銀、銅が添加されたクロムは
光の反射率が5〜20%もクロム単体に比べて向上させ
ることができレーザ加工性には特に界雷がなく理想的で
あった。
On the other hand, (2) and <3) chromium added with silver and copper can improve the light reflectance by 5 to 20% compared to chromium alone, making it ideal for laser processability as there is no particular problem. Met.

次にこの積層体全体を100〜300℃例えば200℃
の温度に加熱処理(30分〜3時間)をした。すると、
このクロムと半導体との間に金属間化合物(混合物)を
30〜100人の厚さの非酸化物の透光性導電膜として
形成させることができた。
Next, the entire laminate is heated to 100 to 300°C, for example, 200°C.
Heat treatment (30 minutes to 3 hours) was performed at a temperature of . Then,
It was possible to form an intermetallic compound (mixture) between the chromium and the semiconductor as a non-oxide transparent conductive film with a thickness of 30 to 100 mm.

この透光性導電膜は入射光(10)の長波長光に対する
クロム面での反射を促し、長波長光の反射を大きくし、
光閉じ込め効果を有せしめ得る。加えてこの導電膜は一
度形成されるとさらにその長期間使用に対し反応が進行
しないため信頼性の向上に有効である。
This transparent conductive film promotes reflection of long wavelength light of the incident light (10) on the chrome surface, increases the reflection of long wavelength light,
It can have a light confinement effect. In addition, once this conductive film is formed, the reaction does not proceed even after long-term use, which is effective in improving reliability.

゛加えて次工程におけるレーザ加工の際、その下地の半
導体に対し大きな損傷を与えたり、またレーザアニール
による多結晶化現象の誘発を防止することができるとい
った多くの特長を有する。
In addition, it has many features such as being able to prevent large damage to the underlying semiconductor during laser processing in the next step and prevention of polycrystallization caused by laser annealing.

次に本発明の第1図(C)においては、この第2の電極
を構成するクロム(45)とコネクタ(30)とが電気
的にショートしないよう、第3の開溝(20)を第1の
素子領域(31)にわたって設けた。
Next, in FIG. 1(C) of the present invention, the third open groove (20) is inserted into the third groove so that the chromium (45) constituting the second electrode and the connector (30) do not electrically short-circuit. It was provided over one element region (31).

即ち第1の素子の開放電圧が発生する電極<39)。That is, the electrode where the open circuit voltage of the first element is generated <39).

(38)間の電気的分離をレーザ光(20〜100μφ
代表的には50μφ)を第2の開溝(18)より約10
0μ離間せしめて形成させた。即ち第3の開溝(20)
の中心は第2の開溝(30)の中心に比べて100〜2
00μ代表的には50μの深さに第1の素子側にわたっ
て設けている。
(38) The electrical separation between
(typically 50 μφ) from the second open groove (18) by about 10 mm.
They were formed with a spacing of 0μ. That is, the third open groove (20)
The center of the second open groove (30) is 100~2
00μ is typically provided at a depth of 50μ over the first element side.

このLSによりクロムとその下の非酸化物導電膜とが同
時に除去された。この図面では半導体の上面にはレーザ
光が照射されない部分と同じ平坦面を有せしめている。
This LS simultaneously removed chromium and the underlying non-oxide conductive film. In this drawing, the upper surface of the semiconductor has the same flat surface as the portion not irradiated with laser light.

しかしこのLSO後にアセトンで超音波洗浄を施すこと
により開講により分離された2つの隣合った電極間をI
OKΩ/cm(1cmの長さ当たりIKΩの抵抗)以上
とすることができた。
However, by performing ultrasonic cleaning with acetone after this LSO, the I
It was possible to achieve a resistance of more than OKΩ/cm (resistance of IKΩ per 1 cm length).

第1図(C)はかかる図面を示す。FIG. 1(C) shows such a drawing.

LSにより単にクロムのみではなくその下の珪素とクロ
ムとの積層体(混合物)とを選択的に除去した。しかし
珪素を主成分とする非単結晶半導体はレーザラマン分光
測定をしても特に多結晶化されているIIJi向が見ら
れず、この開溝部(20)でのアイソレイションは十分
行い得ることが判明した。
LS selectively removed not only the chromium but also the underlying layered product (mixture) of silicon and chromium. However, even when laser Raman spectroscopy is performed on a non-single-crystalline semiconductor whose main component is silicon, no particularly polycrystalline IIJi direction is observed, indicating that sufficient isolation can be achieved in this open groove (20). found.

