JPH0344968A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0344968A
JPH0344968A JP18111289A JP18111289A JPH0344968A JP H0344968 A JPH0344968 A JP H0344968A JP 18111289 A JP18111289 A JP 18111289A JP 18111289 A JP18111289 A JP 18111289A JP H0344968 A JPH0344968 A JP H0344968A
Authority
JP
Japan
Prior art keywords
crystal silicon
film
silicon film
layer
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18111289A
Other languages
Japanese (ja)
Other versions
JP2811765B2 (en
Inventor
Rei Otsuka
玲 大塚
Yoshiya Takeda
悦矢 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1181112A priority Critical patent/JP2811765B2/en
Publication of JPH0344968A publication Critical patent/JPH0344968A/en
Application granted granted Critical
Publication of JP2811765B2 publication Critical patent/JP2811765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To manufacture a semiconductor device having a simple structure at a high yield through a small number of manufacturing processes by providing a plurality of silicon films of non-single crystals at specific positions and making the film on one side to contain more hydrogen elements. CONSTITUTION:After forming a Cr metal layer 2 by sputtering, the layer 2 is selectively etched. Then the layer 2 is successively coated with SiNx layer 3, a-Si layer 4 containing little impurities, snd SiNx layer 5 of specific concentrations. The layer 5 contains more hydrogen than the layer 3 does and the layer 3 is composed principally of a high-melting point metal containing a nonmetallic element between a silicon film of non-single crystals and wiring. In addition, the layer 5 is formed between the layer 3 and the above-mentioned silicon film of non-single crystals. When such structure is used, the problem of stripping off can be eliminated, since no n<+> a-Si film is formed, and the number of manufacturing processes can be reduced while the ohmic property is maintained in the connection between the layer 4 and metallic wiring. Therefore, the yield can be improved and wiring resistance can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置 とりわけ非単結晶シリコン膜を用
いた半導体装置及びその製造方法に関すん 従来の技術 社風 非晶質シリコン(以下a−3iと略す)を用いた
薄膜トランジスタアレーは低温で大面積化が可能であり
、安定性も優れていることか板 液晶表示用基板、イメ
ージセンサへの応用が積極的に行なわれていも しかも
このa−3iを用いた薄膜トランジスタアレーは多種多
様の構成ができ、作製方法も数限りなく存在すも その
中でも逆スタガ構造のものについて下記に述べも 第2図は薄膜トランジスタの工程断面図である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor device, particularly a semiconductor device using a non-single crystal silicon film and a method for manufacturing the same. ) thin film transistor arrays can be made into large areas at low temperatures and have excellent stability. The thin film transistor array used can have a wide variety of configurations, and there are an infinite number of manufacturing methods. Among them, an inverted staggered structure will be described below. FIG. 2 is a cross-sectional view of the process of making a thin film transistor.

同図(a)の工程はゲート電極形成工程であり、例えば
Cr金属2をスパッタにより、 100OA被着形戒し
 そのCr金属2を硝酸セリウムアンモニウムを主成分
とした溶液で選択的にエツチングを行なう工程である。
The process shown in FIG. 2(a) is a gate electrode forming process, in which, for example, 100 OA of Cr metal 2 is deposited by sputtering, and the Cr metal 2 is selectively etched with a solution containing cerium ammonium nitrate as the main component. It is a process.

同図(b)の工程は三層デポ工程型 例えば4000A
1500A/1000Aの膜厚で第1のシリコン窒化層
3 (以下SiNx層と略す)、不純物をほとんど含ま
ない第1のa−3i層4そして再び第2のSiNx層5
を好ましくは連続的に被着すも これらの薄膜はいずれ
もシラン(以下SiH4層と略す)ガスを主成分とする
原料ガスを300℃前後の温度で高周波グロー放電によ
り分脈 台底するプラズマCVDによって作製されも 
同図 (c)の工程は半導体層保護膜形成工程で、第2
のSiN層5をゲート上にのみ選択的に残した後、Si
H4ガスにPHsガスを添加したプラズマ放電によって
全面に500A程度の膜厚の不純物を含む第2のa−3
i層10を被着すも 同図(d)の工程はソース・ドレ
イン電極形成工程で、例えば全面にMoSi2/ Al
 8.9をスパッタで1000A/7000A被着し燐
酸系の溶液でAIを選択的に食刻し、形成したA1パタ
ーンをマスクとしT:、  MoSi2、第1、第2の
a−8i層をフッ硝酸系の溶液で選択的に食刻する工程
であも この構造によって安定な容量が実現できること
が特開昭57−45968号に開示されている。
The process in figure (b) is a three-layer deposition process type, for example, 4000A.
A first silicon nitride layer 3 (hereinafter abbreviated as SiNx layer) with a film thickness of 1500A/1000A, a first a-3i layer 4 containing almost no impurities, and again a second SiNx layer 5.
These thin films are preferably deposited continuously, but all of these thin films are made by plasma CVD using a high-frequency glow discharge at a temperature of around 300°C using a raw material gas mainly composed of silane (hereinafter abbreviated as SiH4 layer) gas. Even if it is made
The step in (c) of the same figure is the semiconductor layer protective film forming step, and
After selectively leaving the SiN layer 5 only on the gate, the SiN layer 5 of
The second a-3 contains impurities with a film thickness of about 500A on the entire surface by plasma discharge with PHs gas added to H4 gas.
Although the i-layer 10 is deposited, the process shown in FIG.
8.9 was deposited at 1000A/7000A by sputtering, the AI was selectively etched with a phosphoric acid solution, and using the formed A1 pattern as a mask, the T:, MoSi2, first and second a-8i layers were etched. JP-A-57-45968 discloses that this structure allows a stable capacity to be achieved even in the process of selectively etching with a nitric acid solution.

