JPS5858777A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS5858777A
JPS5858777A JP56158548A JP15854881A JPS5858777A JP S5858777 A JPS5858777 A JP S5858777A JP 56158548 A JP56158548 A JP 56158548A JP 15854881 A JP15854881 A JP 15854881A JP S5858777 A JPS5858777 A JP S5858777A
Authority
JP
Japan
Prior art keywords
electrode
temperature
film
ohmic contact
amorphous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56158548A
Other languages
Japanese (ja)
Other versions
JPS6249753B2 (en
Inventor
Shinichiro Ishihara
伸一郎 石原
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56158548A priority Critical patent/JPS5858777A/en
Publication of JPS5858777A publication Critical patent/JPS5858777A/en
Publication of JPS6249753B2 publication Critical patent/JPS6249753B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve the ohmic contact characteristic of an electrode made of Al, etc. positively by preventing the degradation of characteristics in an amorphous film, the principal ingredient thereof is silicon, and an ohmic contact section shaped by the Al electrode, etc. CONSTITUTION:A metallic layer consisting of either of Al, Pt, Pd, In or Au is formed onto the amorphous film, the principal ingredient thereof is silicon. The whole is thermally treated at the temperature of 170 deg.C or lower. The temperature of treatment ranges between 100 deg.C or higher and 170 deg.C or lower. Accordingly, an ohmic contact is improved because the degradation of the ohmic contact can be prevented previously while sheet resistance can further be reduced.

Description

【発明の詳細な説明】 本発明はケイ素を主成分とする非晶質膜を備え、この非
晶質膜にオーミックコンタクト部を形成している半導体
素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device including an amorphous film containing silicon as a main component, and in which an ohmic contact portion is formed in the amorphous film.

半導体素子の多くは半導体膜と金属とのオーミックコン
タクト部を有している。本発明は主成分がケイ素である
非晶質膜を用いた半導体素子におけるオーミックコンタ
クト部の改良に関し、オーミックコンタクトの特性を大
きく改善するとともにその劣化を防ぐ半導体素子の製造
方法を提供することを目的とする。
Many semiconductor devices have an ohmic contact portion between a semiconductor film and a metal. The present invention relates to improvement of an ohmic contact portion in a semiconductor device using an amorphous film whose main component is silicon, and an object of the present invention is to provide a method for manufacturing a semiconductor device that greatly improves the characteristics of the ohmic contact and prevents its deterioration. shall be.

従来、非晶質ケイ素(以下a−3i  と略記する)膜
を備えた半導体素子において、前記非晶質ケイ素にオー
ミックコンタクトを有するAn 電極を形成するにはA
2 を室温で真空蒸着することにより行なっていた。
Conventionally, in a semiconductor device equipped with an amorphous silicon (hereinafter abbreviated as a-3i) film, the method of forming an electrode having an ohmic contact on the amorphous silicon is A.
2 was vacuum-deposited at room temperature.

しかし、電極形成後の素子保護の処理、製品組立工程に
おいてしばしば前記AQ 電極のオーミックコンタクト
が劣化することがあった。例えばノ゛ンダ付けによって
他の回しまたは素fと接続する組立時に熱によってAQ
主電極白河する等の現象である。AQ 電極が白河する
とa−5i 膜によつて形成された例えばダイオード等
の特性が劣化し、逆方向電流が増加したり、拡散ポテン
シャルが小さくなったり、直列抵抗が増加する等の現象
が生じる。
However, the ohmic contact of the AQ electrode often deteriorates during element protection processing and product assembly processes after electrode formation. For example, when assembling to connect with other turns or elements by soldering, the AQ is caused by heat.
This is a phenomenon such as the main electrode whitening. When the AQ electrode becomes white, the characteristics of, for example, a diode formed by the a-5i film deteriorate, and phenomena such as an increase in reverse current, a decrease in diffusion potential, and an increase in series resistance occur.

第1図(a) 、 (bl) 、 (c)の一連の顕微
鏡写真(倍率600倍)はa−3t 膜上に室温で蒸着
したAff電極を真空熱処理し、その後AR電極をとり
除いた部分のa −Si 表面の状態を示している。
A series of micrographs (600x magnification) in Figures 1 (a), (bl), and (c) show the area where the Aff electrode was deposited on the a-3T film at room temperature and subjected to vacuum heat treatment, and then the AR electrode was removed. The state of the a-Si surface is shown.

