JPH0282578A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPH0282578A
JPH0282578A JP63234020A JP23402088A JPH0282578A JP H0282578 A JPH0282578 A JP H0282578A JP 63234020 A JP63234020 A JP 63234020A JP 23402088 A JP23402088 A JP 23402088A JP H0282578 A JPH0282578 A JP H0282578A
Authority
JP
Japan
Prior art keywords
gate insulating
thin film
insulating film
ecr plasma
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63234020A
Other languages
Japanese (ja)
Other versions
JP3055782B2 (en
Inventor
Takashi Nakazawa
尊史 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63234020A priority Critical patent/JP3055782B2/en
Publication of JPH0282578A publication Critical patent/JPH0282578A/en
Application granted granted Critical
Publication of JP3055782B2 publication Critical patent/JP3055782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain a highly reliable thin film transistor having a large area and very few defects by a method wherein a hydrogen ECR plasma is applied to the surface before a gate insulating film is formed and, while a vacuum is maintained, the gate insulating film is formed by an ECR plasma CVD method. CONSTITUTION:A source electrode 102 and a drain electrode 103 composed of thin films of silicon such as polycrystalline silicon or amorphous silicon doped with impurity which is to be donor or acceptor are formed on an insulating substrate 101 by a CVD method. Then a semiconductor laver 104 composed of a thin film of silicon such as polycrystalline silicon or amorphous silicon is formed by a CVD method or an evaporation method. Then a source wiring 105 and a drain wiring 106 composed of metal films or transparent conductive films are formed by a sputtering method or an evaporation method. Then a hydrogen ECR plasma is applied to the surface and, while a high vacuum of a pressure lower than 1X10<-6>Torr is maintained, a gate insulating film 111 made of SiO2, SiNx or the like is formed by an ECR plasma CVD method. Then a gate electrode 112 composed of a metal film or a transparent conductive film is formed by a sputtering method or an evaporation method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアクティブマトリックス方式の液晶デイスプレ
ィや、イメージセンサや3次元集積回路などに応用され
る薄膜トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film transistor applied to active matrix liquid crystal displays, image sensors, three-dimensional integrated circuits, and the like.

〔従来の技術〕[Conventional technology]

従来の薄膜トランジスタは、例えばJAPANDISP
LAY  ’86の1986年p196〜p199に示
される様な構造であった。この構造を一般化して、その
概要を第2図に示す、 (a)図は主視図であり(b)
図はAA’における断面図である。ガラス、石英、サフ
ァイア等の絶縁基板201上に、ドナーあるいは、アク
セプタとなる不純物を添加した多結晶シリコン薄膜から
成るソース電極202及びドレイン電極203が形成さ
れている。これに接して、ソース電極204とドレイン
電極205が設けられており、更にソース電極202及
びドレイン電極203の上側で接し両者を結ぶように多
結晶シリコン薄膜から成る半導体層206が形成されて
いる。これらを被覆するようにゲート絶縁膜207が熱
CVD法により形成されている。更にこれに接しゲート
電極208が設けられている。
Conventional thin film transistors are, for example, JAPANDISP
It had a structure as shown in LAY '86, 1986, pages 196-199. This structure is generalized and its outline is shown in Figure 2. (a) Figure is the main view, (b)
The figure is a cross-sectional view at AA'. A source electrode 202 and a drain electrode 203 are formed on an insulating substrate 201 made of glass, quartz, sapphire, etc., which are made of a polycrystalline silicon thin film doped with impurities to serve as donors or acceptors. A source electrode 204 and a drain electrode 205 are provided in contact with this, and a semiconductor layer 206 made of a polycrystalline silicon thin film is further formed in contact with the upper side of the source electrode 202 and the drain electrode 203 to connect them. A gate insulating film 207 is formed by thermal CVD to cover these. Furthermore, a gate electrode 208 is provided in contact with this.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の薄膜トランジスタは次のような問題点を
有していた。
However, conventional thin film transistors have the following problems.