発明が解決しようとする課題 上述した従来のTPTアレーは7枚の製膜工程を必要と
し必然的にフォトマスク枚数が4枚以上になり、作製工
程が長くコスト的には苦しいことは明かである。その作
製工程の中でプラズマCVD法は確立した技術ではある
力曳 メンテサイクルが他の装置に比べて非常に短く、
メンテ方法も難し鶏 また パラメータが多いから制御
しにくいので、なるべく回数を減らし安定なプロセスを
確立する必要があも そして、プロセスの歩留まり向上
の妨げになっているn”a−3iの密着性が弱く、この
上に厚い金属層をかさねて堆積すると時として問題が発
生し九 −X  ソース・ドレイン電極に使用されている金属と
不純物を含まないa−8i層との間にn″a−8i層を
介在しなければオーミック接続になりにくく、また 金
属と不純物を含まないa−3i層との間のブロッキング
層を形成しなければTPT個々の性能のばらつきが太き
(1 本発明はかかる点に鑑ム 構造が簡素で工程の少なく不
良発生率の少なく配線抵抗が小さい半導体装置及びその
製造方法を提供することを目的とすも 課題を解決するための手段 本発明はプラズマCVD法による製膜回数を減らし な
おかつ不純物を含まないa−3i層と金属配線との接続
のオーミック性を保ちつつ歩留まりを向上させるもので
あも 即ちa−8i層を選択的に形成した後、膜上に非
金属族元素を含んだガスと水素ガスでプラズマ放電を行
L\ 表面上に非金属族元素の活性化状態を作り上げて
から高融点金属を主成分とした物質にドーピング法によ
り非金属族元素を含有させた膜を形成する力\ また(
上 高融点金属を主成分とした物質に非金属族元素を深
さ方向に濃度勾配あるいは前記シリコン膜に近接するに
したがって元素の濃度勾配を形成するかどちらかを施し
すことにより、a−3i層と非金属族元素を含有させた
膜との界面にHの量を多く介在させる。
Problems to be Solved by the Invention The conventional TPT array described above requires a process for forming seven films, which inevitably results in the number of photomasks being four or more, and it is clear that the process is long and difficult in terms of cost. . The plasma CVD method is an established technology in the manufacturing process.The maintenance cycle is very short compared to other equipment.
The maintenance method is also difficult.Also, since there are many parameters, it is difficult to control, so it is necessary to establish a stable process by reducing the number of times as much as possible.Also, the adhesion of n"a-3i, which is an impediment to improving the process yield, is If thick metal layers are deposited on top of this metal layer, problems may sometimes occur. If there is no intervening layer, it will be difficult to form an ohmic connection, and if a blocking layer is not formed between the metal and the a-3i layer that does not contain impurities, there will be wide variations in the performance of each TPT (1) The present invention solves this problem. In view of the above, an object of the present invention is to provide a semiconductor device with a simple structure, fewer steps, a lower defect rate, and a lower wiring resistance, and a method for manufacturing the same. In other words, after selectively forming the A-8i layer, a non-metallic layer is formed on the film. Plasma discharge is performed using a gas containing group elements and hydrogen gas. After creating an activated state of non-metal group elements on the surface, non-metal group elements are added to a substance whose main component is a high melting point metal using a doping method. The force that forms a film \ Also (
By applying either a concentration gradient of a non-metal group element in the depth direction to a substance mainly composed of a high melting point metal or a concentration gradient of the element as it approaches the silicon film, a-3i A large amount of H is present at the interface between the layer and the film containing a non-metal group element.

