JP4197863B2 - Photovoltaic device manufacturing method - Google Patents

Photovoltaic device manufacturing method Download PDF

Info

Publication number
JP4197863B2
JP4197863B2 JP2001298513A JP2001298513A JP4197863B2 JP 4197863 B2 JP4197863 B2 JP 4197863B2 JP 2001298513 A JP2001298513 A JP 2001298513A JP 2001298513 A JP2001298513 A JP 2001298513A JP 4197863 B2 JP4197863 B2 JP 4197863B2
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
photovoltaic device
substrate
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001298513A
Other languages
Japanese (ja)
Other versions
JP2003101048A (en
Inventor
武志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001298513A priority Critical patent/JP4197863B2/en
Publication of JP2003101048A publication Critical patent/JP2003101048A/en
Application granted granted Critical
Publication of JP4197863B2 publication Critical patent/JP4197863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光起電力装置の製造方法に関し、特に、透明導電膜を形成する方法に関する。
【0002】
【従来の技術】
HIT(Heterojunction with Intrinsic Thin-layer)型の光起電力装置は、シリコンウエハ上に非晶質半導体層,透明導電膜,集電極を順次形成して構成され、シリコンウエハとは反対側から入射する光を主に利用した光起電力装置である。このHIT型光起電力装置は、結晶系の光起電力装置に比べて低温状態で製造プロセスが可能であり、低コスト化及び高変換効率化を図れる光起電力装置として期待されている。
【0003】
1枚のシリコンウエハにて高い変換出力を得るためには、光電変換面積を増やすことが重要であり、そのために透明導電膜の形成面積をできる限り大きくすることが行われている。
【0004】
【発明が解決しようとする課題】
このように透明導電膜の形成面積を大きくしようとした場合、シリコンウエハに形成された非晶質半導体層上に透明導電膜を形成する際に、非晶質半導体層が形成されていない部分にまで透明導電膜が形成されることがある。このような場合に、この余分に形成された透明導電膜とシリコンウエハとでリークが起こり、光電変換特性の劣化の原因となるという問題がある。
【0005】
本発明は斯かる事情に鑑みてなされたものであり、形成した透明導電膜の端部に高抵抗化処理を施すことにより、上述したようなリークを防止でき、高い歩留りと高い変換特性とを実現できる光起電力装置の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
第1発明に係る光起電力装置の製造方法は、基板上に半導体層、透明導電膜及び集電極がこの順に形成されており、主に前記集電極側から光を入射する光起電力装置を製造する方法において、前記基板上の中央部分に前記半導体層を形成し、前記半導体層上に前記透明導電膜を形成すると共に、前記基板の前記半導体層よりも外側の部分上に形成された前記透明導電膜に選択的に高抵抗化処理を施すことを特徴とする。
【0007】
第1発明にあっては、基板上の中央部分に半導体層及び透明導電膜を形成した後、透明導電膜の中央の有効部分をマスキングして、基板の半導体層よりも外側の部分上に形成された透明導電膜を選択的に高抵抗化する。よって、半導体層の形成領域を越えて余分に透明導電膜が形成されても、その部分は高抵抗化されるため、基板とのリークは生じない。
【0008】
第2発明に係る光起電力装置の製造方法は、第1発明において、前記高抵抗化処理は、酸素プラズマ処理であることを特徴とする。
【0009】
第2発明にあっては、酸素プラズマ処理によって透明導電膜の端部のみを選択的に高抵抗化する。よって、容易に高抵抗化処理を行える。
【0010】
第3発明に係る光起電力装置の製造方法は、第1発明において、前記高抵抗化処理は、酸素雰囲気中でのエネルギービーム照射処理であることを特徴とする。
【0011】
第3発明にあっては、酸素雰囲気中でのエネルギービーム照射によって透明導電膜の端部のみを選択的に高抵抗化する。よって、容易に高抵抗化処理を行える。
【0012】
【発明の実施の形態】
以下、本発明をその実施の形態を示す図面を参照して具体的に説明する。
(第1実施の形態)
図1は、第1実施の形態による光起電力装置の製造方法の工程図である。まず、約1Ω・cm,厚さ300μmのn型(100)シリコンウエハを通常洗浄して、不純物を除去して基板1を準備する(図1(a))。
【0013】
次に、基板1上の一方の表面に、プラズマCVD方法にて、i型非晶質シリコン層2及びp型非晶質シリコン層3をこの順に形成する(図1(b))。具体的には、公知のRFプラズマCVD装置(13.56MHz)を用いて、基板温度:100〜250℃,反応圧力:0.2〜0.6Torr,RFパワー:10〜100W/cm2 の条件にて、i型非晶質シリコン層2及びp型非晶質シリコン層3の夫々の膜厚を50Å以下とした。
【0014】
次に、p型非晶質シリコン層3上に、スパッタ法にて、透明導電膜4を形成する(図1(c))。具体的には、公知のマグネトロンスパッタ装置を用いて、基板温度:250℃以下,ガス流量:Arが200sccm以下でO2 が50sccm以下,パワー:0.5〜3kWの条件にて、膜厚1000Å程度のITO膜を形成した。ここで、形成した透明導電膜4の端部では、下地層(p型非晶質シリコン層3/i型非晶質シリコン層2)よりも外側の部分に起因する微小リークが発生し、光電変換特性低下の原因となる。
【0015】
そこで、第1実施の形態では、酸素プラズマ処理により、透明導電膜4の端部(ハッチングを付した部分)のみに選択的に高抵抗化処理を施す(図1(d))。具体的には、上記のRFプラズマCVD装置(13.56MHz)を用いて、基板温度:200℃,O2 :200sccm,圧力:50Pa,パワー:300mW/cm2 の条件にて酸素プラズマを発生させ、中央の有効部分をSUS,Al等の金属製のマスク材7にてマスキングして、透明導電膜4の端部にのみ酸素を選択的に導入して高抵抗化した。
【0016】
図2は、ガラス基板上に形成したITO膜(膜厚:1000Å)に対して公知のRFプラズマCVD法による酸素プラズマ処理を行った場合のプラズマ処理時間とシート抵抗との関係を示すグラフである。図2のシート抵抗は、酸素プラズマ処理を行わなかった場合のシート抵抗に対する規格化値で表している。図2の結果から、プラズマ処理時間の増加に従ってシート抵抗が増加することを確認でき、この第1実施の形態における酸素プラズマ処理によって、透明導電膜4(ITO膜)の端部を十分に高抵抗化できることが分かる。
【0017】
最後に、透明導電膜4上に櫛形の集電極5及びバスバー電極をプラス側の電極として形成すると共に、基板1の裏面に裏面電極6をマイナス側の電極として形成して(図1(e))、光起電力装置を製造する。具体的には、エポキシ樹脂にAgの微粉末を練り込んだAgペーストをスクリーン印刷法にて厚さ約10〜30μm,幅100〜500μmにて透明導電膜4上に塗布した後、150〜250℃で焼成硬化させることにより、複数の互いに平行な枝部を有する櫛形の集電極5と集電極5に流れる電流を集合させるバスバー電極とを形成すると共に、基板1の裏面にAlを蒸着させて裏面電極6を形成した。
【0018】