熱CVD法により基板の温度を400℃に保持しゲート
絶縁膜を形成するため、基板として#7059(コーニ
ング社製)を使用した場合、ゲーi・絶縁膜の熱膨張係
数が約8xlO−’と小さいのに対し、#7059基板
は46xlO−’と大きい為、ゲート絶縁膜形成後基板
の反り、変形、ゲート絶縁膜のひび割れ等が生じ、薄膜
トランジスタの欠陥の原因となっていた。又基板を大型
化した場合、上記の現象が顕著に見られ基板の大型化の
大きな妨げとなっていた。
Since the gate insulating film is formed by maintaining the substrate temperature at 400°C using the thermal CVD method, when #7059 (manufactured by Corning Corporation) is used as the substrate, the thermal expansion coefficient of the gate insulating film is approximately 8xlO-'. In contrast, the #7059 substrate has a large size of 46xlO-', which causes warpage and deformation of the substrate after formation of the gate insulating film, cracks in the gate insulating film, etc., and causes defects in thin film transistors. Furthermore, when the size of the substrate is increased, the above-mentioned phenomenon becomes noticeable and becomes a major hindrance to increasing the size of the substrate.

又熱CVD法によりゲート絶縁膜を形成すると形成され
た絶縁膜の膜質が悪く、薄膜トランジスタの表面基R密
度が約1 x 10”am−”と大きく。
Furthermore, when a gate insulating film is formed by thermal CVD, the quality of the formed insulating film is poor, and the surface group R density of the thin film transistor is as large as about 1 x 10 "am-".

信頼性を著しく低化させていた。Reliability was significantly lowered.

熱CVD法は、基板をセットする治具や、チャンバーに
付着したS i Otの膜質が悪く、容易にはく継して
パーティクルが発生し、形成したゲート絶縁膜にピンホ
ールが生じ、薄膜トランジスタの欠陥の原因となってい
た。
In the thermal CVD method, the film quality of SiOt adhering to the jig for setting the substrate and the chamber is poor, and it easily peels off, generating particles, causing pinholes in the formed gate insulating film, and causing damage to thin film transistors. This caused the defect.

本発明は、このような問題点を解決するものであり、そ
の目的とするところは、信頼性の高い薄膜トランジスタ
を大面積にわたり、低欠陥で提供することにある。
The present invention is intended to solve these problems, and its purpose is to provide a highly reliable thin film transistor over a large area with fewer defects.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の薄膜トランジスタは、ゲート絶縁膜を形成する
前に、水素ECRプラズマを照射し、真空を保ちゲート
絶縁膜をECRプラズマCVD法で形成したことを特徴
とする。
The thin film transistor of the present invention is characterized in that, before forming the gate insulating film, hydrogen ECR plasma is irradiated, a vacuum is kept, and the gate insulating film is formed by ECR plasma CVD.

〔実施例〕〔Example〕

以下実施例に基づいて、本発明の詳細な説明する。第1
図に本発明による薄膜トランジスタの製造方法を示す。
The present invention will be described in detail below based on Examples. 1st
The figure shows a method for manufacturing a thin film transistor according to the present invention.

第1図101に示す様に、ガラス、石英、サファイア等
の絶縁基板101上にドナーあるいはアクセプタとなる
不純物を添加した多結晶シリコン、非晶質シリコン等の
シリコン薄膜から成るソース電極102及びドレイン電
極103を減圧CVD法、プラズマCVD法等のCVD
法により形成する。その膜厚は500〜5000Aが望
ましい。
As shown in FIG. 1 101, a source electrode 102 and a drain electrode are made of silicon thin films such as polycrystalline silicon, amorphous silicon, etc. doped with impurities to serve as donors or acceptors on an insulating substrate 101 made of glass, quartz, sapphire, etc. 103 by CVD such as low pressure CVD or plasma CVD
Formed by law. The film thickness is preferably 500 to 5000A.