旧&  a−3’i層と非金属族元素を含有させた膜と
の・界面で動きやすく、Hと非金属族元素の衝突等でa
−3i層の中に非金属族元素を運ぶ役目をすも その上
加熱処理あるいは光などの電磁波照射処理の少なくとも
どちらか一方を施すことにより、非金属族元素を不純物
を含まないa−3i層により広く拡散してオーミック接
続にし 金属とa−8i層との間のブロッキング層をも
形威すも 作用 上記手段を用いるとn”a−3i膜を形成する必要がな
くな4n″a−3i膜を形成しないで高融点金属を主成
分とした物質にドーピング法により非金属族元素を含有
させた膜を形成する力\ また(友 高融点金属を主成
分とした物質に非金属族元素を深さ方向に濃度勾配ある
いは前記シリコン膜に近接するにしたがって元素の濃度
勾配を形成して含有させた半導体素子i′!、、プラズ
マCVD法を一回のみで構成でき、工程数が減り生産性
が向上する。また 現状での歩留まりに大きな影響を及
ぼしているプロセス不良の一つであるn”a−3i剥離
という問題点がなくなる。その上 n″a−3i膜を含
んだ多層膜のエツチングにおいてn′″a−3i膜のオ
ーバーエツチングがなくなり、プロセス的に安定になる
It is easy to move at the interface between the old &a-3'i layer and the film containing non-metal group elements, and a
The role of transporting non-metal group elements into the -3i layer is to provide impurity-free a-3i elements to the non-metal group elements by applying at least one of heat treatment and electromagnetic wave irradiation treatment such as light. By using the above method, there is no need to form an n"a-3i film, and the 4n"a-3i Ability to form a film in which non-metal group elements are added to a substance whose main component is a high-melting point metal without forming a film\Also, (tomo) Semiconductor element i'!, in which a concentration gradient of elements is formed in the depth direction or in the vicinity of the silicon film, can be constructed using only one plasma CVD method, reducing the number of steps and improving productivity. In addition, the problem of n''a-3i peeling, which is one of the process defects that currently has a large impact on yield, is eliminated.In addition, the etching of multilayer films including n''a-3i films is eliminated. In this process, over-etching of the n'''a-3i film is eliminated and the process becomes stable.

実施例 以下に 本発明の実施例について図面を参照しながら説
明する。
EXAMPLES Below, examples of the present invention will be described with reference to the drawings.

(実施例1) 本発明(よ 非単結晶シリコンを用いた半導体装置にお
ける配線と半導体層との接続に関するものであるが下記
にTPTを例にとって説明する。
(Example 1) The present invention relates to a connection between a wiring and a semiconductor layer in a semiconductor device using non-single crystal silicon, and will be described below using TPT as an example.

第1図+1TPTの工程断面図である。同図(a)の工
程はゲート電極形成工程であり、例えばCr金属2をス
パッタにより、 100OA被着形戒し そのCr金属
2を硝酸セリウムアンモニウムを主成分とした溶液で選
択的にエツチングを行なう工程であ瓜 同図(b)の工
程は三層デボ工程で、例えば4000A1500A/1
00OAの膜厚で第1のSiNx層3、不純物をほとん
ど含まないa−3i層4そして再び第2のSiNx層5
を好ましくは連続的に被着すも これらの薄膜はいずれ
もSiH4層ガスを主成分とする原料ガスを300℃前
後の温度で高周波グロー放電により分脈 合成するプラ
ズマCVDによって作製される。同図(C)の工程は半
導体層保護膜形成工程で、第2のSiNx層5をゲート
上にのみ選択的に残した後、PHs / Pt(s +
H2の比が0.01から0.50までの間の混合ガスで
RF放電を行し\ 第1のPドープMoSi2層6 (
同は 以下P   MoSi2層と示す)を形成した後
、Mo5iaをスパッタ装置で形成するときにPHa 
/ PHs + Arの比が0.01から0.50まで
の間の混合ガスでRF放電を行LX、第2のP−MoS
i2層7を形成すも 同図(d)の工程はソース・ドレ
イン電極形成工程で、例えば全面にA18、9をスパッ
タで7000A被着し燐酸系の溶液でA1を選択的に食
刻限 形成したA1パターンをマスクとして、第1、第
2のP−MoSi2層6.7、a−8i層4をフッ硝酸
系の溶液で選択的に食刻する工程であも 最後に 加熱
処理を施す。
FIG. 1 is a process sectional view of +1TPT. The process shown in FIG. 2(a) is a gate electrode forming process, in which, for example, 100 OA of Cr metal 2 is deposited by sputtering, and the Cr metal 2 is selectively etched with a solution containing cerium ammonium nitrate as the main component. The process shown in Figure (b) is a three-layer debo process, for example 4000A1500A/1
A first SiNx layer 3 with a film thickness of 00OA, an a-3i layer 4 containing almost no impurities, and a second SiNx layer 5 again.
These thin films are preferably deposited continuously. All of these thin films are produced by plasma CVD, in which a source gas containing SiH4 layer gas as a main component is synthesized by high-frequency glow discharge at a temperature of around 300°C. The process shown in FIG. 3C is a semiconductor layer protective film forming process, in which the second SiNx layer 5 is selectively left only on the gate, and then PHs/Pt(s +
RF discharge was performed with a mixed gas with a H2 ratio of 0.01 to 0.50, and the first P-doped MoSi2 layer 6 (
After forming a P-MoSi2 layer (hereinafter referred to as PMoSi2 layer), PHa
Perform RF discharge with a gas mixture with a ratio of /PHs + Ar between 0.01 and 0.50, LX, the second P-MoS
Although the i2 layer 7 is formed, the step shown in the figure (d) is the source/drain electrode forming step, for example, A18, 9 is deposited on the entire surface by sputtering at 7000A, and A1 is selectively etched using a phosphoric acid solution. Using the A1 pattern as a mask, the first and second P-MoSi2 layers 6.7 and the A-8i layer 4 are selectively etched with a fluoro-nitric acid solution, and finally a heat treatment is performed.