さらにこの開溝(20)下の半導体層を100〜200
°C例えば〜200 ’Cの酸化雰囲気で30分間の熱
酸化をした。
Furthermore, the semiconductor layer under this open groove (20) is
Thermal oxidation was performed for 30 minutes in an oxidizing atmosphere at, for example, ~200°C.

すると同時に開溝部(20)では露呈した珪素を酸化し
て酸化珪素(34)を100〜500人の厚さに固相−
気相反応により形成させた。かくして2つ(7)ffi
 2 (7)電極(39)、(38)間のクロストーク
をより防いだ。
At the same time, the exposed silicon in the groove (20) is oxidized to form a solid phase of silicon oxide (34) to a thickness of 100 to 500 mm.
Formed by gas phase reaction. Thus two (7) ffi
2 (7) Crosstalk between electrodes (39) and (38) was further prevented.

かくして第1図(C)に示されるごとく、複数の素子(
31)、<11)を下地のCTFとクロムとの連結によ
る連結部(12)で直接接続する光電変換装置を作るこ
とができた。
Thus, as shown in FIG. 1(C), a plurality of elements (
31), <11) were able to be directly connected at the connecting portion (12) formed by connecting the underlying CTF and chromium.

第1図(D)はさらに本発明を光電変換装置として完成
させんとしたものであり、即ちパ17シヘイシヨン膜と
してプラズマ気相法により窒化珪素膜(21)を500
〜2000人の厚さに均一に形成させ、湿気等の吸着に
よる各素子間のリーク電流の発生をさらに防いだ。
FIG. 1(D) shows an attempt to further complete the present invention as a photoelectric conversion device, that is, a silicon nitride film (21) with a thickness of 500 μm was formed by a plasma vapor phase method as a passivation film.
It was formed uniformly to a thickness of ~2,000 mm to further prevent leakage current between each element due to adsorption of moisture, etc.

さらに外部引出し端子を周辺&1t(5)にて設けた。Furthermore, an external lead terminal was provided at the periphery &1t (5).

これらにポリイミド、ポリアミド、カプトンまたはエポ
キシ等の有機樹脂(22)を充填した。
These were filled with an organic resin (22) such as polyimide, polyamide, Kapton or epoxy.

かくして照射光(10)により発生した光起電力は底面
コンタクトより矢印(32)のごとく第1の素子の第1
の電極より第2の素子の第2の電極に流れ、直列接続を
させることができた。
In this way, the photovoltaic force generated by the irradiation light (10) is transmitted from the bottom contact to the first element of the first element as shown by the arrow (32).
The current flowed from the electrode to the second electrode of the second element, making it possible to connect them in series.

その結果、この基板(60cm X 20cm)におい
て各素子を中14.35mm連結部の11150μ、外
部引出し電極部の+1]10mm、周辺部4mmにより
、実質的に580mm X 192mm内に40段を有
し、有効面積(192mm x14.35mm 40段
1102 ctA即ち91.8%)を得ることができた
As a result, on this substrate (60cm x 20cm), each element had a diameter of 14.35mm in the middle, a connecting part of 11150μ, an external extraction electrode part of +1]10mm, and a peripheral part of 4mm, so that there were essentially 40 stages within 580mm x 192mm. , an effective area (192 mm x 14.35 mm, 40 stages, 1102 ctA, or 91.8%) could be obtained.

そして、セグメントが10.3%(1、05cm )の
変換効率を有する場合、パネルにて7.3%(理論的に
は9.0%になるが、40段連結の抵抗により実効変換
効率が低下したXA旧 (loomW / cat )
 )にて、7.8−の出力電力を有せしめることができ
た。
If the segment has a conversion efficiency of 10.3% (1.05cm), the panel will have a conversion efficiency of 7.3% (theoretically 9.0%, but the effective conversion efficiency will be reduced by the resistance of the 40-stage connection). Reduced XA old (roomW/cat)
), it was possible to have an output power of 7.8-.

さらにこのパネルを150℃の高温放置テストを行うと
1000時間を経て10%以下例えばパネル数20枚に
てX=1.3%の低下しかみられなかった。
Furthermore, when this panel was subjected to a high temperature storage test at 150° C., a decrease of 10% or less was observed after 1000 hours, for example, when the number of panels was 20, only X = 1.3%.