これらの図より、熱処理温度が17・0℃(第1図(a
))付近になると、コンタクト部の劣化を示すピット(
穴)が発生し、この温度付許でa−3tとAQ 電極と
が相互作用を始めることがわかる。
From these figures, the heat treatment temperature is 17.0°C (Fig. 1 (a)
)), pits (
It can be seen that a-3t and the AQ electrode begin to interact with each other at this temperature.

さらに、熱処理温度が186℃(第1図(bl)。Furthermore, the heat treatment temperature was 186°C (Fig. 1 (bl)).

200℃(第1図(C))になるとピットが急激に増加
しコンタクト部の劣化が激しくなっていることがわかる
It can be seen that when the temperature reached 200° C. (FIG. 1(C)), the number of pits increased rapidly and the contact portion deteriorated more severely.

ピットの発生により、コンタクト部の抵抗が増大し、オ
ーミック性が失なわれる。
Due to the occurrence of pits, the resistance of the contact portion increases and ohmic properties are lost.

本発明は前述したように、ケイ素を主成分とする非晶質
膜とAQ醒極等によって形成するオーミックコンタクト
部における特性劣化を防ぐとともに、積極的にへρ等に
よる電極のオーミックコンタクト特性を改善させる半導
体素子の製造方法を提供するものである。
As described above, the present invention prevents characteristic deterioration in the ohmic contact portion formed by an amorphous film mainly composed of silicon and AQ electrode, and actively improves the ohmic contact characteristic of the electrode due to ρ etc. The present invention provides a method for manufacturing a semiconductor device.

以下に本発明の半導体素子の製造方法の実施例について
説明する。
Examples of the method for manufacturing a semiconductor device of the present invention will be described below.

(実施例1) 本実施例では主として熱処理を行なうことでa−9i 
膜のシート抵抗にどのような変化が生じ、このa−3i
 膜に形成した電極のオーミック特性にどのような影響
を及ぼすかを示す。
(Example 1) In this example, a-9i was obtained by mainly performing heat treatment.
What changes occur in the sheet resistance of the film and this a-3i
This shows how the ohmic characteristics of the electrode formed on the film are affected.

表面を熱的に酸化させた単結晶Si 基板上にn型a−
3i 膜を以下の条件で堆積させた。容量結合型高周波
グロー放電装置で基板温度2o○℃。
N-type a-
3i films were deposited under the following conditions. The substrate temperature is 2°C using a capacitively coupled high frequency glow discharge device.

真空度I Torrで5IH4を単結晶Si基板上に分
解堆積させた。a−3i  のn型不純物としてPH3
を用イ、S 1H4K 7t L O−4〜1 、0 
Vo l % (体積百分率)混合させた。a−3i 
膜の膜厚は約1000人である。これを化学的に選択エ
ツチング1.て島状のa−8t膜領域を作り、基板温度
200℃で、プラズマCVD法によりシリコンチフ化膜
(SiN膜)を堆積させ、コンタクトホールをあける。
5IH4 was decomposed and deposited on a single crystal Si substrate under a vacuum degree of I Torr. PH3 as n-type impurity of a-3i
Using A, S 1H4K 7t L O-4~1, 0
Vol % (volume percentage) was mixed. a-3i
The thickness of the membrane is approximately 1000 people. Chemically selectively etching this 1. Then, an island-shaped A-8T film region is formed, a silicon nitride film (SiN film) is deposited by plasma CVD at a substrate temperature of 200° C., and a contact hole is formed.

その上に電極として用いる金属、例えばAN、NiCr
、Pt 、Pd、Mo、W、In、Auを蒸着させ、コ
ンタクト用のパターン出しをする。これを真空装置の付
いた電気炉に入れ、30分間熱処理をした後、TLM法
を用いてn型a−3i 膜のシート抵抗を測定した。
On top of that, a metal used as an electrode, such as AN, NiCr.
, Pt, Pd, Mo, W, In, and Au are vapor-deposited, and a contact pattern is formed. This was placed in an electric furnace equipped with a vacuum device and heat treated for 30 minutes, after which the sheet resistance of the n-type a-3i film was measured using the TLM method.