これにより第1、第2のMoSi26、7からa−3i
層4にP元素を拡散させ、Pイオンの活性化が図れる。
As a result, from the first and second MoSi26, 7 to a-3i
By diffusing the P element into the layer 4, the P ions can be activated.

な抵 本実施例(上 第1図(a)の工程で、Crのゲ
ート配線2を形成するのにスパッタ法を使用した力t 
金属層が形成できるならば 蒸着方法を問わず、例えば
 電子ビームm  CVD!  抵抗加熱法等でもかま
わな(1また 材料の種類Cよ高温処理を行っても半導
体層または絶縁体層に拡散しない物質であれば IT○
、MoSi2、MoTa等でも本発明の特許請求の範囲
に適用すも また 本実施例では非金属元素を含有する
膜としてPHaガスを混入したRF放電スパッタ法によ
る第1、第2のP−MoSi2膜6、7を形成した力丈
 本発明(よ 蒸着方法を問わず、例えば 非金属元素
を含有したターゲットをスパッタする方a  CVDL
  イオンシャワー法等でもかまわな(1そして、膜と
して、Mo5iaだけでなく、高融点金属を主成分とし
た物質であれば あるい(上Ta、 W、 Cr、 T
i、 Co、 Ni、 Zr。
In this embodiment (above), the force t used in the process of FIG.
As long as a metal layer can be formed, regardless of the deposition method, e.g. electron beam CVD! Resistance heating method etc. may also be used (1) If the material type C is a substance that does not diffuse into the semiconductor layer or insulator layer even if subjected to high temperature treatment, IT○
, MoSi2, MoTa, etc. are also applicable to the scope of the claims of the present invention. In addition, in this example, the first and second P-MoSi2 films formed by the RF discharge sputtering method in which PHa gas is mixed are used as films containing nonmetallic elements. 6, 7 is formed by the present invention (regardless of the vapor deposition method, for example, a method of sputtering a target containing a non-metallic element, CVDL).
Ion shower method etc. may also be used (1) If the film is not only Mo5ia but also a substance whose main component is a high melting point metal (Ta, W, Cr, T)
i, Co, Ni, Zr.