これは従来のマスク方式を用いて信頼性テストを同一条
件にて行う時、10時間で動作不能パネル数が17枚も
発生してしまうことを考えると、驚異的な値であった。
This was an astonishing value considering that when a reliability test was conducted under the same conditions using the conventional mask method, as many as 17 panels were rendered inoperable in 10 hours.

またこのパネル例えば40cm X 60cmまたは6
0cm x20cm、’ 40cm X 120cmを
2ケ、4ケまたは1ケをアルミサツシまたは炭素繊維枠
内に組み合わせることによりパッケージさせ、120c
m X 40cmのNEDO規格の大電力用のパネルを
設けることが可能である。
Also, this panel for example 40cm x 60cm or 6
Packaged by combining 2 pieces, 4 pieces or 1 piece of 0cm x 20cm, 40cm x 120cm in an aluminum sash or carbon fiber frame, 120cm
It is possible to provide a NEDO standard high power panel of m x 40 cm.

またこのNEDO規格のパネルはシーフレックスにより
弗素系保護膜を本発明の光電変換装置の反射面側(図面
では上側)にはりあわせて合わせ、風圧、雨等に対し機
械強度の増加を図ることも有効である。
In addition, this NEDO standard panel can be bonded with a fluorine-based protective film using Seaflex on the reflective surface side (upper side in the drawing) of the photoelectric conversion device of the present invention to increase mechanical strength against wind pressure, rain, etc. It is valid.

本発明において、基板は透光性絶縁基板のうち特にガラ
スを用いている。
In the present invention, glass is particularly used as the substrate among light-transmitting insulating substrates.

しかしこの基板として可曲性有機樹脂またはアルミニュ
ーム、ステンレス等上にポリイミド樹脂、酸化珪素また
は窒化珪素を0.1〜2μの厚さに形成した複合基板を
用いることは有効である。
However, it is effective to use as this substrate a composite substrate in which polyimide resin, silicon oxide, or silicon nitride is formed on a flexible organic resin, aluminum, stainless steel, etc. to a thickness of 0.1 to 2 μm.

特にこの複合基板を前記した実施例に適用すると、酸化
珪素または窒化珪素がこの上面のCTFを損傷して基板
とCTFとの混合物を作ってしまうことを防ぐ、いわゆ
るブロッキング効果を有して特に有効であった。
In particular, when this composite substrate is applied to the embodiments described above, it is particularly effective because it has a so-called blocking effect that prevents silicon oxide or silicon nitride from damaging the CTF on the upper surface and creating a mixture of the substrate and CTF. Met.

さらに本発明を以下に実施例を記してその詳細を補完す
る。
Further, the details of the present invention will be supplemented by describing examples below.

実施例1 第1図の図面に従ってこの実施例を示す。Example 1 This embodiment is illustrated according to the drawing in FIG.

即ち透光性基板(1)として化学強化ガラス厚さ1.1
1III11、長さ60cm、巾20cmを用いた。
That is, chemically strengthened glass with a thickness of 1.1 as the transparent substrate (1)
1III11, length 60 cm, width 20 cm was used.

この上面に窒化珪素膜を0.1 μの厚さに塗付L7ブ
ロノキング層とした。
A silicon nitride film was applied to the top surface to a thickness of 0.1 .mu.m to form an L7 blowing layer.

さらにその上にCTFをIT 01600人+5nOL
300人を電子ビーム蒸着法により作製した。
Furthermore, IT with CTF on top of that 01600 people + 5nOL
300 people were fabricated by electron beam evaporation.

さらにこの後、第1の開溝をスポット径50μ、平均出
力0.7−のYAGレーザをマイクロコンピュータによ
り制御して0.3m/分の走査速度にて作製した。
Thereafter, a first groove was formed using a YAG laser with a spot diameter of 50 μm and an average output of 0.7 − controlled by a microcomputer at a scanning speed of 0.3 m/min.

さらにパネルの端部をレーザ光平均出力0.踵にて第1
の電極用半導体をガラス端より5111m内側で長方形
に走査し、パネルの枠との電気的短絡を防止した。素子
領域(31)、<11)は15mm中とした。
Furthermore, the edge of the panel is connected to the laser beam with an average output of 0. First at the heel
The electrode semiconductor was scanned in a rectangular manner 5111 m inside from the edge of the glass to prevent an electrical short circuit with the frame of the panel. The element region (31), <11) was set to be within 15 mm.