第1実施の形態にあって、透明導電膜4を形成した後に下地の非晶質半導体層(p型非晶質シリコン層3/i型非晶質シリコン層2)の形成領域の周囲1mm内側にマスキングを行い、上記の条件(基板温度:200℃,O2 :200sccm,圧力:50Pa,パワー:300mW/cm2 )にて、プラズマ処理の時間を変化させた複数種の光起電力装置を製造した。製造したこれらの光起電力装置について開放電圧Vocと曲線因子FFとの積を測定した。図3は、酸素プラズマ処理時間とVoc×FFとの関係を示すグラフである。図3のVoc×FFの値は、酸素プラズマ処理を行わなかった場合のVoc×FFの値で規格化している。
【0019】
図3の結果から、酸素プラズマ処理時間の増加に伴ってVoc×FFの値が改善されていることが分かる。これは、ITO膜の端部が選択的に高抵抗化されたために、端部のリークに伴うVoc×FFが抑制されたことに起因する。上記プラズマ条件では、処理時間が120秒以上になった場合に、Voc×FFの値が変化しないことが分かるが、この特性(Voc×FF)はプラズマ処理の条件及びITOの膜質に大きく影響されることは勿論である。
【0020】
なお、プラズマ処理時にマスク材を用いなくてもよいように、端部領域に対応した開口型放電電極を用いて基板近傍のみにプラズマを生成させた場合でも、マスク材を使用した場合と同様の効果が得られることを確認した。
【0021】
(第2実施の形態)
図4は、第2実施の形態による光起電力装置の製造方法の工程図である。第1実施の形態と同様に、n型(100)シリコンウエハからなる基板1を準備し(図4(a))、基板1上の一方の表面に、i型非晶質シリコン層2及びp型非晶質シリコン層3をこの順に形成し(図4(b))、p型非晶質シリコン層3上に、透明導電膜4を形成する(図4(c))。
【0022】
次に、酸素雰囲気でのエネルギビーム照射により、透明導電膜4の端部(ハッチングを付した部分)のみに選択的に高抵抗化処理を施す(図4(d))。具体的には、中央の有効部分をSUS,Al等の金属製のマスク材7にてマスキングし、形成した透明導電膜4の端部の非晶質半導体層の形成領域の周囲1mmを含む外側部分にのみ酸素雰囲気中でエキシマレーザによってレーザビームを照射して、照射領域の高抵抗化を行った。
【0023】
図5は、ガラス基板上に形成したITO膜(膜厚:1000Å)に対して酸素雰囲気中でのエキシマレーザビームによりレーザ処理を行った場合のレーザパワーとシート抵抗との関係を示すグラフである。図5のシート抵抗は、レーザ処理を行わなかった場合のシート抵抗に対する規格化値で表している。図5の結果から、レーザパワーの増加に従ってシート抵抗が増加することを確認でき、この第2実施の形態におけるレーザビーム照射によって、透明導電膜4(ITO膜)の端部を十分に高抵抗化できることが分かる。
【0024】
最後に、第1実施の形態と同様に、櫛形の集電極5及びバスバー電極と裏面電極6とを形成して(図4(e))、光起電力装置を製造する。
【0025】
第2実施の形態にあって、透明導電膜4を形成した後に下地の非晶質半導体層(p型非晶質シリコン層3/i型非晶質シリコン層2)の形成領域の周囲1mm内側にマスキングを行い、酸素雰囲気中でエキシマレーザビームを照射してその照射部に選択的に酸素を導入し、そのレーザパワーを変化させた複数種の光起電力装置を製造した。製造したこれらの光起電力装置について開放電圧Vocと曲線因子FFとの積を測定した。図6は、レーザパワーとVoc×FFとの関係を示すグラフである。図6のVoc×FFの値は、レーザパワーを0.1J/cm2 とした場合のVoc×FFの値で規格化している。
【0026】
図6の結果から、レーザパワーが0.25J/cm2 である場合にVoc×FFの値が最も大きくなり、最適なレーザパワーが存在することが分かる。レーザパワーが強くなり過ぎると、下地の非晶質半導体層が微結晶化して新たなリーク成分となる。
【0027】
なお、エキシマレーザビームの代わりに、他のエネルギビームを照射しても、また、スポット状プラズマによる処理を施しても、同様の効果が得られることを確認した。
【0028】
(第3実施の形態)
夫々にi型非晶質シリコン層2/p型非晶質シリコン層3及び透明導電膜4を形成した複数の基板1を積み重ねて、その積重体の最表面及び最裏面をダミーウエハを用いて固定治具にて覆った状態で、第1実施の形態による酸素プラズマ処理または第2実施の形態によるエキシマレーザビームの照射処理を行うことにより、各ウエハでの透明導電膜4の端部を高抵抗化できる。この第3実施の形態では、一度に複数枚のウエハに対する処理を行えるので、生産性が極めて高い。
【0029】
なお、酸素プラズマ処理,エネルギビームの照射処理以外に、HCl溶液への浸漬、または、HClプラズマ処理によっても、透明導電膜4の端部の高抵抗化は可能である。また、半導体層として非晶質シリコンを用いる場合について説明したが、結晶系シリコンにて構成しても同様の効果を奏する。更に、透明導電膜4としてITO膜を用いることとしたが、ZnO膜でも良いことは勿論である。。また、基板の裏面にi型非晶質シリコン,n型非晶質シリコン,透明導電膜,集電極を形成した場合には、裏面側にも本発明を適用することができる。
【0030】
【発明の効果】
以上のように本発明では、基板上に半導体層及び透明導電膜を形成した後、透明導電膜の中央の有効部分をマスキングして、端部のみを選択的に高抵抗化するようにしたので、基板と余分な透明導電膜とのリークを防止でき、高い歩留りと高い光電変換特性とを実現することができる。
【0031】
また、酸素プラズマ処理または酸素雰囲気中でのエネルギービーム照射処理によって、透明導電膜の端部の高抵抗化を図るようにしたので、容易に高抵抗化処理を行うことができる。
【図面の簡単な説明】
【図1】第1実施の形態による光起電力装置の製造方法の工程図である。
【図2】第1実施の形態における酸素プラズマ処理時間とシート抵抗との関係を示すグラフである。
【図3】第1実施の形態における酸素プラズマ処理時間とVoc×FFとの関係を示すグラフである。
【図4】第2実施の形態による光起電力装置の製造方法の工程図である。
【図5】第2実施の形態におけるレーザパワーとシート抵抗との関係を示すグラフである。
【図6】第2実施の形態におけるレーザパワーとVoc×FFとの関係を示すグラフである。
【符号の説明】
1 基板
2 i型a−Si層
3 p型a−Si層
4 透明導電膜
5 集電極
6 裏面電極
7 マスク材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a photovoltaic device, and more particularly to a method for forming a transparent conductive film.
[0002]
[Prior art]
A HIT (Heterojunction with Intrinsic Thin-layer) type photovoltaic device is formed by sequentially forming an amorphous semiconductor layer, a transparent conductive film, and a collector electrode on a silicon wafer, and enters from the opposite side of the silicon wafer. It is a photovoltaic device mainly using light. This HIT type photovoltaic device can be manufactured at a lower temperature than a crystalline photovoltaic device, and is expected as a photovoltaic device capable of reducing cost and increasing conversion efficiency.
[0003]
In order to obtain a high conversion output with one silicon wafer, it is important to increase the photoelectric conversion area. For this reason, the formation area of the transparent conductive film is increased as much as possible.
[0004]