Rh、 Pd、 Ptのうちいずれか一つの硅化物ある
いは高融点金属同士の化合物であれば 任意のものでよ
い。本実施例では加熱処理を施した力交 光などの電磁
波照射処理でも構わなく、本実施例を例にとるならば 
第1、第2のp−MoSi2層6、7からa−3i層4
にP元素を拡散させる力\ 拡散しなくてもPイオンの
活性化が図れも また 本実施例では基板lとしてガラスを用いた力丈 
絶縁基板であれば任意のものでよく、絶縁膜としてSi
Nx層3を使用しためt 少なくとも一層以上の絶縁膜
であれば材料の種類・蒸着方法を問わず任意のものであ
ってもよ賎 本実施例では非晶質シリコンを用いた薄膜
トランジスタアレーについて説明した力支 非単結晶シ
リコン膜を用いた半導体装置あれば 多結晶質シリコン
等でも本発明の特許請求の範囲に適用する。最後に A
18.9を本実施例では導電膜に採用したが 少なくと
も導電体が一層以上あり、かス 絶縁膜のコンタクトホ
ールの断差をカバーするものであれば任意のものでよく
、非金属元素としてP元素を例にとったたa6.  P
’fhガスを使用したカミ 本発明の特許請求の範囲は
非金属元素を含有するガス(P、 B、 Sb、 Ga
@であれば 例えi;CB2He等の任意のものでよし
1(実施例2) 実施例2の工程断面図を第1図(a)〜(d)に示す。
Any one of Rh, Pd, and Pt silicide or a compound of high melting point metals may be used. In this example, heat treatment and electromagnetic wave irradiation treatment such as light may be used.
First and second p-MoSi layers 6 and 7 to a-3i layer 4
It is also possible to activate P ions even without diffusion.
Any insulating substrate may be used, and Si as an insulating film may be used.
Since the Nx layer 3 is used, any insulating film having at least one layer may be used regardless of the type of material or deposition method. In this example, a thin film transistor array using amorphous silicon will be explained. If there is a semiconductor device using a non-monocrystalline silicon film, polycrystalline silicon or the like is also applicable to the claims of the present invention. Finally A
18.9 was used as the conductive film in this example, but any material may be used as long as it has at least one layer of conductor and covers the gap between the contact holes in the insulating film. Using elements as an example a6. P
The claim of the present invention is based on gases containing non-metallic elements (P, B, Sb, Ga
For example, if it is @, any material such as CB2He may be used.1 (Example 2) Process cross-sectional views of Example 2 are shown in FIGS. 1(a) to (d).

実施例1の工程とほぼ同じである力交 同図(C)の工
程(よ PHs + Arの混合ガスでRF放電を行う
ときに 放電開始と同時にPH3/ PHa + Ar
の比を0.15の状態にしておき放電終了時には0.0
1になるように混合ガスのガス比を時間に関して変化さ
せてP−MoSiaを形成させる。本実施例ζ上 不純
物を含まないa−3i層4と第1のP−MoSi26と
の界面にP元素の濃度を高くすることにより接続抵抗を
下げると同時に第2のP−MoSi27とA18、9の
界面はP元素濃度を0にすることにより配線抵抗を下げ
ることができも まf=  Plhガスの濃度比を0.
15に記述しである力t  0.10−0.50までの
比であればまた 本実施例では高融点金属を主成分とし
た物質に非金属族元素を深さ方向に濃度勾配を形式した
力文 不純物を含まないa−8i層4に近接するにした
がって元素の濃度勾配を形成した構造の半導体素子であ
れ(よ 本発明の特許請求の範囲に適用すも 発明の効果 本発明(よ この構造を用いたTPTアレーを液晶表示
装置に採用するとTPTアレーの不良原因の一つである
n’ a−3i剥離という問題点が解決し歩留まりを向
上させるものである。n″a−3i膜を形成しない半導
体素子は 不純物を含まないa−3i層と金属配線との
接続のオーミック性を保ちっつCVDの製膜工程が短縮
できるた△ 量産性に富へ技術的に工場導入が可能であ
る。そして、非金属族元素を深さ方向に濃度勾配を形式
したものや不純物を含まないa−3i層に近接するにし
たがって元素の濃度勾配を形式したもα あるい(よ 
加熱処理あるいは電磁波照射処理を・施してL 同様の
効果が得られる。最後に 半導体層のオーミック接続を
必要とするMO3構造にも適用できa
The process of force exchange diagram (C), which is almost the same as the process of Example 1, is similar to the process shown in Figure (C).
The ratio is set to 0.15 and 0.0 at the end of discharge.
P-MoSia is formed by changing the gas ratio of the mixed gas over time so that the ratio becomes 1. Embodiment ζ Top By increasing the concentration of P element at the interface between the a-3i layer 4 that does not contain impurities and the first P-MoSi 26, the connection resistance is lowered and at the same time the second P-MoSi 27 and A18, 9 The interconnect resistance can be lowered by setting the P element concentration to 0 at the interface.
In this example, a concentration gradient of a non-metal group element was formed in the depth direction in a material mainly composed of a high-melting point metal. If the semiconductor element has a structure in which a concentration gradient of elements is formed as it approaches the a-8i layer 4 that does not contain impurities, the effect of the invention (as applied to the claims of the present invention) is Adopting a TPT array using this structure in a liquid crystal display device solves the problem of n'a-3i peeling, which is one of the causes of defects in TPT arrays, and improves yield. The semiconductor element that is not formed can shorten the CVD film forming process while maintaining the ohmic properties of the connection between the impurity-free A-3I layer and the metal wiring, making it technically possible to introduce it into a factory for mass production. .Then, the concentration gradient of non-metal group elements is formed in the depth direction, or the concentration gradient of the element is formed as it approaches the a-3i layer that does not contain impurities.
The same effect as L can be obtained by applying heat treatment or electromagnetic wave irradiation treatment. Finally, it can also be applied to MO3 structures that require ohmic connections between semiconductor layers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかるTPTの工程断面は
 第2図は従来のTPTの工程断面図である。 2=Cr恩 3・・・第1のSiNx、  4 ・・・
a−8i、[5・・・第2のSiNx、  6”第1の
P−MoSi2.7・・・第2のP−MoSi2゜
FIG. 1 is a cross-sectional view of a TPT process according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a conventional TPT process. 2=Cr-on 3...first SiNx, 4...
a-8i, [5...second SiNx, 6''first P-MoSi2.7...second P-MoSi2゜