この後公知のPCVD法により第2図に示したPIN接
合を1つ有する非単結晶半導体を作製した。
Thereafter, a non-single crystal semiconductor having one PIN junction as shown in FIG. 2 was manufactured by a known PCVD method.

その厚さは約0.7μであった。Its thickness was approximately 0.7μ.

かかる後、第1の開溝より100μ第1の素子(31)
をシフトさせて、スポット径50μφ、出力IWにて大
気中でLSにより第2の開溝(18)を第2図(B)に
示すごとく作製した。
After this, the first element (31) is removed by 100μ from the first groove.
was shifted, and a second open groove (18) was produced as shown in FIG. 2(B) by LS in the atmosphere with a spot diameter of 50 μφ and an output IW.

さらにこの上面にクロムを1000人の厚さに、マグネ
トロンDCスパフタ法により作製して、第2の電極(4
5入コネクタ(30)を構成せしめた。
Further, on this upper surface, chromium was formed to a thickness of 1000 mm using the magnetron DC spaft method, and a second electrode (4
A 5-input connector (30) was configured.

するとクロムのシート抵抗は1000人の厚さで1Ω/
口を得ることができた。第1の電極のシート抵抗は25
Ω/口より十分低い1oΩ/口以下を得ることができた
。その製造方法は以下の通りである。
Then, the sheet resistance of chromium is 1Ω/at a thickness of 1000 people.
I was able to get my mouth. The sheet resistance of the first electrode is 25
It was possible to obtain a value of 1 oΩ/mouth or less, which is sufficiently lower than Ω/mouth. The manufacturing method is as follows.

マグネトロンDCスパッタCr1lli特性到達 静ガ
ス導入 DCPoner 基板 スパッタ真空度 時の
真空度 V 温度 時間 (torr) (torr) (VXA) (”C) 
(sec、)1 6 xlO−’ l xlO−347
01100130(180)2 1XIO−5〃〃I 
R,T 130 (120)3 7x10−G 5xl
O−33951,,19” 120 (120)(但し
基板ターゲット間距離75mm)膜特性 Rsheet (Ω/口) Th1ckness (人
)1 0.99〜1.15 1100 2 0.98〜1.15 1500 3 3.06〜4.51 1000 さらに酸化雰囲気にて熱処理(200℃、30分)ヲ行
イ、クロムと半導体との間にクロム・シリサイドを50
人の厚さに形成した。
Magnetron DC sputtering Cr1lli characteristics achieved Static gas introduction DCPoner Substrate Sputtering vacuum Degree of vacuum V Temperature Time (torr) (torr) (VXA) (''C)
(sec,) 1 6 xlO-' l xlO-347
01100130(180)2 1XIO-5〃〃I
R,T 130 (120)3 7x10-G 5xl
O-33951,,19" 120 (120) (Distance between substrate target 75mm) Film characteristics Rsheet (Ω/mouth) Th1ckness (person) 1 0.99~1.15 1100 2 0.98~1.15 1500 3 3.06~4.51 1000 Furthermore, perform heat treatment (200℃, 30 minutes) in an oxidizing atmosphere, and add 50% of chromium silicide between the chromium and the semiconductor.
Formed to the thickness of a person.

さらに第3の開ti (20)を同様に第3のLSをY
AGレーザを用い、0.6 W (スキャンスピード3
0cm )の平均出力で50μφの光径にて第2の開溝
(18)より150μのわたり深さに第1の素子(31
)側にシフトして形成させ、第1図(C)を得た。
Furthermore, the third opening ti (20) is similarly changed to the third LS.
Using AG laser, 0.6 W (scan speed 3
The first element (31
) side, and FIG. 1(C) was obtained.

この後、パンシベイション膜(21)をPCVD法によ
り窒化珪素膜を1000人の厚さに200 ’Cの基板
温度(被膜形成時間30分)にて作製した。
Thereafter, a pansivation film (21) was formed using PCVD to form a silicon nitride film to a thickness of 1,000 mm at a substrate temperature of 200'C (film formation time: 30 minutes).

すると20cm M 60cmのパネルに15mm中の
素子を40段作ることができた。
As a result, it was possible to create 40 stages of 15 mm elements on a 20 cm x 60 cm panel.

パネルの実効効率として八Ml (100mW/c+1
りにて7.3%、出カフ、1を得ることができた。
The effective efficiency of the panel is 8Ml (100mW/c+1
I was able to obtain a score of 7.3% and an output of 1.