第2図は、TLM法によってシート抵抗を測定する原理
および方法を示す図である。a−8l膜1上に電極2a
、2b、2cを蒸着する。電極2aと2bとの距離D1
  と、電極2bと20との距離D2 とは一般に異な
らせている。可変電源4を変化させ、ある一定の電流I
が電%2bから電%2aに流れる時の電圧をVab 、
同様に電極2bから電極2Cに流した時の電圧をVbc
とする。電流の流れる方向の切換は、電源3の切換スイ
ッチ4によって行なう。島状a−8i 膜1の幅をWと
するとa′か$1膜1のシート抵抗値R6は で計算される。
FIG. 2 is a diagram showing the principle and method of measuring sheet resistance by the TLM method. Electrode 2a on a-8l membrane 1
, 2b and 2c are deposited. Distance D1 between electrodes 2a and 2b
and the distance D2 between the electrodes 2b and 20 are generally different. By changing the variable power supply 4, a certain current I
The voltage when it flows from electric %2b to electric %2a is Vab,
Similarly, the voltage when flowing from electrode 2b to electrode 2C is Vbc
shall be. The direction of current flow is switched by a changeover switch 4 of the power supply 3. Letting the width of the island-like a-8i film 1 be W, the sheet resistance value R6 of the a' or $1 film 1 is calculated as follows.

第3図は、上記方法によって得られた測定結果を示すも
ので、熱処理温度(℃)を横軸にとり、ノート抵抗値(
Ω/口)を縦軸に取ってあり、熱処理温度の変化による
シート抵抗の変化を示す。同図において、代表例は電極
材料としてNiCrとAQを用いた場合を示す。11は
NiCr 4極の場合を示し、12ばAfl 電極の場
合の特性曲線を示している。AR主電極特性曲線12の
場合、170℃付近で、AR主電極下ピットが発生する
ため、この付近でノート抵抗は増大しはじめるが、17
0’C以下で熱処理をした場合にjd熱処理をしない場
合よりシート抵抗(d減少し、同時にコノタクト部のオ
ーミック性も良くなった7、なお、a−8i  膜の堆
積温度が2o○℃を越えると/−1・抵抗は増大した。
Figure 3 shows the measurement results obtained by the above method, with the heat treatment temperature (°C) plotted on the horizontal axis and the note resistance value (
The vertical axis represents the change in sheet resistance due to change in heat treatment temperature. In the figure, a typical example shows a case where NiCr and AQ are used as electrode materials. 11 shows the characteristic curve for the NiCr 4-electrode, and 12 shows the characteristic curve for the Afl electrode. In the case of AR main electrode characteristic curve 12, a pit under the AR main electrode occurs at around 170°C, so the note resistance starts to increase around this area.
When heat treated at 0'C or lower, the sheet resistance (d) decreased compared to the case without heat treatment, and at the same time, the ohmic properties of the contact area also improved7. Note that the deposition temperature of the a-8i film exceeds 2o○C and/-1・Resistance increased.

以上の結果よりAQ を電極として用いた場合、170
℃までの熱処理を行なうことによりノート抵抗は下がり
続け、約半分に1で下降してシート抵抗特性が改善され
た。170℃以上の熱を加えるとピットがa−3t  
膜とAffi 電極との間に発生し、しかもa−8t 
膜のシート抵抗が増大することがわかった。Afl以外
の電極材料で、a−8iと熱的に相互作用が起こりやす
い金属、例えばPt、Pd、In、Au  も多少の温
度差はあるもののピットが発生する温度より低い温度の
熱処理によってシート抵抗は減少することが確かめられ
た。
From the above results, when AQ is used as an electrode, 170
By performing the heat treatment up to .degree. C., the note resistance continued to decrease, decreasing by about half by 1, and the sheet resistance characteristics were improved. When heat is applied above 170℃, the pit becomes a-3t.
occurs between the membrane and Affi electrode, and a-8t
It was found that the sheet resistance of the membrane increases. Electrode materials other than Afl, such as metals that tend to thermally interact with a-8i, such as Pt, Pd, In, and Au, can also have sheet resistance by heat treatment at a temperature lower than the temperature at which pits occur, although there is a slight temperature difference. was confirmed to decrease.

すなわち、An、Pt、Pd、In、Au のいずれか
よりなる電極を蒸着により非晶質膜上に形成した場合に
は、170℃以下の温度で熱処理することにより、オー
ミックコンタクト部の特性を良好にでき、しかも劣化を
防止できることになる。なお、熱処理温度は、あまり低
くても効果が少なく、100℃以上にすることが望まし
い。
In other words, when an electrode made of An, Pt, Pd, In, or Au is formed on an amorphous film by vapor deposition, the characteristics of the ohmic contact part can be improved by heat treatment at a temperature of 170°C or less. This means that deterioration can be prevented. Note that even if the heat treatment temperature is too low, the effect will be small, so it is desirable to set the heat treatment temperature to 100° C. or higher.