Claims (11)

【特許請求の範囲】[Claims] (1)配線に近接する第1の非単結晶シリコン膜と前記
配線との間に非金属族元素を含有させた高融点金属を主
成分とする層と、前記層と前記第1の非単結晶シリコン
膜の間に前記第1の非単結晶シリコン膜よりも水素元素
を多く含有する第2の非単結晶シリコン膜とを介在させ
たことを特徴とする半導体装置。
(1) A layer mainly composed of a high-melting point metal containing a non-metal group element between a first non-single crystal silicon film close to the wiring and the wiring; A semiconductor device characterized in that a second non-single crystal silicon film containing more hydrogen element than the first non-single crystal silicon film is interposed between the crystal silicon films.
(2)配線自身が非金属族元素を含有させた高融点金属
を主成分とする層と、前記第1の非単結晶シリコン膜と
、前記層と前記第1の非単結晶シリコン膜の間に前記第
1の非単結晶シリコン膜よりも水素元素を多く含有する
第2の非単結晶シリコン膜とを含むことを特徴とする半
導体装置。
(2) A layer in which the wiring itself is mainly composed of a high melting point metal containing a non-metal group element, the first non-single crystal silicon film, and between the layer and the first non-single crystal silicon film. and a second non-single crystal silicon film containing more hydrogen element than the first non-single crystal silicon film.
(3)配線に近接する第1の非単結晶シリコン膜と前記
配線との間に高融点金属を主成分とした物質に非金属族
元素を前記第1の非単結晶シリコン膜に近接するにした
がって元素の濃度勾配をおおきく形成して含有させた膜
と、前記膜と前記第1の非単結晶シリコン膜の間に前記
第1の非単結晶シリコン膜よりも水素元素を多く含有す
る第2の非単結晶シリコン膜とを介在させたことを特徴
とする半導体装置。
(3) A non-metallic group element is added to a substance containing a high melting point metal as a main component between the first non-single-crystal silicon film adjacent to the wiring and the wiring. Therefore, a film in which elements are contained by forming a large concentration gradient, and a second film containing hydrogen element in a larger amount than the first non-single crystal silicon film between the film and the first non-single crystal silicon film. 1. A semiconductor device characterized in that a non-single crystal silicon film is interposed therebetween.
(4)配線自身が高融点金属を主成分とした物質に非金
属族元素を前記第1の非単結晶シリコン膜に近接するに
したがって元素の濃度勾配をおおきく形成して含有させ
た膜と、前記第1の非単結晶シリコン膜と、前記膜と前
記第1の非単結晶シリコン膜の間に前記第1の非単結晶
シリコン膜よりも水素元素を多く含有する第2の非単結
晶シリコン膜とで構成されたことを特徴とする半導体装
置。
(4) a film in which the wiring itself contains a non-metal group element in a substance whose main component is a high-melting point metal, forming a concentration gradient of the element that increases as it approaches the first non-single-crystal silicon film; the first non-single-crystal silicon film; and a second non-single-crystal silicon containing more hydrogen element than the first non-single-crystal silicon film between the film and the first non-single-crystal silicon film. A semiconductor device comprising a film.
(5)配線に近接する第1の非単結晶シリコン膜と前記
配線との間に高融点金属を主成分とした物質に非金属族
元素を深さ方向に濃度勾配をおおきく形成して含有させ
た膜と、前記膜と前記第1の非単結晶シリコン膜の間に
前記第1の非単結晶シリコン膜よりも水素元素を多く含
有する第2の非単結晶シリコン膜とを介在させたことを
特徴とする半導体装置。
(5) Between the first non-single-crystal silicon film close to the wiring and the wiring, a non-metallic group element is contained in a substance mainly composed of a high-melting point metal, forming a large concentration gradient in the depth direction. and a second non-single-crystal silicon film containing more hydrogen element than the first non-single-crystal silicon film is interposed between the film and the first non-single-crystal silicon film. A semiconductor device characterized by:
(6)配線自身が高融点金属を主成分とした物質に非金
属族元素を深さ方向に濃度勾配をおおきく形成して含有
させた膜と、前記第1の非単結晶シリコン膜と、前記膜
と前記第1の非単結晶シリコン膜の間に前記第1の非単
結晶シリコン膜よりも水素元素を多く含有する第2の非
単結晶シリコン膜とで構成されたことを特徴とする半導
体装置。
(6) a film in which the wiring itself contains a non-metal group element in a material mainly composed of a high-melting point metal with a large concentration gradient in the depth direction; the first non-single crystal silicon film; A semiconductor characterized in that a second non-single-crystal silicon film containing more hydrogen element than the first non-single-crystal silicon film is provided between the film and the first non-single-crystal silicon film. Device.