次に多結晶シリコンあるいは非晶質シリコン等のシリコ
ン薄膜から成る半導体層104を減圧CVD法、プラズ
マCVD法等のCVD法、蒸着法により形成する。その
膜厚は2000A以下が望ましい0次に金属、透明導電
膜等から成るソース配線105及びドレイン配線106
をスパッタ法あるいは蒸着法により形成する。
Next, a semiconductor layer 104 made of a silicon thin film such as polycrystalline silicon or amorphous silicon is formed by a CVD method such as a low pressure CVD method or a plasma CVD method, or a vapor deposition method. The source wiring 105 and the drain wiring 106 are made of zero-order metal, transparent conductive film, etc. whose film thickness is preferably 2000A or less.
is formed by sputtering or vapor deposition.

次に第1図(b)に示す様に水jleEcRプラズマを
照射する。使用した装置の概略を第3図に示す、主要部
は、プラズマ室303と試料室310で構成され、プラ
ズマ室303に石英窓311を通して、周波数7.45
GHzのマイクロ波307が外周の磁気コイル305に
より磁界が供給できる。プラズマ室内でマイクロ波と磁
界の相互作用で発生したECRプラズマとイオン流30
4は発散磁界によって試料室310へ輸送され、絶縁基
板301上に照射される。マイクロ波のパワーを620
W、ガスライン306より50ICCMの水素ガスを供
給し、圧力1.5xlO−’Torrで2分間水*EC
Rプラズマを照射した。水素ECRプラズマの照射によ
り、半導体層を成すシリコン薄膜は約25A/minの
速さでエツチングされた。
Next, water jleEcR plasma is irradiated as shown in FIG. 1(b). The outline of the apparatus used is shown in Fig. 3.The main part consists of a plasma chamber 303 and a sample chamber 310.
A magnetic field of GHz microwave 307 can be supplied by a magnetic coil 305 on the outer periphery. ECR plasma and ion flow generated by the interaction of microwaves and magnetic fields in a plasma chamber 30
4 is transported to the sample chamber 310 by a divergent magnetic field and irradiated onto the insulating substrate 301. Microwave power 620
W, 50 ICCM of hydrogen gas is supplied from the gas line 306, and water*EC is heated for 2 minutes at a pressure of 1.5xlO-'Torr.
R plasma was irradiated. By irradiating the hydrogen ECR plasma, the silicon thin film forming the semiconductor layer was etched at a rate of about 25 A/min.

lXl0−’Torr以下の高真空を保持したまま第1
図(C)に示す様にECRプラズマCVD法によりS 
iOt+  S iN x等のゲート絶縁膜111を形
成する。水*ECRプラズマを照射後高真空を保持した
ままゲート絶縁膜を形成するため、同一の装置で引き続
き処理した。マイクロ波のパワーを600 W、  ガ
スライン306より155canの酸素ガス、ガスライ
ン308より65ccrlのSiH4ガスを供給した。
While maintaining a high vacuum of less than lXl0-'Torr,
As shown in Figure (C), S
A gate insulating film 111 such as iOt+SiNx is formed. After irradiation with water*ECR plasma, processing was continued using the same apparatus in order to form a gate insulating film while maintaining a high vacuum. Microwave power was 600 W, 155 can of oxygen gas was supplied from gas line 306, and 65 ccrl of SiH4 gas was supplied from gas line 308.

この時の圧力はe、oxi。The pressure at this time is e, oxi.

−’T o r rで形成速度は約670 A / m
 i nであった。試料室302に固定された基板30
1は高活性プラズマ109とイオン流の衝撃効果により
低温で良質の膜が得られる。又SiNxを形成する場合
ガスライン306より窒素ガスを供給すればよい、EC
Rプラズマ装置を2室構造とし、水素ECRプラズマ照
射とゲート絶縁膜形成を連続して別々の試料室で処理で
きる構造の装置を用いても全く同一の結果が得られる。
-'T o r r and the formation rate is about 670 A/m
It was in. Substrate 30 fixed in sample chamber 302
In No. 1, a high-quality film can be obtained at low temperature due to the impact effect of the highly active plasma 109 and ion flow. In addition, when forming SiNx, nitrogen gas may be supplied from the gas line 306.
Exactly the same results can be obtained even if the R plasma apparatus has a two-chamber structure in which hydrogen ECR plasma irradiation and gate insulating film formation can be performed successively in separate sample chambers.