以上はAM、Pt 、Pd、 In、Au  の各電極
に対する熱処理の効果であるがNiCr 、W、Mo 
、Ni 、Cr f:a −8i膜の電極とした場合に
は、異なる現象が観測された。
The above is the effect of heat treatment on AM, Pt, Pd, In, and Au electrodes, but NiCr, W, and Mo
, Ni, Cr f:a-8i film electrodes, a different phenomenon was observed.

すなわち、例えばNiCrを電極として用いた場合には
、第3図の特性曲@11に示すように、200℃1でシ
ート抵抗が減少し続けた。熱処理温度が20o℃以上を
越えると、シート抵抗値がきわめて不規則に変化し、測
定がふらつき正常な測定が困難になった(第3図で特性
曲線11に関して200℃以上のRs の正確な測定は
困難となり記入していない。)。
That is, when NiCr was used as the electrode, for example, the sheet resistance continued to decrease at 200° C.1, as shown in characteristic curve @11 in FIG. When the heat treatment temperature exceeded 20oC, the sheet resistance value changed extremely irregularly, causing the measurement to fluctuate, making it difficult to make normal measurements. (I did not write it down because it was difficult.)

この原因は、必ずしも明らかでないが、2o。The cause of this is not necessarily clear, but 2o.

℃という温、度がa−8i 膜を基板上に堆積するとき
の堆積d(一致し、この温度以上になるとa−3i膜の
組成が変化し始めることによると思われる。
It is thought that this is because the temperature of 0.degree. C. corresponds to the deposition rate d when an a-8i film is deposited on a substrate, and above this temperature the composition of the a-3i film begins to change.

とにかく、Ni Cr 、 W 、 Mo 、Ni 、
Crをa−3t膜の電極とする場合には、コンタクト部
の抵抗は、a−3t 膜の堆積時の基板温度になるまで
低下し続け、オーミック性が向上した。       
        ・1(実施例2) 次に太陽電池を対象とした実施例について述べる。この
太陽電池の構造はガラス板に透明電極を蒸着した上に順
にp、i、n型のa−8i 膜を堆積し、さらにとのa
−Stに金属電極を形成したものである。
Anyway, Ni Cr, W, Mo, Ni,
When Cr was used as the electrode of the a-3t film, the resistance of the contact portion continued to decrease until the substrate temperature reached the temperature at which the a-3t film was deposited, and the ohmic properties improved.
-1 (Example 2) Next, an example targeting a solar cell will be described. The structure of this solar cell is that a transparent electrode is deposited on a glass plate, p-, i-, and n-type a-8i films are deposited in this order, and then a
-St with a metal electrode formed thereon.

本実施例では、前記n型のa−8i 膜と金属電極(こ
こではAfi電極)とのコンタクト部が太陽電池の特性
に与えるえいきょうを調べるため、次のようなサンプル
A、B、Cを用意した。
In this example, the following samples A, B, and C were used to investigate the effect that the contact portion between the n-type a-8i film and the metal electrode (here, the Afi electrode) has on the characteristics of the solar cell. Prepared.

すなわち、サンプルAは前記AN 電極を有する太陽電
池を熱処理しないもの、サンプルBは200℃付近まで
過度の熱処理した太陽電池、サンプルCは、本発明に係
るもので真空中で130℃の適温で熱処理した太陽電池
である。
That is, sample A is a solar cell having the AN electrode that is not heat-treated, sample B is a solar cell that has been excessively heat-treated to around 200°C, and sample C is a solar cell according to the present invention that has been heat-treated at an appropriate temperature of 130°C in vacuum. This is a solar cell.

これらのサンプルA、B、Cのソーラシミュレ−シg 
7 A M 1 (100mW/CJ) 照射下テノそ
レソれの特性を次表に示す。
Solar simulation of these samples A, B, and C
The characteristics of the tenosoreso under 7 A M 1 (100 mW/CJ) irradiation are shown in the following table.

表:各サンプルの熱処理の違いによる素子特性の比較表
に示したとおり短絡電流JscはすべてのサンプルA−
Cにわたってほぼ同じであるが、開放電圧vOCおよび
曲線因子F、F、  はサンプルBの場合は大幅に減少
し、効率は3近くにまで減少した。もっとも特性の良い
太陽電池は、本発明に係るサンプルCであった。
Table: Comparison of device characteristics due to differences in heat treatment of each sample As shown in the table, the short circuit current Jsc of all samples A-
Although nearly the same across C, the open circuit voltage vOC and fill factor F, F, were significantly reduced for sample B, and the efficiency was reduced to close to 3. The solar cell with the best characteristics was Sample C according to the present invention.

