JPS59224182A - Thin film semiconductor device - Google Patents

Thin film semiconductor device

Info

Publication number
JPS59224182A
JPS59224182A JP58097784A JP9778483A JPS59224182A JP S59224182 A JPS59224182 A JP S59224182A JP 58097784 A JP58097784 A JP 58097784A JP 9778483 A JP9778483 A JP 9778483A JP S59224182 A JPS59224182 A JP S59224182A
Authority
JP
Japan
Prior art keywords
layer
thin film
semiconductor device
amorphous silicon
film semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58097784A
Other languages
Japanese (ja)
Inventor
Koichi Seki
浩一 関
Hideaki Yamamoto
英明 山本
Toshihiro Tanaka
利広 田中
Akira Sasano
笹野 晃
Toshihisa Tsukada
俊久 塚田
Hisao Oota
太田 日佐雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Ltd
Priority to JP58097784A priority Critical patent/JPS59224182A/en
Publication of JPS59224182A publication Critical patent/JPS59224182A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic Table

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To implement the improvement of heat resistance without deteriorating electric characteristics, by providing a Cr layer in contact with an amorphous silicon layer, and contacting the amorphous silicon layer and a conductive layer. CONSTITUTION:A Cr electrode 2 is formed on a glass substrate 1. An amorphous hydrogenated silicon layer (N layer) 3 including P is formed thereon by using a gas, wherein PH3 gas and SiH4 gas are mixed. Then an amorphous hydrogenated silicon (I layer) 4 is formed only by using the SiH4 gas. An amorphous hydrogenated silicon layer (P layer) 5 including B is further formed by using a gas, wherein B2H6 gas and the SiH4 gas are mixed. Cr13 is formed thereon. Al 14 is further formed thereon.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は非晶質シリコンを用いたダイオードに関するも
のである。特にその耐熱性を向上させるものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a diode using amorphous silicon. In particular, it improves its heat resistance.

〔背景技術〕[Background technology]

従来、水素化非晶質シリコンを用いたpinダイオード
は第1図に示すような構造をしている。
Conventionally, a pin diode using hydrogenated amorphous silicon has a structure as shown in FIG.

1は基板、2は下部電極、3はpを添加したn形水素化
非晶質シリコン層(n層)、4は不純物をドーグしない
水素化非晶質シリコン層(i層)、5はBf:添加した
p形水素化非晶質シリコン層(p層)、6は上部′電極
である。n層、i層、p層の順序はこれと反対の場合も
ある。2,6の電極金属としてはn形あるいはp膨水素
化非晶質シリコンと良好なオーム性接触を示す事が要求
される。また、このダイオードを一次元あるいは二次元
に配列して形成するためには電極が結晶シリコ7IC,
LSIと同様にホトエツチング工程で容易にパターン化
できる事も要求される。これらの要求を満たす金属とし
てAt、 Cr 、 N i 。
1 is a substrate, 2 is a lower electrode, 3 is an n-type hydrogenated amorphous silicon layer doped with p (n layer), 4 is a hydrogenated amorphous silicon layer (i layer) that does not contain impurities, and 5 is Bf : Added p-type hydrogenated amorphous silicon layer (p layer), 6 is the upper electrode. The order of the n-layer, i-layer, and p-layer may be reversed. The electrode metals 2 and 6 are required to exhibit good ohmic contact with n-type or p-swelled hydrogenated amorphous silicon. In addition, in order to form these diodes in a one-dimensional or two-dimensional array, the electrodes must be made of crystalline silicon 7IC,
Similar to LSI, it is also required that it can be easily patterned by a photoetching process. At, Cr, and Ni are metals that meet these requirements.