次に第1図(d)に示す様に金属、透明導電膜より成る
ゲート電極112をスパッタ法、蒸着法により形成する
Next, as shown in FIG. 1(d), a gate electrode 112 made of metal or a transparent conductive film is formed by sputtering or vapor deposition.

この様に製造された薄膜トランジスタは、水素ECRプ
ラズマ照射により半導体層の表面をエツチングするため
清浄な表面が得られ、更に高真空を維持したまま引き続
き10−’Torr台でゲート絶縁膜を形成するため、
半導体層とゲート絶縁膜の界面に不純物等が付着するこ
とがなく、表面電荷密度を熱CVD法の1/10以下の
小さな値とすることisでき、その結果薄膜トランジス
タの信頼性を大幅に向上できる。
In the thin film transistor manufactured in this way, the surface of the semiconductor layer is etched by hydrogen ECR plasma irradiation to obtain a clean surface, and the gate insulating film is subsequently formed at a level of 10-'Torr while maintaining a high vacuum. ,
Impurities etc. do not adhere to the interface between the semiconductor layer and the gate insulating film, and the surface charge density can be reduced to a value less than 1/10 of the thermal CVD method, resulting in a significant improvement in the reliability of thin film transistors. .

又、基板の温度を加熱することなく、ゲート絶縁膜を形
成できるため、基板に熱膨張係数の大きいガラス基板を
用いた場合、形成されたゲート絶縁膜とガラス基板の熱
膨張係数の差が問題となることがなく基板の反り、変形
、ゲート絶縁膜のひび割れ等は生じない。
In addition, since the gate insulating film can be formed without heating the substrate, if a glass substrate with a large thermal expansion coefficient is used as the substrate, the difference in thermal expansion coefficient between the formed gate insulating film and the glass substrate will be a problem. There is no warping or deformation of the substrate, cracking of the gate insulating film, etc.

又、効率よく、反応ガスを分解し膜を形成するため試料
室310の壁面等にはほとんど膜が付着することがなく
、原理的にパーティクルの発生は少なく、ピンホールの
ないゲート絶縁膜が容易に得られる。
In addition, since the reaction gas is efficiently decomposed and a film is formed, there is almost no film adhering to the walls of the sample chamber 310, and in principle, fewer particles are generated, making it easy to form a gate insulating film without pinholes. can be obtained.

本発明の薄膜トランジスタの特性を第4図に示す、横軸
はゲート電圧Vas、  縦軸はドレイン電流Ioの対
数値である。ドレイン電圧Vllは4V、  チャネル
長チャネル幅ともに10μmである。半導体層には多結
晶シリコンを用いその膜厚は200人、ゲート絶縁膜は
5insを用いての膜厚は1500人である。破線は従
来の熱CVD法によりゲート絶縁膜を形成した薄膜トラ
ンジスタ、実線は本発明のECRプラズマCVDにより
形成した薄膜トランジスタである。第4図から明らかな
様に表面電荷密度が減少したため、ゲート電圧Ovでの
ドレイン電極Isが約4桁小さくなり、サブスレショル
ド領域での立上りも急峻となり特性が向上している。こ
の結果液晶デイスプレィに応用した場合低電圧駆動が可
能となり、コントラスト比の大きい高画質のデイスプレ
ィが実現できる。
The characteristics of the thin film transistor of the present invention are shown in FIG. 4, where the horizontal axis is the gate voltage Vas and the vertical axis is the logarithm of the drain current Io. The drain voltage Vll is 4V, and both the channel length and channel width are 10 μm. The semiconductor layer is made of polycrystalline silicon and has a thickness of 200 mm, and the gate insulating film is 5 inches thick and has a thickness of 1500 mm. The broken line represents a thin film transistor whose gate insulating film was formed by the conventional thermal CVD method, and the solid line represents a thin film transistor formed by the ECR plasma CVD method of the present invention. As is clear from FIG. 4, since the surface charge density has decreased, the drain electrode Is at the gate voltage Ov has become smaller by about four orders of magnitude, and the rise in the subthreshold region has become steeper, improving the characteristics. As a result, when applied to a liquid crystal display, low-voltage driving becomes possible, and a high-quality display with a large contrast ratio can be realized.