有効面積は1102cm!であり、パネル全体の91.
8%を有効に利用することができた。
Effective area is 1102cm! 91. of the entire panel.
8% could be used effectively.

この実施例においては、第1図(D)に示すごとく、上
側の保護用有機樹脂(22)を重合わせることにより、
有機樹脂シートの間に光電変換装置をはさむ構造とする
ことができ、可曲性を有し、きわめて安価で多量生産が
可能になった。
In this example, as shown in FIG. 1(D), by overlapping the upper protective organic resin (22),
It has a structure in which a photoelectric conversion device is sandwiched between organic resin sheets, has flexibility, and can be mass-produced at extremely low cost.

第1図において、光入射は下側の透光性絶縁基板よりと
した。
In FIG. 1, light was incident from the lower transparent insulating substrate.

しかし本発明はその光入射側を下側に限定することなく
、上側の電極をITOとして上側より光照射を行うこと
も可能であり、また基板もガラス基板ではなく可曲性基
板を用いることは可能である。
However, in the present invention, the light incident side is not limited to the lower side, and it is also possible to use ITO as the upper electrode and irradiate light from the upper side, and it is also possible to use a flexible substrate instead of a glass substrate. It is possible.

また本発明において、クロム上をハンダ付は用のニッケ
ル膜、その他の金属の多層膜としてもよく、金属全体と
してその主成分がクロムであることが本発明の他の特長
である。さらにクロム中に50(重量)%以下の範囲に
て他の金属例えばCuまたは銀等を添加した、いわゆる
クロムを主成分とする金属を用いることも有効である。
Further, in the present invention, the chromium may be covered with a nickel film for soldering or a multilayer film of other metals, and another feature of the present invention is that the main component of the metal as a whole is chromium. Furthermore, it is also effective to use a metal whose main component is chromium, in which other metals such as Cu or silver are added in an amount of 50% (by weight) or less.

また本発明はクロム・シリサイドを主として用いた。し
かしレーザ加工が可能な昇華性金属であれば他の金属間
化合物を用いてもよい。加えて本発明においてクロムの
膜厚を10〜100人とし、さらにその上面に酸化イン
ジューム(ITOを含む)を200〜2000人の厚さ
に形成してもよい。かかる場合はクロムのシリサイドを
すべてのクロムを用いて形成した。するとこの後のクロ
ム・シリサイドの透光性導電膜がITOと半導体との高
信頼性用のバッファ層として作用させることが可能であ
る。
Further, the present invention mainly uses chromium silicide. However, other intermetallic compounds may be used as long as they are sublimable metals that can be laser processed. In addition, in the present invention, the thickness of the chromium film may be 10 to 100 mm, and indium oxide (including ITO) may be formed on the top surface to a thickness of 200 to 2000 mm. In such cases, chromium silicide was formed using all the chromium. Then, the subsequent transparent conductive film of chromium silicide can act as a highly reliable buffer layer between ITO and the semiconductor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光電変換装置の製造工程を示す縦断面
図である。 特許出願人 株式会社半導体エネルギー研究所 代表者 山 崎 舜 平
FIG. 1 is a longitudinal sectional view showing the manufacturing process of the photoelectric conversion device of the present invention. Patent applicant: Semiconductor Energy Research Institute Co., Ltd. Representative: Shunpei Yamazaki

Claims (1)