[Problems to be solved by the invention]
When an attempt is made to increase the formation area of the transparent conductive film in this way, when the transparent conductive film is formed on the amorphous semiconductor layer formed on the silicon wafer, the portion where the amorphous semiconductor layer is not formed is formed. A transparent conductive film may be formed. In such a case, there is a problem that leakage occurs between the excessively formed transparent conductive film and the silicon wafer, resulting in deterioration of photoelectric conversion characteristics.
[0005]
The present invention has been made in view of such circumstances, and by applying a high resistance treatment to the end portion of the formed transparent conductive film, leakage as described above can be prevented, and high yield and high conversion characteristics can be achieved. An object of the present invention is to provide a method for manufacturing a photovoltaic device that can be realized.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a method for manufacturing a photovoltaic device comprising: a semiconductor layer, a transparent conductive film, and a collector electrode formed on a substrate in this order; In the manufacturing method, the semiconductor layer is formed in a central portion on the substrate, the transparent conductive film is formed on the semiconductor layer, and the substrate is formed on a portion outside the semiconductor layer of the substrate. A high resistance treatment is selectively performed on the transparent conductive film .
[0007]
In the first invention, after the semiconductor layer and the transparent conductive film are formed in the central portion on the substrate, the effective portion in the center of the transparent conductive film is masked and formed on the portion outside the semiconductor layer of the substrate. The resistance of the transparent conductive film is selectively increased. Therefore, even if an additional transparent conductive film is formed beyond the formation region of the semiconductor layer, the portion is increased in resistance, so that no leakage with the substrate occurs.
[0008]
According to a second aspect of the present invention, there is provided a method for producing a photovoltaic device according to the first aspect, wherein the high resistance treatment is an oxygen plasma treatment.
[0009]
In the second invention, only the end portion of the transparent conductive film is selectively increased in resistance by oxygen plasma treatment. Therefore, the resistance increasing process can be easily performed.
[0010]
According to a third aspect of the present invention, there is provided a method for manufacturing a photovoltaic device according to the first aspect, wherein the high resistance treatment is an energy beam irradiation treatment in an oxygen atmosphere.
[0011]
In the third invention, the resistance of only the end portion of the transparent conductive film is selectively increased by the energy beam irradiation in an oxygen atmosphere. Therefore, the resistance increasing process can be easily performed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
(First embodiment)
FIG. 1 is a process diagram of a method of manufacturing a photovoltaic device according to the first embodiment. First, an n-type (100) silicon wafer having a thickness of about 1 Ω · cm and a thickness of 300 μm is usually cleaned to remove impurities to prepare a substrate 1 (FIG. 1A).
[0013]
Next, an i-type amorphous silicon layer 2 and a p-type amorphous silicon layer 3 are formed in this order on one surface of the substrate 1 by a plasma CVD method (FIG. 1B). Specifically, using a known RF plasma CVD apparatus (13.56 MHz), conditions of substrate temperature: 100 to 250 ° C., reaction pressure: 0.2 to 0.6 Torr, RF power: 10 to 100 W / cm 2 Thus, the film thickness of each of the i-type amorphous silicon layer 2 and the p-type amorphous silicon layer 3 was set to 50 mm or less.
[0014]
Next, a transparent conductive film 4 is formed on the p-type amorphous silicon layer 3 by sputtering (FIG. 1C). Specifically, using a known magnetron sputtering apparatus, the substrate temperature is 250 ° C. or less, the gas flow rate is 200 sccm or less, the O 2 is 50 sccm or less, and the power is 0.5 to 3 kW. An ITO film of a degree was formed. Here, at the end of the formed transparent conductive film 4, a minute leak is generated due to a portion outside the base layer (p-type amorphous silicon layer 3 / i-type amorphous silicon layer 2), and the photoelectric layer This may cause deterioration of conversion characteristics.
[0015]
Therefore, in the first embodiment, only the end portion (hatched portion) of the transparent conductive film 4 is selectively subjected to high resistance treatment by oxygen plasma treatment (FIG. 1D). Specifically, using the above RF plasma CVD apparatus (13.56 MHz), oxygen plasma is generated under the conditions of the substrate temperature: 200 ° C., O 2 : 200 sccm, pressure: 50 Pa, power: 300 mW / cm 2. The central effective portion was masked with a metal mask material 7 such as SUS or Al, and oxygen was selectively introduced only into the end of the transparent conductive film 4 to increase the resistance.
[0016]
FIG. 2 is a graph showing the relationship between the plasma processing time and the sheet resistance when an oxygen plasma treatment by a known RF plasma CVD method is performed on an ITO film (film thickness: 1000 mm) formed on a glass substrate. . The sheet resistance in FIG. 2 is expressed as a normalized value with respect to the sheet resistance when oxygen plasma treatment is not performed. From the result of FIG. 2, it can be confirmed that the sheet resistance increases as the plasma processing time increases. By the oxygen plasma processing in the first embodiment, the end portion of the transparent conductive film 4 (ITO film) has a sufficiently high resistance. It can be seen that
[0017]
Finally, a comb-shaped collector electrode 5 and a bus bar electrode are formed as positive electrodes on the transparent conductive film 4, and a back electrode 6 is formed as a negative electrode on the back surface of the substrate 1 (FIG. 1 (e)). ) To manufacture photovoltaic devices. Specifically, an Ag paste obtained by kneading Ag fine powder in an epoxy resin is applied on the transparent conductive film 4 with a thickness of about 10 to 30 μm and a width of 100 to 500 μm by a screen printing method, and then 150 to 250. By baking and curing at 0 ° C., a plurality of comb-shaped collector electrodes 5 having mutually parallel branches and a bus bar electrode for collecting current flowing through the collector electrodes 5 are formed, and Al is evaporated on the back surface of the substrate 1. A back electrode 6 was formed.
[0018]
In the first embodiment, after the transparent conductive film 4 is formed, 1 mm inside the periphery of the formation region of the underlying amorphous semiconductor layer (p-type amorphous silicon layer 3 / i-type amorphous silicon layer 2) A plurality of types of photovoltaic devices in which the plasma treatment time was changed under the above conditions (substrate temperature: 200 ° C., O 2 : 200 sccm, pressure: 50 Pa, power: 300 mW / cm 2 ) Manufactured. The product of the open circuit voltage Voc and the fill factor FF was measured for these produced photovoltaic devices. FIG. 3 is a graph showing the relationship between the oxygen plasma processing time and Voc × FF. The value of Voc × FF in FIG. 3 is normalized by the value of Voc × FF when oxygen plasma treatment is not performed.
[0019]
From the result of FIG. 3, it can be seen that the value of Voc × FF is improved as the oxygen plasma treatment time increases. This is because the end portion of the ITO film is selectively increased in resistance, so that Voc × FF accompanying the end portion leakage is suppressed. Under the above plasma conditions, it can be seen that the value of Voc × FF does not change when the processing time exceeds 120 seconds, but this characteristic (Voc × FF) is greatly influenced by the conditions of plasma processing and the film quality of ITO. Of course.
[0020]
In addition, even when the plasma is generated only in the vicinity of the substrate using the opening-type discharge electrode corresponding to the end region so that the mask material does not have to be used at the time of the plasma processing, the same as when the mask material is used It was confirmed that an effect was obtained.
[0021]
(Second Embodiment)
FIG. 4 is a process diagram of a method for manufacturing a photovoltaic device according to the second embodiment. Similar to the first embodiment, a substrate 1 made of an n-type (100) silicon wafer is prepared (FIG. 4A), and an i-type amorphous silicon layer 2 and p are formed on one surface of the substrate 1. A type amorphous silicon layer 3 is formed in this order (FIG. 4B), and a transparent conductive film 4 is formed on the p type amorphous silicon layer 3 (FIG. 4C).
[0022]
Next, the high resistance treatment is selectively performed only on the end portion (hatched portion) of the transparent conductive film 4 by energy beam irradiation in an oxygen atmosphere (FIG. 4D). Specifically, the outside including 1 mm around the formation region of the amorphous semiconductor layer at the end of the transparent conductive film 4 formed by masking the central effective portion with a metal mask material 7 such as SUS or Al. Only the part was irradiated with a laser beam with an excimer laser in an oxygen atmosphere to increase the resistance of the irradiated region.
[0023]
FIG. 5 is a graph showing the relationship between laser power and sheet resistance when laser processing is performed on an ITO film (thickness: 1000 mm) formed on a glass substrate with an excimer laser beam in an oxygen atmosphere. . The sheet resistance in FIG. 5 is expressed as a normalized value with respect to the sheet resistance when laser processing is not performed. From the result of FIG. 5, it can be confirmed that the sheet resistance increases as the laser power increases, and the end of the transparent conductive film 4 (ITO film) is sufficiently increased in resistance by the laser beam irradiation in the second embodiment. I understand that I can do it.
[0024]
Finally, as in the first embodiment, the comb-shaped collector electrode 5, the bus bar electrode, and the back electrode 6 are formed (FIG. 4E) to manufacture the photovoltaic device.
[0025]
In the second embodiment, after the transparent conductive film 4 is formed, 1 mm inside the periphery of the formation region of the underlying amorphous semiconductor layer (p-type amorphous silicon layer 3 / i-type amorphous silicon layer 2) Were masked, irradiated with an excimer laser beam in an oxygen atmosphere, and oxygen was selectively introduced into the irradiated portion to produce a plurality of types of photovoltaic devices in which the laser power was changed. The product of the open circuit voltage Voc and the fill factor FF was measured for these produced photovoltaic devices. FIG. 6 is a graph showing the relationship between laser power and Voc × FF. The value of Voc × FF in FIG. 6 is normalized by the value of Voc × FF when the laser power is 0.1 J / cm 2 .
[0026]
From the results of FIG. 6, it can be seen that when the laser power is 0.25 J / cm 2 , the value of Voc × FF is the largest, and there is an optimum laser power. When the laser power becomes too strong, the underlying amorphous semiconductor layer is microcrystallized and becomes a new leak component.
[0027]
It has been confirmed that the same effect can be obtained by irradiating with another energy beam instead of the excimer laser beam or by processing with spot plasma.
[0028]
(Third embodiment)
A plurality of substrates 1 each formed with an i-type amorphous silicon layer 2 / p-type amorphous silicon layer 3 and a transparent conductive film 4 are stacked, and the top and bottom surfaces of the stacked body are fixed using a dummy wafer. The oxygen plasma treatment according to the first embodiment or the excimer laser beam irradiation treatment according to the second embodiment is performed in a state of being covered with a jig, whereby the end of the transparent conductive film 4 on each wafer is subjected to high resistance. Can be In the third embodiment, since a plurality of wafers can be processed at a time, productivity is extremely high.
[0029]
In addition to oxygen plasma treatment and energy beam irradiation treatment, the resistance of the end portion of the transparent conductive film 4 can be increased by immersion in HCl solution or HCl plasma treatment. Further, although the case where amorphous silicon is used as the semiconductor layer has been described, the same effect can be obtained even if it is composed of crystalline silicon. Further, although an ITO film is used as the transparent conductive film 4, it goes without saying that a ZnO film may be used. . In addition, when i-type amorphous silicon, n-type amorphous silicon, a transparent conductive film, and a collector electrode are formed on the back surface of the substrate, the present invention can also be applied to the back surface side.
[0030]
【The invention's effect】
As described above, in the present invention, after the semiconductor layer and the transparent conductive film are formed on the substrate, the effective portion at the center of the transparent conductive film is masked to selectively increase the resistance only at the end. In addition, leakage between the substrate and the extra transparent conductive film can be prevented, and high yield and high photoelectric conversion characteristics can be realized.
[0031]
Further, since the resistance of the end portion of the transparent conductive film is increased by the oxygen plasma process or the energy beam irradiation process in an oxygen atmosphere, the resistance increase process can be easily performed.
[Brief description of the drawings]
FIG. 1 is a process diagram of a method for manufacturing a photovoltaic device according to a first embodiment.
FIG. 2 is a graph showing a relationship between oxygen plasma processing time and sheet resistance in the first embodiment.
FIG. 3 is a graph showing the relationship between oxygen plasma processing time and Voc × FF in the first embodiment.
FIG. 4 is a process diagram of a method for manufacturing a photovoltaic device according to a second embodiment.
FIG. 5 is a graph showing the relationship between laser power and sheet resistance in the second embodiment.
FIG. 6 is a graph showing the relationship between laser power and Voc × FF in the second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 i-type a-Si layer 3 p-type a-Si layer 4 Transparent conductive film 5 Collector electrode 6 Back electrode 7 Mask material

Claims (3)

基板上に半導体層、透明導電膜及び集電極がこの順に形成されており、主に前記集電極側から光を入射する光起電力装置を製造する方法において、前記基板上の中央部分に前記半導体層を形成し、前記半導体層上に前記透明導電膜を形成すると共に、前記基板の前記半導体層よりも外側の部分上に形成された前記透明導電膜に選択的に高抵抗化処理を施すことを特徴とする光起電力装置の製造方法。In a method of manufacturing a photovoltaic device in which a semiconductor layer, a transparent conductive film, and a collector electrode are formed in this order on a substrate, and light is incident mainly from the collector electrode side, the semiconductor is formed at a central portion on the substrate. Forming a layer , forming the transparent conductive film on the semiconductor layer, and selectively subjecting the transparent conductive film formed on a portion outside the semiconductor layer of the substrate to a high resistance treatment. A method of manufacturing a photovoltaic device characterized by the above. 前記高抵抗化処理は、酸素プラズマ処理である請求項1記載の光起電力装置の製造方法。  The method for manufacturing a photovoltaic device according to claim 1, wherein the high resistance treatment is an oxygen plasma treatment. 前記高抵抗化処理は、酸素雰囲気中でのエネルギービーム照射である請求項1記載の光起電力装置の製造方法。  The method for manufacturing a photovoltaic device according to claim 1, wherein the high resistance treatment is energy beam irradiation in an oxygen atmosphere.
JP2001298513A 2001-09-27 2001-09-27 Photovoltaic device manufacturing method Expired - Lifetime JP4197863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001298513A JP4197863B2 (en) 2001-09-27 2001-09-27 Photovoltaic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298513A JP4197863B2 (en) 2001-09-27 2001-09-27 Photovoltaic device manufacturing method

Publications (2)

Publication Number Publication Date
JP2003101048A JP2003101048A (en) 2003-04-04
JP4197863B2 true JP4197863B2 (en) 2008-12-17

Family

ID=19119406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298513A Expired - Lifetime JP4197863B2 (en) 2001-09-27 2001-09-27 Photovoltaic device manufacturing method

Country Status (1)

Country Link
JP (1) JP4197863B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6294694B2 (en) * 2014-02-12 2018-03-14 株式会社カネカ SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
KR101821394B1 (en) * 2016-01-14 2018-01-23 엘지전자 주식회사 Solar cell
CN106449815A (en) * 2016-08-11 2017-02-22 上海大学 Heterojunction solar cell device production method based on amorphous silicon thin films
CN106654067A (en) * 2017-01-11 2017-05-10 京东方科技集团股份有限公司 Touch control substrate, fabrication method thereof and display device
JP2021144960A (en) * 2018-06-05 2021-09-24 パナソニック株式会社 Solar cell and method for manufacturing solar cell

Also Published As

Publication number Publication date
JP2003101048A (en) 2003-04-04

Similar Documents

Publication Publication Date Title
US6271053B1 (en) Method of manufacturing a thin film solar battery module
US20100311203A1 (en) Passivation process for solar cell fabrication
RU2456709C2 (en) Solar cell and method and apparatus for making said solar cell
KR100343241B1 (en) Method for producing photovoltaic element
JP2020017763A (en) Manufacturing method of photoelectric conversion device
JP5520834B2 (en) Method for forming passivation film and method for manufacturing solar cell element
JP4197863B2 (en) Photovoltaic device manufacturing method
JPH0432552B2 (en)
JP2000349325A (en) Thin film solar battery module
US20110192452A1 (en) Photoelectric conversion device and fabrication method thereof
JP2003037278A (en) Photovoltaic element and manufacturing method therefor
JP2014075418A (en) Silicon substrate for solar cell and manufacturing method therefor, and solar cell
WO2020184706A1 (en) Method for producing back contact solar cell
JPH09219530A (en) Chalcopyirite structure semiconductor thin film solar battery and manufacture thereof
US6902948B2 (en) Method of producing photovoltaic element
JP7264673B2 (en) Method for manufacturing back-contact solar cell
JPS6249753B2 (en)
JP3504838B2 (en) Amorphous silicon solar cell
JP4497914B2 (en) Method for producing silicon thin film solar cell
KR20100136554A (en) Process for fabricating a silicon-based thin-film photovoltaic cell
JP2000004036A (en) Forming method of fine crystal semiconductor layer and photovoltaic element
JP4052782B2 (en) Integrated photovoltaic device and method for manufacturing the same
JPWO2019004126A1 (en) Method for manufacturing photoelectric conversion device
JP4485767B2 (en) Method for manufacturing photoelectric conversion device
JP2009152441A (en) Method of manufacturing photoelectric converter, and photoelectric converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4