(7)基板上に非単結晶シリコン膜を形成する工程と、
前記膜上に非金属族元素を含んだガスと水素ガスでプラ
ズマ放電を行う工程と、前記膜上に高融点金属を主成分
とした物質にドーピング法により非金属族元素を含有さ
せた膜を形成する工程と、前記工程後に加熱処理あるい
は電磁波照射処理の少なくともどちらか一方を施す工程
とを含むことを特徴とする半導体装置の製造方法。
(7) forming a non-single crystal silicon film on the substrate;
A step of performing plasma discharge on the film with a gas containing a non-metal group element and hydrogen gas, and a film containing a non-metal group element on the film by a doping method in a substance whose main component is a high melting point metal. 1. A method of manufacturing a semiconductor device, comprising a step of forming a semiconductor device, and a step of performing at least one of a heat treatment and an electromagnetic wave irradiation treatment after the step.
(8)基板上に高融点金属を主成分とした物質に非金属
族元素を含有させた膜を形成する工程と、前記膜上に非
金属族元素を含んだガスと水素ガスでプラズマ放電を行
う工程と、前記膜上に非単結晶シリコン膜を形成する工
程と、前記工程後に加熱処理あるいは電磁波照射処理の
少なくともどちらか一方を施すことにより前記高融点金
属を主成分とした物質に近接する非単結晶シリコン膜に
前記非金属族元素を濃度勾配生成する拡散工程とを含む
ことを特徴とする半導体装置の製造方法。
(8) Forming a film on the substrate containing a non-metal group element in a substance mainly composed of a high-melting point metal, and plasma discharge using a gas containing the non-metal group element and hydrogen gas on the film. a step of forming a non-single-crystal silicon film on the film; and a step of applying at least one of heat treatment or electromagnetic wave irradiation treatment after the step to get close to the substance whose main component is the high melting point metal. 1. A method of manufacturing a semiconductor device, comprising: a diffusion step of generating a concentration gradient of the non-metal group element in a non-single-crystal silicon film.
(9)基板上に非単結晶シリコン膜を形成する工程と、
前記膜上に非金属族元素を含んだガスと水素ガスでプラ
ズマ放電を行う工程と、前記膜上に高融点金属を主成分
とした物質に非金属族元素を含有させた膜を形成する工
程と、前記工程後に加熱処理あるいは電磁波照射処理の
少なくともどちらか一方を施すことにより前記高融点金
属を主成分とした物質に近接する非単結晶シリコン膜に
前記非金属族元素を濃度勾配生成する拡散工程とを含む
ことを特徴とする半導体装置の製造方法。
(9) forming a non-single crystal silicon film on the substrate;
A step of performing plasma discharge on the film using a gas containing a non-metal group element and hydrogen gas, and a step of forming a film on the film containing a non-metal group element in a substance mainly composed of a high melting point metal. and diffusion to generate a concentration gradient of the non-metal group element in the non-single-crystal silicon film adjacent to the substance containing the high melting point metal as a main component by performing at least one of heat treatment or electromagnetic wave irradiation treatment after the step. A method for manufacturing a semiconductor device, comprising the steps of:
(10)高融点金属を主成分とした物質をMo、Ta、
W、Cr、Ti、Co、Ni、Zr、Rh、Pd、Pt
のうちいずれか、一つの硅化物あるいは高融点金属同士
の化合物であることを特徴とする請求項1、2、3、4
、5、6のいずれかに記載の半導体装置
(10) Substances mainly composed of high melting point metals such as Mo, Ta,
W, Cr, Ti, Co, Ni, Zr, Rh, Pd, Pt
Claims 1, 2, 3, and 4, characterized in that any one of these is one silicide or a compound of high melting point metals.
, 5, 6. The semiconductor device according to any one of .
(11)高融点金属を主成分とした物質をMo、Ta、
W、Cr、Ti、Co、Ni、Zr、Rh、Pd、Pt
のうちいずれか一つの硅化物あるいは高融点金属同士の
化合物であることを特徴とする請求項7、8、9のいず
れかに記載の半導体装置の製造方法。
(11) Substances mainly composed of high melting point metals such as Mo, Ta,
W, Cr, Ti, Co, Ni, Zr, Rh, Pd, Pt
10. The method for manufacturing a semiconductor device according to claim 7, wherein the material is one of silicides or a compound of high melting point metals.
JP1181112A 1989-07-12 1989-07-12 Semiconductor device and manufacturing method thereof Expired - Fee Related JP2811765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1181112A JP2811765B2 (en) 1989-07-12 1989-07-12 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181112A JP2811765B2 (en) 1989-07-12 1989-07-12 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0344968A true JPH0344968A (en) 1991-02-26
JP2811765B2 JP2811765B2 (en) 1998-10-15