イメージセンサや3次元集積回路へ応用した場合、低電
圧駆動、低消費電力が実現できる。
When applied to image sensors and three-dimensional integrated circuits, low voltage drive and low power consumption can be achieved.

〔発明の効果〕〔Effect of the invention〕

本発明は次のようなすぐれた効果を有する。 The present invention has the following excellent effects.

第1に、薄膜トランジスタの表面電荷密度を小さくでき
、信頼性を大幅に向上できる。
First, the surface charge density of the thin film transistor can be reduced, and reliability can be significantly improved.

第2に、ゲート絶縁膜とガラス基板の熱膨張係数の差が
問題となることがなく、基板の反り、変形ゲート絶縁膜
のひび割れ等の発生はなく、大面積にわたり欠陥の少な
い薄膜トランジスタを形成できる。
Second, the difference in thermal expansion coefficient between the gate insulating film and the glass substrate does not become a problem, and there is no warping of the substrate or cracking of the deformed gate insulating film, making it possible to form thin film transistors with fewer defects over a large area. .

第3にECRプラズマCVD法は原理的にパーティクル
の発生が少なく、ピンホール等の欠陥のないゲート絶縁
膜が容易に得られ、薄膜トランジスタの低欠陥化が実現
できる。
Thirdly, the ECR plasma CVD method generates few particles in principle, and a gate insulating film without defects such as pinholes can be easily obtained, making it possible to reduce the number of defects in thin film transistors.

第4に、薄膜トランジスタの電気特性が向上し、低電圧
駆動が可能で高コントラスト比の液晶デイスプレィが実
現できる。
Fourth, the electrical characteristics of thin film transistors are improved, and a liquid crystal display that can be driven at low voltage and has a high contrast ratio can be realized.

以上のように、本発明の薄膜トランジスタは数多くの優
れた効果を有するものであり、その応用範囲は、デイス
プレィ用のアクティブマトリックス基板やその周辺回路
、イメージセンサ、3次元集積回路など多岐にわたる。
As described above, the thin film transistor of the present invention has many excellent effects, and its application range is wide-ranging, including active matrix substrates for displays, peripheral circuits thereof, image sensors, and three-dimensional integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の薄膜トランジスタの製
造方法を示した断面図 第2図(a)(b)は従来の薄膜トランジスタの構造を
示しくa)は上視図、 (b)は断面図第3図はECR
プラズマCVD装置の概略図第4図は薄膜トランジスタ
の特性を示すグラフ101.201,301・・・絶縁
基板102.202・・・ソース電極 103.203・・・ドレイン電極 104.206・・・半導体層 105.204・・・ソース配線 108.205・・・ドレイン配線 111.207・・・ゲート絶縁膜 107・・・水*ECRプラズマ 109・・・高活性プラズマ 108.304・・・イオン流 112.208・・・ゲート電極 303・・・プラズマ室 305・・・磁気コイル 306.308・・・ガスライン 307・・・マイクロ波 309・・・真空排気 310・・・試料室 311・・・石英窓 出願人 セイコーエプソン株式会社 代理人 弁理士 上櫛 雅誉 他1名 (α) (b)
1(a) to 1(d) are cross-sectional views showing the method of manufacturing a thin film transistor of the present invention. FIGS. 2(a) and 2(b) show the structure of a conventional thin film transistor. (a) is a top view; (b) ) is a cross-sectional view. Figure 3 is an ECR.
A schematic diagram of a plasma CVD apparatus. FIG. 4 is a graph showing the characteristics of thin film transistors. 105.204...Source wiring 108.205...Drain wiring 111.207...Gate insulating film 107...Water*ECR plasma 109...Highly active plasma 108.304...Ion flow 112. 208... Gate electrode 303... Plasma chamber 305... Magnetic coil 306, 308... Gas line 307... Microwave 309... Vacuum exhaust 310... Sample chamber 311... Quartz window Applicant Seiko Epson Co., Ltd. Agent Patent attorney Masayoshi Uekushi and 1 other person (α) (b)

Claims (1)

【特許請求の範囲】[Claims] 絶縁基板上にソース電極及びドレイン電極を形成する工
程と、チャネル部を成す半導体層を形成する工程と、ゲ
ート絶縁膜を形成する工程と、ゲート電極を形成する工
程を含む薄膜トランジスタの製造方法において、該ゲー
ト絶縁膜を形成する前に、水素電子サイクロトロン共鳴
プラズマ(以下水素ECRプラズマと呼ぶ)を照射し、
真空を保ち該ゲート絶縁膜を電子サイクロトロン共鳴C
VD法(以下ECRプラズマCVDと呼ぶ)で形成した
ことを特徴とする薄膜トランジスタの製造方法。
In a method for manufacturing a thin film transistor, the method includes forming a source electrode and a drain electrode on an insulating substrate, forming a semiconductor layer forming a channel portion, forming a gate insulating film, and forming a gate electrode, Before forming the gate insulating film, hydrogen electron cyclotron resonance plasma (hereinafter referred to as hydrogen ECR plasma) is irradiated,
Keep the vacuum and apply electron cyclotron resonance C to the gate insulating film.
A method for manufacturing a thin film transistor, characterized in that it is formed by a VD method (hereinafter referred to as ECR plasma CVD).
JP63234020A 1988-09-19 1988-09-19 How to manufacture thin film transistors Expired - Lifetime JP3055782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63234020A JP3055782B2 (en) 1988-09-19 1988-09-19 How to manufacture thin film transistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63234020A JP3055782B2 (en) 1988-09-19 1988-09-19 How to manufacture thin film transistors

Publications (2)

Publication Number Publication Date
JPH0282578A true JPH0282578A (en) 1990-03-23
JP3055782B2 JP3055782B2 (en) 2000-06-26

Family

ID=16964302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63234020A Expired - Lifetime JP3055782B2 (en) 1988-09-19 1988-09-19 How to manufacture thin film transistors

Country Status (1)

Country Link
JP (1) JP3055782B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254480A (en) * 1992-02-20 1993-10-19 Minnesota Mining And Manufacturing Company Process for producing a large area solid state radiation detector
US5336361A (en) * 1990-03-23 1994-08-09 Matsushita Electric Industrial Co., Ltd. Method of manufacturing an MIS-type semiconductor device
US5401685A (en) * 1992-12-30 1995-03-28 Hyundai Electronics Industries Co., Ltd. Method for hydrogenating thin film transistor by using a spin-on-glass film
US5534445A (en) * 1991-01-30 1996-07-09 Minnesota Mining And Manufacturing Company Method of fabricating a polysilicon thin film transistor
US5637512A (en) * 1990-11-16 1997-06-10 Seiko Epson Corporation Method for fabricating a thin film semiconductor device
US6177302B1 (en) 1990-11-09 2001-01-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor using multiple sputtering chambers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893243A (en) * 1981-11-30 1983-06-02 Toshiba Corp Improvement of polysilicon thin film semiconductor
JPS6271276A (en) * 1985-09-24 1987-04-01 Mitsubishi Electric Corp Manufacture of thin film transistor
JPS62172732A (en) * 1986-01-24 1987-07-29 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
JPS6342175A (en) * 1986-08-07 1988-02-23 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin film transistor
JPS63129632A (en) * 1986-11-20 1988-06-02 Sumitomo Electric Ind Ltd Pattern formation of insulating film and formation of gate electrode of field-effect transistor utilizing said formation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893243A (en) * 1981-11-30 1983-06-02 Toshiba Corp Improvement of polysilicon thin film semiconductor
JPS6271276A (en) * 1985-09-24 1987-04-01 Mitsubishi Electric Corp Manufacture of thin film transistor
JPS62172732A (en) * 1986-01-24 1987-07-29 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
JPS6342175A (en) * 1986-08-07 1988-02-23 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin film transistor
JPS63129632A (en) * 1986-11-20 1988-06-02 Sumitomo Electric Ind Ltd Pattern formation of insulating film and formation of gate electrode of field-effect transistor utilizing said formation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336361A (en) * 1990-03-23 1994-08-09 Matsushita Electric Industrial Co., Ltd. Method of manufacturing an MIS-type semiconductor device
US6261877B1 (en) 1990-09-11 2001-07-17 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing gate insulated field effect transistors
US6177302B1 (en) 1990-11-09 2001-01-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor using multiple sputtering chambers
US6566175B2 (en) 1990-11-09 2003-05-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing gate insulated field effect transistors
US5637512A (en) * 1990-11-16 1997-06-10 Seiko Epson Corporation Method for fabricating a thin film semiconductor device
US5534445A (en) * 1991-01-30 1996-07-09 Minnesota Mining And Manufacturing Company Method of fabricating a polysilicon thin film transistor
US5254480A (en) * 1992-02-20 1993-10-19 Minnesota Mining And Manufacturing Company Process for producing a large area solid state radiation detector
US5525527A (en) * 1992-02-20 1996-06-11 Minnesota Mining And Manufacturing Company Process for producing a solid state radiation detector
US5818053A (en) * 1992-02-20 1998-10-06 Imation Corp. Multi-module solid state radiation detector with continuous photoconductor layer and fabrication method
US5942756A (en) * 1992-02-20 1999-08-24 Imation Corp. Radiation detector and fabrication method
US6262421B1 (en) 1992-02-20 2001-07-17 Imation Corp. Solid state radiation detector for x-ray imaging
US5401685A (en) * 1992-12-30 1995-03-28 Hyundai Electronics Industries Co., Ltd. Method for hydrogenating thin film transistor by using a spin-on-glass film

Also Published As

Publication number Publication date
JP3055782B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
US6338990B1 (en) Method for fabricating thin-film transistor
US6335542B2 (en) Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device
US6037017A (en) Method for formation of multilayer film
KR20010107651A (en) Apparatus and method to sputter silicon films
JP3272532B2 (en) Method for manufacturing semiconductor device
JPH01187814A (en) Manufacture of thin film semiconductor device
US7026200B2 (en) Method for manufacturing a semiconductor device
JP3054862B2 (en) Gate insulating film including diamond-like carbon film, thin film transistor using the same, method of forming gate insulating film, and manufacturing method thereof
JPH06163401A (en) Formation of polycrystalline silicon layer and polycrystalline silicon thin film transistor using same
JPH0282578A (en) Manufacture of thin film transistor
JP2841381B2 (en) Method for manufacturing thin film transistor
JP3204735B2 (en) Manufacturing method of hydrogenated amorphous silicon thin film transistor
JP3452679B2 (en) Method of manufacturing thin film transistor, thin film transistor and liquid crystal display
US6472297B1 (en) Method of producing TFT array substrate for liquid crystal display device
JPH0738111A (en) Thin film transistor forming method
JPH07225395A (en) Liquid crystal display device and its production
JP2996025B2 (en) Method of manufacturing insulating film and thin film transistor device using the same
JPS58192375A (en) Manufacture of thin film transistor
JPH0282577A (en) Manufacture of thin film transistor
JPH0442577A (en) Thin film transistor
JPH09116162A (en) Manufacture of film transistor
JP3241705B2 (en) Method for manufacturing thin film transistor
JP3051363B2 (en) Method for manufacturing semiconductor device
JP2714017B2 (en) Method of manufacturing thin film transistor array for liquid crystal display panel
JPH0442576A (en) Thin film transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080414

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9