以上説明したように本発明の半導体素子の製造方法はオ
ーミックコンタクトの劣化を未然に防ぐことができると
ともに、さらにシート抵抗を減少でき、そのためオーミ
ックコンタクトが改善され、a−6i太陽電池に適用し
た場合には効率を改善することができる等の利点を有し
、工業的に極めて有意義である。
As explained above, the method for manufacturing a semiconductor device of the present invention can prevent deterioration of ohmic contacts and further reduce sheet resistance, thereby improving ohmic contacts, and when applied to A-6I solar cells. It has advantages such as improved efficiency and is extremely meaningful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a1〜<CIは各温度の熱処理による非晶質ケ
イ素とANとの相互拡散の様子を示す顕微鏡写真(倍率
500倍)、第2図は非晶質ケイ素のシート抵抗を測定
する方法を示した図、第3図は本発明の半導体装置の製
造方法によって得られた素子の熱処理温度によるシート
抵抗の変化を示す特性図である。 1・・・―・・非晶質シリコン膜、2a、2b、2c・
・・・・・電極、3・・・・・・電源、4・・・・・・
切換スイッチ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名巷閂
昭5+ニー58’/ン“バ4) 第2図 3図 軌g理z2蔓度(・C)
Figure 1 (a1~<CI is a micrograph (500x magnification) showing the state of interdiffusion between amorphous silicon and AN due to heat treatment at various temperatures; Figure 2 is a measurement of the sheet resistance of amorphous silicon. FIG. 3, which is a diagram showing the method, is a characteristic diagram showing changes in sheet resistance depending on heat treatment temperature of an element obtained by the method for manufacturing a semiconductor device of the present invention. 1...Amorphous silicon film , 2a, 2b, 2c・
...Electrode, 3...Power supply, 4...
Changeover switch. Name of agent Patent attorney Toshio Nakao and 1 other person Akira 5+Knee 58'/N'ba 4)

Claims (3)

【特許請求の範囲】[Claims] (1)  ケイ素を主成分とする非晶質膜上にAQ、P
t。 Pd、In、Auのいずれかよりなる金属層を形成した
後、170℃以下の温度で熱処理することを特徴とする
半導体素子の製造方法。
(1) AQ, P on an amorphous film mainly composed of silicon.
t. 1. A method for manufacturing a semiconductor device, which comprises forming a metal layer made of Pd, In, or Au, and then heat-treating the layer at a temperature of 170° C. or lower.
(2)熱処理の温度が100℃以上170℃以下である
ことを特徴とする特許請求の範囲第1項記載の半導体素
子の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the temperature of the heat treatment is 100°C or more and 170°C or less.
(3)基板を所定温度に加熱した状態で前記基板上にケ
イ素を主成分とする非晶質膜を形成し、前記非晶質膜上
にW 、 Mo 、Ni 、Cr 、NiCrのいずれ
かよりなる金属層を形成し、前記金属層が形成これた非
晶質膜を前記基板上への前記非晶質膜の形成時の温度以
下で熱処理することを特徴とする半導体素子の製造方法
(3) An amorphous film containing silicon as a main component is formed on the substrate while the substrate is heated to a predetermined temperature, and a film made of W, Mo, Ni, Cr, or NiCr is formed on the amorphous film. 1. A method of manufacturing a semiconductor device, comprising: forming a metal layer, and heat-treating the amorphous film on which the metal layer has been formed at a temperature lower than the temperature at which the amorphous film is formed on the substrate.
JP56158548A 1981-10-05 1981-10-05 Manufacture of semiconductor element Granted JPS5858777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56158548A JPS5858777A (en) 1981-10-05 1981-10-05 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56158548A JPS5858777A (en) 1981-10-05 1981-10-05 Manufacture of semiconductor element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62003546A Division JPS62169372A (en) 1987-01-09 1987-01-09 Manufacture of semiconductor element

Publications (2)

Publication Number Publication Date
JPS5858777A true JPS5858777A (en) 1983-04-07
JPS6249753B2 JPS6249753B2 (en) 1987-10-21