NiCr、Mo、Taなどが良く知られている。このな
かでは下記の性徴を持つA7が広く用いられてきた。(
1)水素化非晶質シリコン層に及ぼす応力が小さいので
厚く堆積可能である。(2)そのため抵抗が小さくでき
る。(3)抵抗加熱蒸着法・電子ビーム蒸着法、スパッ
タリングなど種々の方法で容易に堆積可能である。(4
)SiICプロセスで用いられており、加工が容易であ
る。しか、L、l5biharaらがJ、Appl、 
Phys、、 vol、 53.A  5  pp。
NiCr, Mo, Ta, etc. are well known. Among these, A7, which has the following sexual characteristics, has been widely used. (
1) Since the stress exerted on the hydrogenated amorphous silicon layer is small, it can be deposited thickly. (2) Therefore, resistance can be reduced. (3) It can be easily deposited by various methods such as resistance heating evaporation, electron beam evaporation, and sputtering. (4
) It is used in the SiIC process and is easy to process. However, L,l5bihara et al. J,Appl.
Phys., vol. 53. A 5pp.

3909〜3911. May’ 82.において、示
したようにAAは非晶質シリコン層と200C程度の低
温で容易に反応し、AtとSi原子が相互拡散をおこす
。これはpinダイオードにおいては接合を破壊する原
因となる。よって電極金属にAtを用いた場合には電極
形成後は200C程度以上の温度にする事ができず、素
子の耐熱性が悪い。
3909-3911. May' 82. As shown in , AA easily reacts with the amorphous silicon layer at a low temperature of about 200 C, and At and Si atoms interdifuse. This causes breakdown of the junction in the pin diode. Therefore, when At is used as the electrode metal, the temperature cannot be raised to about 200 C or higher after the electrode is formed, and the heat resistance of the element is poor.

と同時に、−次元ないし二次元センサなどにこのpin
ダイオードを用いる場合、これ以後の堆積、加工プロセ
スに制限が加わる事になる。
At the same time, connect this pin to a -dimensional or two-dimensional sensor, etc.
If a diode is used, restrictions will be placed on subsequent deposition and processing processes.

〔発明の目的〕[Purpose of the invention]

本発明の目的は従来のAt電極を有する非晶質シリコン
・ダイオードが有していたこの欠点をな−くし、耐熱性
が良好でかつ電極抵抗の小さなダイオードを提供するも
のである。
The object of the present invention is to eliminate this drawback of conventional amorphous silicon diodes having At electrodes, and to provide a diode with good heat resistance and low electrode resistance.

〔発明の概要〕[Summary of the invention]

本発明は非晶質シリコン層とその上部に設けた導電体層
と接触を取る場合、非晶質シリコン層に接してはCr層
を用いることを特徴とするものである。半導体層上に金
属層を設ける場合、応力の半導体層におよぼす影響が問
題となるが、この点は当該金属層を多層膜として問題の
解決をはかるものである。以下、詳細に本発明を説明す
る。
The present invention is characterized in that a Cr layer is used in contact with the amorphous silicon layer when contact is made between the amorphous silicon layer and the conductor layer provided on the amorphous silicon layer. When a metal layer is provided on a semiconductor layer, the influence of stress on the semiconductor layer becomes a problem, but this problem is solved by forming the metal layer into a multilayer film. The present invention will be explained in detail below.