【特許請求の範囲】 ■、絶縁表面を有する基板上に透光性導電膜の第1の電
極と、該電極上の光照射により光起電力を発生させる非
単結晶半導体と、該半導体上に第2の電極とを有する光
電変換素子を複数個圧いに電気的に直列接続せしめて前
記絶縁基板上に配設した光電変換装置の作製方法におい
て、非単結晶半導体上にクロムを主成分とする金属膜を
形成する工程と、100〜300℃の温度に加熱処理し
て前記半導体と前記金属膜との化合物(混合物〉を境界
に形成する工程と、該工程の後、該化合物(混合物)と
前記金属膜とをレーザ光を照射して除去することにより
開溝を形成する工程とを有せしめることにより、隣合っ
た素子の第2の電極間を互いに電気的に分離して設けた
ことを特徴とする光電変換装置の作製方法。 2、特許請求の範囲第1項において、非酸化物透光性導
電膜はクロムと珪素の混合物(化合物)を主成分とする
とともに、その上面のクロムを主成分とする金属はスパ
ッタ法により形成して10Ω/口以下のシート抵抗を有
することを特徴とする光電変換装置の作製方法。
[Claims] (1) A first electrode of a transparent conductive film on a substrate having an insulating surface, a non-single crystal semiconductor that generates a photovoltaic force by light irradiation on the electrode, and In the method for manufacturing a photoelectric conversion device in which a plurality of photoelectric conversion elements each having a second electrode are electrically connected in series and arranged on the insulating substrate, chromium is mainly contained on a non-single crystal semiconductor. a step of forming a compound (mixture) of the semiconductor and the metal film at the boundary by heat treatment at a temperature of 100 to 300°C; and after the step, forming a compound (mixture) of the semiconductor and the metal film; and a step of forming an open groove by irradiating and removing the metal film with a laser beam, thereby electrically separating the second electrodes of adjacent elements from each other. 2. In claim 1, the non-oxide transparent conductive film mainly contains a mixture (compound) of chromium and silicon, and the chromium on the upper surface 1. A method for manufacturing a photoelectric conversion device, characterized in that a metal containing as a main component is formed by a sputtering method and has a sheet resistance of 10 Ω/unit or less.
JP59068327A 1984-04-05 1984-04-05 Manufacture of photoelectric conversion device Pending JPS60211880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59068327A JPS60211880A (en) 1984-04-05 1984-04-05 Manufacture of photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59068327A JPS60211880A (en) 1984-04-05 1984-04-05 Manufacture of photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPS60211880A true JPS60211880A (en) 1985-10-24

Family

ID=13370619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59068327A Pending JPS60211880A (en) 1984-04-05 1984-04-05 Manufacture of photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS60211880A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603013A (en) * 1983-06-17 1985-01-09 Hitachi Denshi Ltd Restarting circuit
JPS6191973A (en) * 1984-10-11 1986-05-10 Kanegafuchi Chem Ind Co Ltd Heat resisting thin film photoelectric conversion element and manufacture thereof
JPS61144885A (en) * 1984-12-18 1986-07-02 Kanegafuchi Chem Ind Co Ltd Heatproof, thin film optoelectric transducer and production thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS5753986A (en) * 1980-07-25 1982-03-31 Eastman Kodak Co
JPS5858777A (en) * 1981-10-05 1983-04-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS5753986A (en) * 1980-07-25 1982-03-31 Eastman Kodak Co
JPS5858777A (en) * 1981-10-05 1983-04-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603013A (en) * 1983-06-17 1985-01-09 Hitachi Denshi Ltd Restarting circuit
JPS6191973A (en) * 1984-10-11 1986-05-10 Kanegafuchi Chem Ind Co Ltd Heat resisting thin film photoelectric conversion element and manufacture thereof
JPS61144885A (en) * 1984-12-18 1986-07-02 Kanegafuchi Chem Ind Co Ltd Heatproof, thin film optoelectric transducer and production thereof

Similar Documents

Publication Publication Date Title
JPH0572112B2 (en)
JPS60211880A (en) Manufacture of photoelectric conversion device
JPS60227484A (en) Manufacture of photoelectric conversion semiconductor device
JPS60211881A (en) Manufacture of semiconductor device
JPS6095980A (en) Photoelectric conversion device
JP2585503B2 (en) Laser processing method
JPS60123072A (en) Photoelectric conversion semiconductor device
JPS60211817A (en) Apparatus for photoelectric conversion
JPS6085574A (en) Manufacture of semiconductor device
JPS59220978A (en) Manufacture of photovoltaic device
JPS61255072A (en) Photoelectric conversion device
JPS6085573A (en) Photoelectric conversion device
JPS60211882A (en) Photoelectric conversion device and manufacture thereof
JPS6314873B2 (en)
JPS60253266A (en) Semiconductor device
JPS60124881A (en) Manufacture of photoelectric conversion device
JPS6242465A (en) Photoelectric converter
JP2997141B2 (en) Solar cell
JPS60253281A (en) Manufacture of semiconductor device
JPS6158276A (en) Manufacture of semiconductor device
JPS60124880A (en) Photoelectric conversion semiconductor device
JPS60123071A (en) Manufacture of photoelectric conversion device
JPH0554274B2 (en)
JPS6158278A (en) Manufacture of semiconductor device
JPH0443432B2 (en)