Family

ID=15674109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56158548A Granted JPS5858777A (en) 1981-10-05 1981-10-05 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS5858777A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224182A (en) * 1983-06-03 1984-12-17 Hitachi Ltd Thin film semiconductor device
JPS60211879A (en) * 1984-04-05 1985-10-24 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS60211817A (en) * 1984-04-05 1985-10-24 Semiconductor Energy Lab Co Ltd Apparatus for photoelectric conversion
JPS60211880A (en) * 1984-04-05 1985-10-24 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric conversion device
JPS6126268A (en) * 1984-07-16 1986-02-05 Kanegafuchi Chem Ind Co Ltd Heat-resistant amorphous silicon solar cell and manufacture thereof
JPS6191973A (en) * 1984-10-11 1986-05-10 Kanegafuchi Chem Ind Co Ltd Heat resisting thin film photoelectric conversion element and manufacture thereof
JPS61144885A (en) * 1984-12-18 1986-07-02 Kanegafuchi Chem Ind Co Ltd Heatproof, thin film optoelectric transducer and production thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123178A (en) * 1979-03-16 1980-09-22 Sanyo Electric Co Ltd Solar cell
JPS5669874A (en) * 1979-11-13 1981-06-11 Fuji Electric Co Ltd Amorphous semiconductor solar cell
JPS6246076A (en) * 1985-08-21 1987-02-27 日本鋼管株式会社 Method of reducing friction resistance of buried removing pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123178A (en) * 1979-03-16 1980-09-22 Sanyo Electric Co Ltd Solar cell
JPS5669874A (en) * 1979-11-13 1981-06-11 Fuji Electric Co Ltd Amorphous semiconductor solar cell
JPS6246076A (en) * 1985-08-21 1987-02-27 日本鋼管株式会社 Method of reducing friction resistance of buried removing pipe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224182A (en) * 1983-06-03 1984-12-17 Hitachi Ltd Thin film semiconductor device
JPS60211879A (en) * 1984-04-05 1985-10-24 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS60211817A (en) * 1984-04-05 1985-10-24 Semiconductor Energy Lab Co Ltd Apparatus for photoelectric conversion
JPS60211880A (en) * 1984-04-05 1985-10-24 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric conversion device
JPS6126268A (en) * 1984-07-16 1986-02-05 Kanegafuchi Chem Ind Co Ltd Heat-resistant amorphous silicon solar cell and manufacture thereof
JPS6191973A (en) * 1984-10-11 1986-05-10 Kanegafuchi Chem Ind Co Ltd Heat resisting thin film photoelectric conversion element and manufacture thereof
JPS61144885A (en) * 1984-12-18 1986-07-02 Kanegafuchi Chem Ind Co Ltd Heatproof, thin film optoelectric transducer and production thereof

Also Published As

Publication number Publication date
JPS6249753B2 (en) 1987-10-21

Similar Documents

Publication Publication Date Title
US4196438A (en) Article and device having an amorphous silicon containing a halogen and method of fabrication
EP0117980B1 (en) Process for forming passivation film on photoelectric conversion device and the device produced thereby
DE2854652A1 (en) SOLAR CELL
JPH03133176A (en) Silicon carbide semiconductor device and manufacture thereof
JPH0587986B2 (en)
JPS5858777A (en) Manufacture of semiconductor element
WO1988007768A1 (en) Integrated solar battery and method of producing the same
US5808316A (en) Microcrystal silicon thin film transistor
EP0744776A2 (en) Amorphous silicon thin film transistor and method preparing same
US3436614A (en) Nonrectifying laminated ohmic contact for semiconductors consisting of chromium and 80% nickel
JP4222841B2 (en) Manufacturing method of semiconductor device
JPS62169372A (en) Manufacture of semiconductor element
JP3837903B2 (en) Transparent conductive film and manufacturing method thereof
AU750452B2 (en) Semiconductor thin film and thin film device
JP4197863B2 (en) Photovoltaic device manufacturing method
JPH06216377A (en) Manufacture of mos semiconductor device
JPH0458561A (en) Semiconductor device and manufacture thereof
JP3649948B2 (en) Photovoltaic device and manufacturing method thereof
JPS61128403A (en) Non-crystalline silicon based insulating material
JP3933334B2 (en) Silicon-based thin film photoelectric conversion device and manufacturing method thereof
JP2727902B2 (en) Al contact structure
JPS5986218A (en) Manufacture of semiconductor device
KR950009814B1 (en) Capacitor structure
CN116247082A (en) Preparation method of heavily doped P-type silicon carbide wafer ohmic contact electrode
JPH04291967A (en) Manufacture of photovoltaic device