A4とSiの相互拡散については結晶シリコンICの分
野ではよく知られている。しかし、非晶質水素化シリコ
ンとA4の場合にはその様子が異なっている。最も大き
な違いは結晶SiとAtの反応が400C以上の高温で
おきるのに対し、非晶質水素化シリコンとAAの場合に
は200C程度の低温でおきる点である。第1図のよう
な構造のpinダイオードにおいては約2000以上の
温度でAt電極6とp形弁晶質水素化シリコン層5が反
応・相互拡散し、ついにはA4がp層をつきぬけ、1層
4内部にまで達する。第2図はIMAによる深さ方向の
分析結果の一例である。A7の膜厚は約1μm1非晶質
水素化シリコン層の厚みは9層0.023μm、 i層
0.55μm、n層0.03μmで200Cで14時間
アニールした素子の表面のktを除いた試料について示
す。このようにA4はポロンが添加されたp層(曲線9
の範囲)をつきぬけ、0.05μm程度i層内部にまで
はいシこんでいる。7,8.9はSr、AL、Bの信号
強度である。各信号の大きさの関係は任意となっている
Interdiffusion of A4 and Si is well known in the field of crystalline silicon ICs. However, the situation is different between amorphous hydrogenated silicon and A4. The biggest difference is that the reaction between crystalline Si and At occurs at a high temperature of 400C or higher, whereas the reaction between amorphous silicon hydride and AA occurs at a low temperature of about 200C. In the pin diode with the structure shown in Fig. 1, the At electrode 6 and the p-type crystalline hydrogenated silicon layer 5 react and interdiffuse at a temperature of about 2000°C or higher, and eventually A4 penetrates the p layer, forming a single layer. 4 Reaches inside. FIG. 2 is an example of the results of analysis in the depth direction by IMA. The film thickness of A7 is approximately 1 μm1 The thickness of the amorphous hydrogenated silicon layer is 9 layers 0.023 μm, the i layer 0.55 μm, the n layer 0.03 μm, and the kt on the surface of the device was removed at 200 C for 14 hours. Show about. In this way, A4 has a p-layer doped with poron (curve 9
) and penetrates into the i-layer by about 0.05 μm. 7, 8.9 are the signal intensities of Sr, AL, and B. The relationship between the magnitudes of each signal is arbitrary.

第3図はpinダイオードの200C熱処理による逆方
向電流の増加の様子を示した図である。
FIG. 3 is a diagram showing how the reverse current increases due to the 200C heat treatment of the pin diode.

1o、11,12はA4膜厚1.8 、1.0 、0.
4μmの場合を示す。A7膜厚が厚いほど劣化の速鷹は
太きい。これはAAとSiの相互拡散がAtの量、即ち
膜厚によって律速されているためである。
1o, 11, 12 are A4 film thickness 1.8, 1.0, 0.
The case of 4 μm is shown. The thicker the A7 film, the faster the rate of deterioration. This is because the mutual diffusion of AA and Si is rate-limited by the amount of At, ie, the film thickness.

このような現象はp層とAtばかりでなく、0層゛とA
Aの場合にも見られる。p層の方が化学的に安定である
ため、n層とA4の場合の方が速く劣化する。第4図は
第3図のpinダイオードと逆に基板側からp層−1層
−n層の順に形成し、n層の厚みを第3図のダイオード
のp層と等しくした場合について示したものである。n
層とAtの反応の方がすみやかに進行する事が判る。
This phenomenon occurs not only in the p layer and At, but also in the 0 layer and A.
This can also be seen in the case of A. Since the p-layer is chemically more stable, the n-layer and A4 deteriorate faster. Figure 4 shows a case in which, contrary to the pin diode in Figure 3, the p layer, layer 1, and layer n are formed in this order from the substrate side, and the thickness of the n layer is made equal to the p layer of the diode in Figure 3. It is. n
It can be seen that the reaction between the layer and At proceeds more quickly.