Family

ID=16095058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181112A Expired - Fee Related JP2811765B2 (en) 1989-07-12 1989-07-12 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2811765B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719078A (en) * 1995-02-11 1998-02-17 Samsung Electronics Co., Ltd. Method for making a thin film transistor panel used in a liquid crystal display having a completely self-aligned thin film transistor
US6104042A (en) * 1999-06-10 2000-08-15 Chi Mei Optoelectronics Corp. Thin film transistor with a multi-metal structure a method of manufacturing the same
WO2009063648A1 (en) * 2007-11-14 2009-05-22 Panasonic Corporation Thin-film transistor, manufacturing method therefor and electronic device using a thin-film transistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014473A (en) * 1983-07-05 1985-01-25 Asahi Glass Co Ltd Electrode structure for thin film transistor
JPS61234080A (en) * 1985-04-10 1986-10-18 Nec Corp Manufacture of thin film transistor
JPS6331169A (en) * 1986-07-17 1988-02-09 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Manufacture of silicon device
JPH01143360A (en) * 1987-11-30 1989-06-05 Matsushita Electric Ind Co Ltd Insulated gate type transistor and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014473A (en) * 1983-07-05 1985-01-25 Asahi Glass Co Ltd Electrode structure for thin film transistor
JPS61234080A (en) * 1985-04-10 1986-10-18 Nec Corp Manufacture of thin film transistor
JPS6331169A (en) * 1986-07-17 1988-02-09 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Manufacture of silicon device
JPH01143360A (en) * 1987-11-30 1989-06-05 Matsushita Electric Ind Co Ltd Insulated gate type transistor and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719078A (en) * 1995-02-11 1998-02-17 Samsung Electronics Co., Ltd. Method for making a thin film transistor panel used in a liquid crystal display having a completely self-aligned thin film transistor
US6104042A (en) * 1999-06-10 2000-08-15 Chi Mei Optoelectronics Corp. Thin film transistor with a multi-metal structure a method of manufacturing the same
WO2009063648A1 (en) * 2007-11-14 2009-05-22 Panasonic Corporation Thin-film transistor, manufacturing method therefor and electronic device using a thin-film transistor
US8436355B2 (en) 2007-11-14 2013-05-07 Panasonic Corporation Thin-film transistor, manufacturing method therefor, and electronic device using a thin-film transistor

Also Published As

Publication number Publication date
JP2811765B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US20010032986A1 (en) Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device
JPH08111531A (en) Multi-stage chemical vapor deposition process for thin film transistor
JP3272532B2 (en) Method for manufacturing semiconductor device
JPH09197435A (en) Liquid crystal display device and its production
EP0082783B1 (en) Process for manufacturing silicon thin-film transistors on an insulating substrate
JPH05304171A (en) Thin-film transistor
JPH0344968A (en) Semiconductor device and manufacture thereof
KR100480367B1 (en) How to crystallize amorphous film
JPS6083373A (en) Thin film transistor array and manufacture thereof
JP3452679B2 (en) Method of manufacturing thin film transistor, thin film transistor and liquid crystal display
KR100305255B1 (en) Method for manufacturing a poly-crystal silicon thin film
KR100469503B1 (en) How to crystallize amorphous film
KR100470021B1 (en) Method for crystallizing of silicon and method for fabricating of Thin film transistor
KR100466962B1 (en) Method of fabricating the same for Poly-Silicone Thin Film Transistor
JPH0282578A (en) Manufacture of thin film transistor
JP2797361B2 (en) Semiconductor device
JPH0344939A (en) Manufacture of semiconductor device
JP3535465B2 (en) Method for manufacturing semiconductor device
JPS60110164A (en) Thin film field effect transistor and manufacture thereof
JPH02189935A (en) Manufacture of thin-film transistor
JPH02163971A (en) Semiconductor device and its manufacture
KR100375390B1 (en) Thin film transistor and the method of fabricating the same
JPH02196470A (en) Thin film transistor and manufacture thereof
JPH02208942A (en) Manufacture of thin film transistor
JPH02268443A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees