JPH0442577A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPH0442577A
JPH0442577A JP15016090A JP15016090A JPH0442577A JP H0442577 A JPH0442577 A JP H0442577A JP 15016090 A JP15016090 A JP 15016090A JP 15016090 A JP15016090 A JP 15016090A JP H0442577 A JPH0442577 A JP H0442577A
Authority
JP
Japan
Prior art keywords
insulating film
cvd method
thin film
gate
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15016090A
Other languages
Japanese (ja)
Inventor
Takashi Nakazawa
尊史 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15016090A priority Critical patent/JPH0442577A/en
Publication of JPH0442577A publication Critical patent/JPH0442577A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an excellent MOS interface and sufficiently high gate breakdown strength with a thin film transistor by forming the gate insulating film of the transistor in a two-layer structure of the first insulating film formed by an ECR plasma CVD method and second insulating film formed by a thermal CVD method. CONSTITUTION:The first gate insulating film of SiO2, SiN2, etc., is formed by an ECR plasma CVD method. The second gate insulating film 108 of SiO2, SiN2, etc., is formed by a normal-pressure thermal CVD method, reduced- pressure thermal CVD method, etc. Finally, a gate electrode 109 composed of a silicon film containing impurities, metallic film, transparent conductive film, etc., is formed by a CVD method, sputtering method, or vapor deposition method. Since this thin film transistor manufactured in such way is not affected by the etched cross-sectional shapes of a source and drain electrodes 102 and 103, an excellent MOS interface having a small surface density of charge and sufficient gate breakdown strength is obtained. When a large-area substrate is used, the conventional wet etching method and dry etching method can be applied without modification.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアクティブマトリックス方式の液晶デイスプレ
ィや、イメージセンサや3次元集積回路などに応用され
る薄膜トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film transistor applied to active matrix liquid crystal displays, image sensors, three-dimensional integrated circuits, and the like.

[従来の技術] 従来の薄膜トランジスタは、例えばJAPANDISP
LAY ’ 86の1986年p196〜p199に示
される様な構造であった。この構造を一鍜化して、その
概要を第2図に示す。(a)図は上視図であり(b)図
はAA’における断面図である。ガラス、石英、サファ
イア等の絶縁基板201上に、ドナーあるいは、アクセ
プタとなる不純物を添加した多結晶シリコン薄膜から成
るソース電極202及びドレイン電極203が形成され
ている。これに接して、ソース配線204とドレイン配
!205が設けられており、更にソース電極202及び
ドレイン電極203の上側て接し両者を結ぶように多結
晶シリコン薄膜から成る半導体層206が形成されてい
る。これらを被覆するようにゲート絶縁膜207が熱C
VD法により形成されている。更にこれに接しゲート1
iIM208が設けられている。
[Prior art] A conventional thin film transistor is, for example, JAPAND ISP.
It had a structure as shown in LAY '86, 1986, pages 196 to 199. This structure has been unified and its outline is shown in Figure 2. (a) is a top view, and (b) is a cross-sectional view at AA'. A source electrode 202 and a drain electrode 203 are formed on an insulating substrate 201 made of glass, quartz, sapphire, etc., which are made of a polycrystalline silicon thin film doped with impurities to serve as donors or acceptors. In contact with this, the source wiring 204 and the drain wiring! Further, a semiconductor layer 206 made of a polycrystalline silicon thin film is formed so as to be in contact with the upper side of the source electrode 202 and the drain electrode 203 and to connect them. The gate insulating film 207 covers the heat
It is formed by the VD method. Further adjacent to this is Gate 1
An iIM 208 is provided.

[発明が解決しようとする課題] しかし、従来の薄膜トランジスタは次のような問題点を
有していた。
[Problems to be Solved by the Invention] However, conventional thin film transistors have had the following problems.

熱CVD法によりゲート絶縁膜を形成すると、形成され
た絶縁膜の密度が小さく更に絶縁膜中に存在する欠陥も
多く、その結果薄膜トランジスタの表面電荷密度が約I
 X 1012cm−2と大きくなり、信頼性を著しく
低下させてしまっていた。更に熱CVD法は、基板をセ
ットする治具や、チャンバーに付着したS i 02の
膜質が悪く、容易に剥離してパーティクルが発生し、そ
の結果形成したゲート絶縁膜にピンホールが生じ、薄膜
トランジスタの欠陥の原因となっていた。
When a gate insulating film is formed by the thermal CVD method, the density of the formed insulating film is small and there are many defects in the insulating film, and as a result, the surface charge density of the thin film transistor is approximately I.
X1012 cm-2, resulting in a significant decrease in reliability. Furthermore, in the thermal CVD method, the film quality of SiO2 adhering to the jig for setting the substrate or the chamber is poor, and it easily peels off, generating particles.As a result, pinholes occur in the formed gate insulating film, and thin film transistors are damaged. was the cause of the defect.

本発明は、このような問題点を解決するものであり、そ
の目的とするところは、信頼性の高い薄膜トランジスタ
を大面積にわたり、低欠陥で提供することにある。
The present invention is intended to solve these problems, and its purpose is to provide a highly reliable thin film transistor over a large area with fewer defects.

[課題を解決するための手段] 本発明の薄膜i・ランジスクは、ゲート絶縁膜なECR
プラズマCVD法で形成した第一の絶縁膜と、熱CVD
法で形成した第二の絶縁膜の二層構造としたことを特徴
とする。
[Means for Solving the Problems] The thin film i-randisk of the present invention is a gate insulating film, which is an ECR.
The first insulating film formed by plasma CVD method and thermal CVD method
It is characterized by having a two-layer structure of the second insulating film formed by the method.

〔実 施 例1 以下実施例に基づいて、本発明の詳細な説明する。第1
図に本発明による薄膜トランジスタの製造方法を示す。
[Example 1] The present invention will be described in detail based on Examples below. 1st
The figure shows a method for manufacturing a thin film transistor according to the present invention.

第1図に示す様に、ガラス、石英、サファイア等の絶縁
基板101上にドナーあるいはアクセプタとなる不純物
を添加した多結晶シリコン、非晶質シリコン等のシリコ
ン薄膜から成るソース電極102及びドレイン電極10
3を減圧CVD法プラスマCVD法等のCVD法により
形成する。
As shown in FIG. 1, a source electrode 102 and a drain electrode 10 are made of silicon thin films such as polycrystalline silicon, amorphous silicon, etc. doped with impurities to serve as donors or acceptors on an insulating substrate 101 made of glass, quartz, sapphire, etc.
3 is formed by a CVD method such as a low pressure CVD method or a plasma CVD method.

その膜厚は500〜5000Aが望ましい。次に多結晶
シリコンあるいは非晶質シリコン等のシリコン薄膜から
成る半導体層104を減圧CVD法、プラズマCVD法
等のCVD法により形成する。その膜厚は2000Å以
下が望ましい。次に金属、透明導電膜等から成るソース
配線105及びドレイン配線106をスパッタ法あるい
は真空蒸着法により形成する。次にECRプラズマCV
D法によりSiO□、SiN2等の第1のゲート絶縁I
I@107を形成する。使用した装置の概略を第3図に
示す。主要部は、プラズマ室303と試料室310で構
成され、プラズマ室303に石英窓311を返して、同
波数2.45GHz、パワー600Wのマイクロ波30
7が、外周の磁気コイル305により磁界が供給できる
。プラズマ室内でマイクロ波と磁界の相互作用で発生し
た高粘性プラズマとイオン流304は発数ER界によっ
て試料室310へ輸送され、気相反応・表面反応を経て
、絶縁基板301上に膜が形成される。SiC2を形成
する場合ガスライン306より15SCCMの酸素ガス
が、ガスライン308より6SCCMのS i H4ガ
スを供給した。この時の圧力は、60X10−’Tor
rで、形成速度は約670人/minであった。その膜
厚は100〜1000人が望ましい。試料室302に固
定させた基板301は、高粘性プラズマとイオン流の衝
撃効果により、低温で良質の膜が得られる。一方ECR
プラズマCVD法により成膜した膜は高粘性プラズマ流
の強い方向性の中心に、段差側壁部にほとんど膜が形成
されないかあるいは衝く薄い膜か形成されても脆弱であ
った。この結果ゲート電極109とソース電極102あ
るいはドレイン電極103とのゲート耐圧低下、リーク
電流の増大を招いていた。
The film thickness is preferably 500 to 5000A. Next, a semiconductor layer 104 made of a silicon thin film such as polycrystalline silicon or amorphous silicon is formed by a CVD method such as a low pressure CVD method or a plasma CVD method. The film thickness is preferably 2000 Å or less. Next, source wiring 105 and drain wiring 106 made of metal, transparent conductive film, etc. are formed by sputtering or vacuum evaporation. Next, ECR plasma CV
The first gate insulator I of SiO□, SiN2, etc. is
Form I@107. Figure 3 shows an outline of the apparatus used. The main part consists of a plasma chamber 303 and a sample chamber 310. A quartz window 311 is placed in the plasma chamber 303, and a microwave 30 with the same wave number of 2.45 GHz and a power of 600 W is installed.
7, a magnetic field can be supplied by the magnetic coil 305 on the outer periphery. The high viscosity plasma and ion flow 304 generated by the interaction of microwaves and magnetic fields in the plasma chamber are transported to the sample chamber 310 by the ER field, and undergo gas phase and surface reactions to form a film on the insulating substrate 301. be done. When forming SiC2, 15 SCCM of oxygen gas was supplied from the gas line 306, and 6 SCCM of S i H4 gas was supplied from the gas line 308. The pressure at this time is 60X10-'Tor
r, the formation rate was about 670 people/min. The film thickness is preferably 100 to 1000 people. The substrate 301 fixed in the sample chamber 302 can form a high-quality film at a low temperature due to the impact effect of the high viscosity plasma and ion flow. On the other hand, ECR
The film formed by the plasma CVD method was fragile even if almost no film was formed or a very thin film was formed on the step sidewalls at the center of the strong directional flow of the high-viscosity plasma flow. As a result, the gate breakdown voltage between the gate electrode 109 and the source electrode 102 or the drain electrode 103 decreases, and leakage current increases.

次に、常圧CVD法、あるいは減圧CVD法等の熱CV
D法により、5in)2.SiN等の第一のゲート絶縁
膜108を形成する。その膜厚は500〜2000人が
望ましい。一般に熱CVD法は数十ミリトールから大気
圧の高い圧力て膜形成が可能なためステップ力バレイシ
も良好であり、段差側壁部にも平坦部と同様に膜が形成
される。
Next, thermal CVD method such as normal pressure CVD method or low pressure CVD method
By D method, 5in)2. A first gate insulating film 108 made of SiN or the like is formed. The film thickness is preferably 500 to 2,000 people. In general, the thermal CVD method can form a film at high pressures ranging from several tens of mTorr to atmospheric pressure, so step force resistance is also good, and a film is formed on stepped sidewalls as well as on flat parts.

最後に、不純物を含むシリコン膜、金属、透明導電膜等
より成るゲート電極109をCVD法、スパッタ法、蒸
@法により形成する。
Finally, a gate electrode 109 made of impurity-containing silicon film, metal, transparent conductive film, etc. is formed by CVD, sputtering, or vaporization.

この様に製造された薄膜トランジスタは、ソス電極10
2及びドレイン電極103のエツチング断面形状に影響
されることなく、表面電荷密度が小さい良好なMO5界
面と、十分なゲート耐圧が得られる。これは特に30U
m角以上の大面積基板を用いた場合ソース電極、ドレイ
ン電極、半導体層等の断面形状を精密に制御しなくても
、良好なMO5界面と十分に大きなゲート耐圧を同時に
両立でき、従来用いられていた、ウェットエッチ法、ド
ライエッチ法をそのまま大面積基板に適用できる。
The thin film transistor manufactured in this way has a sos electrode 10
A good MO5 interface with a low surface charge density and a sufficient gate breakdown voltage can be obtained without being affected by the etched cross-sectional shapes of the drain electrode 103 and the drain electrode 103. This is especially 30U
When using a large-area substrate of m square or larger, it is possible to achieve both a good MO5 interface and a sufficiently large gate breakdown voltage at the same time without having to precisely control the cross-sectional shapes of the source electrode, drain electrode, semiconductor layer, etc. The conventional wet etching and dry etching methods can be applied directly to large-area substrates.

更に、ゲート絶縁膜を二層構造としたため、ゲート絶縁
膜に存在するピンホールが、同一場所に発生する確率は
無視でき、大幅にゲート記録膜のショートに起因する欠
陥を低減できる。
Furthermore, since the gate insulating film has a two-layer structure, the probability that pinholes existing in the gate insulating film will occur at the same location can be ignored, and defects caused by short circuits in the gate recording film can be significantly reduced.

更に、ECRプラズマCVD法により形成するゲート絶
縁膜は、絶縁膜を形成する。前に、5×10−’Tor
r以下の高真空とし、膜の形成も10−’Torr台で
形成するため、形成されたゲート絶縁膜中の不純物が極
めて少なく、その結果薄膜トランジスタの表面電荷密度
も熱CVD法の1/3〜1/10と小さな値となり、薄
膜トランジスタの信頼性を大幅に向上できる。
Further, the gate insulating film formed by the ECR plasma CVD method forms an insulating film. Before, 5×10−'Tor
Since the vacuum is high below r and the film is formed at 10-' Torr level, there are extremely few impurities in the formed gate insulating film, and as a result, the surface charge density of the thin film transistor is 1/3 to 1/3 that of the thermal CVD method. The value is as small as 1/10, and the reliability of thin film transistors can be greatly improved.

本発明の薄膜トランジスタの特性を第4区に示す。横軸
はゲート電圧V。3、縦軸はドレイン電流工。の対数値
である。ドレイン電圧Vosは4V。
The characteristics of the thin film transistor of the present invention are shown in Section 4. The horizontal axis is the gate voltage V. 3. The vertical axis is the drain current. is the logarithm of Drain voltage Vos is 4V.

チャネルTt、チャネル幅ともに10μmである。Both the channel Tt and the channel width are 10 μm.

半導体層には多結晶シリコンを用いその膜厚は200人
、ゲート絶縁膜はSiO□を用いてその膜厚はl 50
0Aである。破線は従来の熱CV D法によりゲート絶
縁膜を形成した薄膜トランジスタ、実線は本発明のEC
RプラズマCVDにより形成した薄膜トランジスタであ
る。第4図から明らかな様に表面電荷密度が減少したた
め、ゲート電圧Ovてのドレイン電流工。が約4個小さ
くなり、サブスレショルド領域での立上りも急峻となり
、特性が向上している。この結果液晶デイスプレィに応
用した場合低電圧駆動が可能となり、コントラスト比の
大きい高画質のデイスプレィが実現できる。
The semiconductor layer is made of polycrystalline silicon and its thickness is 200 mm, and the gate insulating film is made of SiO□ and its thickness is 50 mm.
It is 0A. The broken line indicates a thin film transistor whose gate insulating film was formed by the conventional thermal CVD method, and the solid line indicates an EC of the present invention.
This is a thin film transistor formed by R plasma CVD. As is clear from Figure 4, the surface charge density has decreased, so the drain current changes with the gate voltage Ov. is reduced by about 4, the rise in the subthreshold region is also steeper, and the characteristics are improved. As a result, when applied to a liquid crystal display, low-voltage driving becomes possible, and a high-quality display with a large contrast ratio can be realized.

イメージセンサや3次元集積回路へ応用した場合、低電
圧駆動、低消費電力が実現できる。
When applied to image sensors and three-dimensional integrated circuits, low voltage drive and low power consumption can be achieved.

[発明の効果] 本発明は次のようなすぐれた効果を有する。第1に、従
来用いられていたウェットエッチ法、ドライエッチ法を
そのまま30cm角以上の大面積に適用しても、良好な
MO5界面と、十分に大きなゲート耐圧を同時に両立で
きる。
[Effects of the Invention] The present invention has the following excellent effects. First, even if conventionally used wet etching and dry etching methods are applied as they are to a large area of 30 cm square or more, a good MO5 interface and a sufficiently large gate breakdown voltage can be achieved at the same time.

第2に、薄膜トランジスタの表面電荷密度が1x 10
−” cm−2〜3x 10−Ncm−2と少なく、信
頼性を大幅に向上できる。
Second, the surface charge density of the thin film transistor is 1x 10
-"cm-2 to 3x 10-Ncm-2, and reliability can be greatly improved.

第3にECRプラズマCVD法は原理的にパティクルの
発生が少なく、ピンホール等の欠陥のないゲート絶縁膜
が容易に得られ、薄膜トランジスタの低欠陥化が実現で
きる。
Thirdly, the ECR plasma CVD method generates few particles in principle, and a gate insulating film without defects such as pinholes can be easily obtained, thereby realizing a thin film transistor with fewer defects.

第4に、薄膜トランジスタの電気特性が向上し、低電圧
駆動が可能で高コントラスト比の液晶デイスプレィが実
現できる。
Fourth, the electrical characteristics of thin film transistors are improved, and a liquid crystal display that can be driven at low voltage and has a high contrast ratio can be realized.

以上のように、本発明の薄膜トランジスタは数多くの優
れた効果を有するものであり、その応用範囲は、デイス
プレィ用のアクティブマトリックス基板やその周辺回路
、イメージセンサ、3次元集積回路等多岐にわたる。
As described above, the thin film transistor of the present invention has many excellent effects, and its application range is wide-ranging, including active matrix substrates for displays, peripheral circuits thereof, image sensors, and three-dimensional integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の薄膜トランジスタの製造方法を示した
断面図。 第2図は従来の薄膜トランジスタの構造を示しくa)は
上視図、(b)は断面図。 第3図はECRプラズマCVD装置の概略図。 第4図は薄膜トランジスタの特性を示すグラフ。 101 、201. 102、202 ・ 103、203  ・ 104、206 ・ 105、204 ・ 106、205 ・ 107、207 ・ 108 ・ 109、304 110、208 303 ・ ・ ・ ・ 絶縁基板 ・ソース電極 ドレイン電極 ・半導体層 ソース配線 ドレイン配線 ゲート絶縁膜 高活性プラズマ イオン流 ゲート電極 ・プラズマ室 305 ・ ・ 306、308 ・ ・ 307 ・ ・ ・ ・ 309 ・ ・ ・ ・ ・ 310 ・ ・ ・ ・ ・ 311  ・ ・ ・ ・ ・ ・ ・・・・磁気コイル ・・・・・ガラライン ・・・・マイクロ波 ・・・・・真空排気 ・・・・・試料室 ・・・・・石英窓 以
FIG. 1 is a cross-sectional view showing the method for manufacturing a thin film transistor of the present invention. FIG. 2 shows the structure of a conventional thin film transistor, in which a) is a top view and (b) is a cross-sectional view. FIG. 3 is a schematic diagram of an ECR plasma CVD apparatus. FIG. 4 is a graph showing the characteristics of thin film transistors. 101, 201. 102, 202 ・ 103, 203 ・ 104, 206 ・ 105, 204 ・ 106, 205 ・ 107, 207 ・ 108 ・ 109, 304 110, 208 303 ・ ・ ・ ・ Insulating substrate / source electrode drain electrode / semiconductor layer source wiring drain Wiring gate insulating film Highly active plasma ion flow gate electrode/plasma chamber 305 ・ ・ 306, 308 ・ 307 ・ ・ ・ 309 ・ ・ ・ ・ 310 ・ ・ ・ ・ 311 ・ ・ ・ ・ ・ ・ ・ ・Magnetic coil...Galaxy line...Microwave...Evacuation...Sample chamber...Beyond the quartz window

Claims (1)

【特許請求の範囲】[Claims]  絶縁基板上にソース電極及びドレイン電極と、該ソー
ス電極と該ドレイン電極を結ぶ半導体層と該半導体層を
被覆するゲート絶縁膜と、該ゲート絶縁膜を介して設け
られたゲート電極を具備する薄膜トランジスタにおいて
、該ゲート絶縁膜を電子サイクロトロン共鳴プラズマC
VD法(以下ECRプラズマCVD法と呼ぶ)で形成し
た第一の絶縁膜と、熱CVD法で形成した第二の絶縁膜
の二層構造としたことを特徴とする薄膜トランジスタ。
A thin film transistor comprising a source electrode and a drain electrode on an insulating substrate, a semiconductor layer connecting the source electrode and the drain electrode, a gate insulating film covering the semiconductor layer, and a gate electrode provided through the gate insulating film. In this step, the gate insulating film is subjected to electron cyclotron resonance plasma C.
A thin film transistor characterized by having a two-layer structure including a first insulating film formed by a VD method (hereinafter referred to as ECR plasma CVD method) and a second insulating film formed by a thermal CVD method.
JP15016090A 1990-06-08 1990-06-08 Thin film transistor Pending JPH0442577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15016090A JPH0442577A (en) 1990-06-08 1990-06-08 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15016090A JPH0442577A (en) 1990-06-08 1990-06-08 Thin film transistor

Publications (1)

Publication Number Publication Date
JPH0442577A true JPH0442577A (en) 1992-02-13

Family

ID=15490818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15016090A Pending JPH0442577A (en) 1990-06-08 1990-06-08 Thin film transistor

Country Status (1)

Country Link
JP (1) JPH0442577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100323736B1 (en) * 1995-08-31 2002-08-14 엘지.필립스 엘시디 주식회사 Thin film transistor and fabricating method thereof
KR100343307B1 (en) * 1996-06-20 2002-08-22 가부시끼가이샤 도시바 A method for manufacturing a thin film transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100323736B1 (en) * 1995-08-31 2002-08-14 엘지.필립스 엘시디 주식회사 Thin film transistor and fabricating method thereof
KR100343307B1 (en) * 1996-06-20 2002-08-22 가부시끼가이샤 도시바 A method for manufacturing a thin film transistor

Similar Documents

Publication Publication Date Title
US5311040A (en) Thin film transistor with nitrogen concentration gradient
KR20020032586A (en) Thin film transistors and their manufacture
KR19990023185A (en) Gate structure and manufacturing method thereof, thin film transistor structure and manufacturing method thereof, inverted transistor structure
JPS60217669A (en) Amorphous silicon field effect transistor, method of producing same and liquid crystal display unit addressed thereby
GB2197985A (en) Liquid crystal display
JPS62124775A (en) Manufacture of thin film transistor by inclined etching and the thin film transistor
JPS60160170A (en) Thin film transistor
JP3054862B2 (en) Gate insulating film including diamond-like carbon film, thin film transistor using the same, method of forming gate insulating film, and manufacturing method thereof
KR0154817B1 (en) Thin film transistor for lcd
JP2841381B2 (en) Method for manufacturing thin film transistor
JP3055782B2 (en) How to manufacture thin film transistors
JPH05142571A (en) Liquid crystal display device
JPH07199226A (en) Thin film transistor for liquid crystal and preparation thereof
JPH0442577A (en) Thin film transistor
JPH03217059A (en) Thin film transistor
JPH09512667A (en) Method of passivating side surface of thin film semiconductor component
JP3452679B2 (en) Method of manufacturing thin film transistor, thin film transistor and liquid crystal display
JPS60177676A (en) Thin film transistor device and manufacture thereof
JP2864658B2 (en) Method for manufacturing thin film transistor
JP2003068755A (en) Thin film transistor and manufacturing method thereof
JPH04240733A (en) Manufacture of thin film transistor
JPH0442576A (en) Thin film transistor
JPH0546990B2 (en)
JPH0282577A (en) Manufacture of thin film transistor
JP2751164B2 (en) Method for manufacturing thin film transistor