以上のようにAtを上部電極とした素子では200C程
度の熱処理によって容易に劣化してしまう。これに対し
、Crと非晶質水素化シリコンとは様子が異なる事を発
見した。Crも非晶質水素化シリコンと反応はする。非
晶質水素化シリコンの上に基板温度100C以上に加熱
してCrあるいはCr−At、Cr−Ni、 Cr−N
iCr−A u 、 Cr  N f  A uなど(
Cr−At等の表示IdCr層とAt層の二層の重ね層
をあられしている。以下同様の表示は同様の意味をあら
れしている。)を蒸着法あるいはスパッタリング法で堆
積するか、または基板加熱温度がこれ以下でも金属を堆
積後に100C以上で加熱処理した後、この金属を除去
すると非晶質水素化シリコン表面にCrとの反応物が残
る。この反応物は非晶質水素化シリコン層より低抵抗で
10に07口以下である。しかもAAと非晶質水素化シ
リコンの場合には場所的に不均一に反応するが、Crと
非晶質水素化シリコンの場合には膜全面で均一に反応す
る。この反応のためpinダイオードの逆方向電流は熱
処理によって若干増加するが、200t:’程度では破
壊するには至らないものと考えられる。
As described above, an element using At as an upper electrode is easily deteriorated by heat treatment at about 200C. On the other hand, it was discovered that Cr and amorphous hydrogenated silicon behave differently. Cr also reacts with amorphous hydrogenated silicon. Cr, Cr-At, Cr-Ni, Cr-N is deposited on amorphous hydrogenated silicon by heating the substrate to a temperature of 100C or higher.
iCr-Au, CrNfAu, etc. (
Two overlapping layers of a display IdCr layer and an At layer such as Cr-At are used. Below, similar expressions have the same meanings. ) is deposited by evaporation or sputtering, or even if the substrate heating temperature is lower than this, if the metal is deposited and then heated at 100C or higher and then this metal is removed, a reaction product with Cr will be formed on the surface of the amorphous silicon hydride. remains. This reactant has a lower resistance than the amorphous hydrogenated silicon layer, less than 10 times lower. Moreover, in the case of AA and amorphous hydrogenated silicon, the reaction occurs unevenly locally, but in the case of Cr and amorphous hydrogenated silicon, the reaction occurs uniformly over the entire surface of the film. Due to this reaction, the reverse current of the PIN diode increases slightly due to the heat treatment, but it is considered that this does not lead to destruction at about 200 t:'.

しかしながら、Cr膜は非晶質水素化シリコン層に及ぼ
す応力が大きく、厚く堆積すると加工時に非晶質水素化
シリコンを剥離させてしまう。このため、ダイオードの
直列抵抗を低減するためには電極を多層構造とする必要
があシ、この例としてはCr−Aja、Cr−Ni−A
u、Cr−NiCr  −Auなどが考えられる。Cr
膜の膜厚は500人〜2000人程以上用いている。C
r膜上に積層する金属膜の膜厚は非晶質シリコン層への
応力を考慮して設定される。
However, the Cr film exerts a large stress on the amorphous hydrogenated silicon layer, and if it is deposited thickly, the amorphous hydrogenated silicon layer will be peeled off during processing. Therefore, in order to reduce the series resistance of the diode, it is necessary to make the electrode a multilayer structure. Examples of this are Cr-Aja, Cr-Ni-A
Possible examples include u, Cr-NiCr-Au, and the like. Cr
The thickness of the membrane used is approximately 500 to 2000 or more. C
The thickness of the metal film laminated on the r film is set in consideration of stress on the amorphous silicon layer.

下部電極についても同様な現象が起こるが、下部電極を
多層構造とする場合には基板との接着性が問題となって
くる。基板をガラスにする場合にはCr−AL、 Cr
−Ni−Au、 Cr−NiCr−A u等A4やAu
が基板面と接触する構造は接着性が十分でなく、Cr、
NiCr、Mo、Taあるいはこれらの組み合わせた多
層構造などがより現実的である。
A similar phenomenon occurs with the lower electrode, but when the lower electrode has a multilayer structure, adhesion to the substrate becomes a problem. When the substrate is made of glass, Cr-AL, Cr
-Ni-Au, Cr-NiCr-A u etc. A4 and Au
The structure in which Cr,
A multilayer structure of NiCr, Mo, Ta, or a combination of these is more realistic.

し発明の実施例〕 実施例1 第5図のようにガラス基板1の上にCr電極2を膜厚0
.3μm形成する。その上、にプラズマCVD(Che
mical  Vapor  Deposition 
 )法で基板温度230CでPH,ガスとSiH4ガス
とを混合したガスを用いて(混合比PH8/8iH4≧
0.5体積%)Pを含んだ非晶質水素化シリコン層(n
層)3を、次にSiH4ガスのみで非晶質水素StH,
と全混合したガスを用いて(混合比B2)1゜へ /SiH,≧0.5体積%)Bを含んだ非晶質水素化シ
リコン層(p層)5を順次形成する。各層の膜厚は例え
ば0層300人、1層5500人、9層230人である
。次にこの上にCr13を0.1μm1その上にAt1
4を1μm蒸着で形成する。
Embodiments of the invention] Example 1 As shown in FIG.
.. Form 3 μm. Moreover, plasma CVD (Che
Mical Vapor Deposition
) method at a substrate temperature of 230C using a mixture of PH gas and SiH4 gas (mixture ratio PH8/8iH4≧
An amorphous hydrogenated silicon layer containing P (0.5% by volume) (n
layer) 3, then amorphous hydrogen StH using only SiH4 gas,
An amorphous silicon hydride layer (p layer) 5 containing B (mixture ratio B2) to 1°/SiH, 0.5% by volume) is sequentially formed using a gas completely mixed with (mixing ratio B2). The film thickness of each layer is, for example, 300 people for the 0th layer, 5500 people for the 1st layer, and 230 people for the 9th layer. Next, apply Cr13 to 0.1 μm1 on top of this and At1 on top of this.
4 is formed by vapor deposition to a thickness of 1 μm.

この時の電流電圧特性はAt1μmのみの場合とほとん
ど差がなく、電極抵抗が低い事を示している。このダイ
オードを200C空気中で熱処理すると第6図に示すよ
うに逆方向電流は時間の経過と共に若干増加するが、約
10時間程度で飽和する。これはCrと非晶質水素化シ
リコン層の拡散がある程度で進行しなくなるためと考え
られる。
The current-voltage characteristics at this time have almost no difference from the case of At 1 μm only, indicating that the electrode resistance is low. When this diode is heat treated in air at 200C, the reverse current increases slightly over time, as shown in FIG. 6, but saturates in about 10 hours. This is considered to be because the diffusion of Cr and the amorphous hydrogenated silicon layer stops progressing to a certain extent.

また、Crの膜厚に関しては2000人程度以上では応
力が太きく、作製した時点で破壊するものが多いが、こ
れよシ薄い膜厚では大きな差は認められない。Cr膜は
均一な膜の形成が可能な400人〜500人程以上れば
効果を奏し得る。
Regarding the film thickness of Cr, the stress is large when there are more than 2,000 people, and many of them break at the time of fabrication, but no big difference is observed when the film thickness is thinner than this. The Cr film can be effective if about 400 to 500 people or more can form a uniform film.

実施例2 実施例1のCr−Atの積層のかわりにCr0.1μ”
 I N I O−11’ mr A uO−21’ 
mを電子ビーム蒸着で堆積する。他の状態は実施例1と
同様である。電流電圧特性、耐熱性共にCr−AAの積
層の場合とほぼ等しい。
Example 2 Cr0.1μ" instead of the Cr-At lamination of Example 1
I N I O-11' mr A uO-21'
m is deposited by electron beam evaporation. Other conditions are the same as in the first embodiment. Both current-voltage characteristics and heat resistance are almost the same as in the case of a Cr-AA lamination.

実施例3 実施例1のCr−AAのかわシにCr0.1μm。Example 3 Cr0.1 μm was added to the Cr-AA liner of Example 1.

NiCr0.3μm、AuO,2μmをスパッタリング
で堆積する。他の状態は実施例1と同様である。
0.3 μm of NiCr and 2 μm of AuO are deposited by sputtering. Other conditions are the same as in the first embodiment.

電流電圧特性、耐熱性共にCr−Atの積層の場合とほ
ぼ等しい。
Both current-voltage characteristics and heat resistance are almost the same as in the case of a Cr-At stack.

〔発明の効果〕〔Effect of the invention〕

以上の実施例に示したように、本発明によれば非晶質水
素化シリコンルミnダイオードの耐熱性の向上を電気的
特性の劣化なく実現できるので非晶質水素化シリコンを
用いた一次元・二次元の受光素子の信頼性を向上させる
事ができる。
As shown in the above embodiments, according to the present invention, it is possible to improve the heat resistance of an amorphous hydrogenated silicon-luminium diode without deteriorating its electrical characteristics.・The reliability of two-dimensional light receiving elements can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の非晶質水素化シリコンルミnダイオード
の断面図、第2図は非晶質シリコン層の金属と接触する
面側のHMA分析結果を示す図、第3図、第4図は熱処
理によるダイオードの劣化を示す図、第5図は本発明の
一実施例を示す断面図、第6図は実施例における劣化の
様子を示す図である。 1・・・ガラス基板、2・・・下部金属電極、3,4.
5・・・非晶質水素化シリコンn層、i層、p層、6・
・・A4上部電極、7,8.9・・・Si、At、Bの
IMA信号強度、13・・・Cr電極、14・・・A7
電極。 代理人 弁理士 高橋明夫 不  1  図 藁  2  図 ル θ に面クラ/7岬さ 不 3  図 1、−3 「 θ    fθ    2ρ   3θ   4θ  
 5ρ夕へ(T1時間 (R今間ン ■ 4  図 fill’ す4幻7理−吟開 (P1閏) 第 5 図 菖 乙 図 711、ム理吟間(時開p 国分寺市東恋ケ窪1丁目28C 地株式会社日立製作所中央伺 所内 の発 明 者 太田日佐雄 横須賀車載1丁目2356番地日 電信電話公社横須賀電気適化 究所内 ■出 願 人 日本電信電話公社
Figure 1 is a cross-sectional view of a conventional amorphous hydrogenated silicon-luminium diode, Figure 2 is a diagram showing the HMA analysis results of the side of the amorphous silicon layer that comes into contact with metal, Figures 3 and 4. FIG. 5 is a cross-sectional view showing an embodiment of the present invention, and FIG. 6 is a diagram showing the state of deterioration in the embodiment. 1... Glass substrate, 2... Lower metal electrode, 3, 4.
5...Amorphous hydrogenated silicon n layer, i layer, p layer, 6...
...A4 upper electrode, 7,8.9...IMA signal intensity of Si, At, B, 13...Cr electrode, 14...A7
electrode. Agent Patent Attorney Akio Takahashi 1 Figure 2 Figure θ ni Menkura / 7 Misaki Safu 3 Figure 1, -3 " θ fθ 2ρ 3θ 4θ
5ρ To evening (T1 hour (R Imama n ■ 4 Figure fill' Su4 Gen 7 Ri-Ginkai (P1 leap) 5th Iris Otsu Figure 711, Muriginma (time opening p Kokubunji City Higashi Koigakubo 1-28C) Inventor: Hitachi, Ltd., Chuo Research Office Inventor: Hisao Ota, Yokosuka Automobile 1-2356, Yokosuka Electrical Optimization Research Institute, Nippon Telegraph and Telephone Public Corporation Applicant: Nippon Telegraph and Telephone Public Corporation

Claims (1)

【特許請求の範囲】 1、少なくとも所定基板上に非晶質シリコン層を有し、
この非晶質シリコン層に接して第1の導電体層を有する
薄膜半導体装置であって、前記第1の導電体層は前記非
晶質シリコン層に接する側がCr層よシ成る多層構造の
導電体層なることを特徴とする薄膜半導体装置。 2、前記非晶質シリコン層がn型導電層、n型導電層お
よびp型溝電層が順次液した積層構造を有することを特
徴とする特許請求の範囲第1項記載の薄膜半導体装置。 3、前記非晶質シリコン層のn型導電層が前記基板側に
あることを特徴とする特許請求の範囲第2項記載の薄膜
半導体装置。 4、前記非晶質シリコン層。p型溝電層が前記基板側に
あることを特徴とする特許請求の範囲第2項記載の薄膜
半導体装置。 5、前記第1の導電体層の多層構造の導電体層はCr層
上にAt層が積層されてなることを特徴とする特許請求
の範囲第1項〜第4項のいずれかに記載の薄膜半導体装
置。 6、前記n型導電層が省略されてなること全特徴とする
特許請求の範囲第2項〜第4項のいずれかに記載の薄膜
半導体装置。 7、特許請求の範囲第1項〜第6項のいずれかに記載の
薄膜半導体装置において、前記基板上には第2の導電体
層を有し、この上部に非晶質シリコン層が積層されて成
ることを特徴とする薄膜半導体装置。
[Claims] 1. Having an amorphous silicon layer on at least a predetermined substrate,
A thin film semiconductor device having a first conductive layer in contact with the amorphous silicon layer, wherein the first conductive layer has a multilayer conductive structure in which a side in contact with the amorphous silicon layer is a Cr layer. A thin film semiconductor device characterized by a body layer. 2. The thin film semiconductor device according to claim 1, wherein the amorphous silicon layer has a laminated structure in which an n-type conductive layer, an n-type conductive layer, and a p-type trench conductive layer are sequentially formed. 3. The thin film semiconductor device according to claim 2, wherein the n-type conductive layer of the amorphous silicon layer is on the substrate side. 4. The amorphous silicon layer. 3. The thin film semiconductor device according to claim 2, wherein the p-type trench conductor layer is on the substrate side. 5. The conductor layer of the multilayer structure of the first conductor layer is characterized in that an At layer is laminated on a Cr layer. Thin film semiconductor device. 6. The thin film semiconductor device according to any one of claims 2 to 4, characterized in that the n-type conductive layer is omitted. 7. The thin film semiconductor device according to any one of claims 1 to 6, wherein a second conductor layer is provided on the substrate, and an amorphous silicon layer is laminated on top of the second conductor layer. A thin film semiconductor device characterized by comprising:
JP58097784A 1983-06-03 1983-06-03 Thin film semiconductor device Pending JPS59224182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58097784A JPS59224182A (en) 1983-06-03 1983-06-03 Thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58097784A JPS59224182A (en) 1983-06-03 1983-06-03 Thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPS59224182A true JPS59224182A (en) 1984-12-17

Family

ID=14201438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58097784A Pending JPS59224182A (en) 1983-06-03 1983-06-03 Thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPS59224182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423364A (en) * 1990-05-15 1992-01-27 Showa Shell Sekiyu Kk Photoelectromotive force device usable as mirror

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858777A (en) * 1981-10-05 1983-04-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858777A (en) * 1981-10-05 1983-04-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423364A (en) * 1990-05-15 1992-01-27 Showa Shell Sekiyu Kk Photoelectromotive force device usable as mirror
US5298087A (en) * 1990-05-15 1994-03-29 Showa Shell Sekiyu K.K. Photovoltaic device useful as a mirror

Similar Documents

Publication Publication Date Title
CN100499137C (en) Source/drain electrodes, transistor substrates and manufacture methods, and display devices
US7943933B2 (en) Thin film transistor substrate and display device with oxygen-containing layer
CN100511690C (en) Source/drain electrodes, transistor substrates and manufacture methods, thereof, and display devices
KR940004420B1 (en) Thin film transistor
JP2509713B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
TW495630B (en) Thin film transistor, a method for producing the thin film transistor, and a liquid crystal display using a array substrate
TW200415429A (en) Electronic device, method of manufacture of the same, and sputtering target
US5429983A (en) Method of manufacturing semiconductor device
JPS6281057A (en) Transparent conductive film
TW200540539A (en) Structure of TFT electrode for preventing metal layer diffusion and manufacturing method therefor
JPS59224182A (en) Thin film semiconductor device
KR20080086997A (en) Junction structure of device
JP2854038B2 (en) Semiconductor element
JPH084095B2 (en) Method for manufacturing semiconductor device
JP3141456B2 (en) Thin film transistor and method of manufacturing the same
JPH0620944A (en) Semiconductor device and manufacture thereof
JPS5968975A (en) Semiconductor device and manufacture thereof
JP2563760B2 (en) Method for manufacturing semiconductor device
JP2919583B2 (en) Method for manufacturing thin film transistor
JPS62209855A (en) Semiconductor element using silicon carbide
JPH04133356A (en) Photoelectric transducer
JPS61239670A (en) Thin-film transistor and manufacture thereof
JPH0344968A (en) Semiconductor device and manufacture thereof
JPH06268239A (en) Surge absorbing diode
JPH0350873A (en) Thin-film transistor