JP2003101048A - Method for manufacturing photovoltaic device - Google Patents

Method for manufacturing photovoltaic device

Info

Publication number
JP2003101048A
JP2003101048A JP2001298513A JP2001298513A JP2003101048A JP 2003101048 A JP2003101048 A JP 2003101048A JP 2001298513 A JP2001298513 A JP 2001298513A JP 2001298513 A JP2001298513 A JP 2001298513A JP 2003101048 A JP2003101048 A JP 2003101048A
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
photovoltaic device
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001298513A
Other languages
Japanese (ja)
Other versions
JP4197863B2 (en
Inventor
Takeshi Yamamoto
武志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001298513A priority Critical patent/JP4197863B2/en
Publication of JP2003101048A publication Critical patent/JP2003101048A/en
Application granted granted Critical
Publication of JP4197863B2 publication Critical patent/JP4197863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a photovoltaic device, wherein high yield and high conversion characteristics are realized. SOLUTION: An i-type amorphous silicon layer 2 and a p-type amorphous silicon layer 3 are formed on a substrate 1 composed of n-type silicon (a), and an nip junction is obtained (b). A transparent conducting film 4 is formed on the p-type amorphous silicon layer 3 (c). Masking is performed to the central effective part of the transparent conducting film 4 by using mask member 7, and only the end portion of the transparent conducting film 4 is subjected to oxygen plasma treatment and made high resistance (d). As a result, leakage between the substrate 1 and the transparent conducting film 4 is restrained. Finally, a comb-shaped collecting electrode 5 and a back electrode 6 are formed (e), and a photovoltaic device is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光起電力装置の製
造方法に関し、特に、透明導電膜を形成する方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for manufacturing a photovoltaic device, and more particularly to a method for forming a transparent conductive film.

【0002】[0002]

【従来の技術】HIT(Heterojunction with Intrinsi
c Thin-layer)型の光起電力装置は、シリコンウエハ上
に非晶質半導体層,透明導電膜,集電極を順次形成して
構成され、シリコンウエハとは反対側から入射する光を
主に利用した光起電力装置である。このHIT型光起電
力装置は、結晶系の光起電力装置に比べて低温状態で製
造プロセスが可能であり、低コスト化及び高変換効率化
を図れる光起電力装置として期待されている。
2. Description of the Related Art HIT (Heterojunction with Intrinsi
A c thin-layer) photovoltaic device is formed by sequentially forming an amorphous semiconductor layer, a transparent conductive film, and a collecting electrode on a silicon wafer, and mainly emits light incident from the side opposite to the silicon wafer. It is the photovoltaic device used. This HIT type photovoltaic device can be manufactured at a lower temperature than the crystalline photovoltaic device, and is expected as a photovoltaic device that can achieve cost reduction and high conversion efficiency.

【0003】1枚のシリコンウエハにて高い変換出力を
得るためには、光電変換面積を増やすことが重要であ
り、そのために透明導電膜の形成面積をできる限り大き
くすることが行われている。
In order to obtain a high conversion output with a single silicon wafer, it is important to increase the photoelectric conversion area, and for that reason, the formation area of the transparent conductive film is made as large as possible.

【0004】[0004]

【発明が解決しようとする課題】このように透明導電膜
の形成面積を大きくしようとした場合、シリコンウエハ
に形成された非晶質半導体層上に透明導電膜を形成する
際に、非晶質半導体層が形成されていない部分にまで透
明導電膜が形成されることがある。このような場合に、
この余分に形成された透明導電膜とシリコンウエハとで
リークが起こり、光電変換特性の劣化の原因となるとい
う問題がある。
When it is attempted to increase the formation area of the transparent conductive film as described above, when the transparent conductive film is formed on the amorphous semiconductor layer formed on the silicon wafer, the amorphous conductive film is formed. The transparent conductive film may be formed even in a portion where the semiconductor layer is not formed. In such cases,
There is a problem in that a leak occurs between the excessively formed transparent conductive film and the silicon wafer, which causes deterioration of photoelectric conversion characteristics.

【0005】本発明は斯かる事情に鑑みてなされたもの
であり、形成した透明導電膜の端部に高抵抗化処理を施
すことにより、上述したようなリークを防止でき、高い
歩留りと高い変換特性とを実現できる光起電力装置の製
造方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and by performing the resistance increasing treatment on the end portion of the formed transparent conductive film, it is possible to prevent the leakage as described above, and to obtain a high yield and a high conversion. It is an object of the present invention to provide a method for manufacturing a photovoltaic device that can realize the characteristics.

【0006】[0006]

【課題を解決するための手段】第1発明に係る光起電力
装置の製造方法は、基板上に半導体層,透明導電膜及び
集電極がこの順に形成されており、主に前記集電極側か
ら光を入射する光起電力装置を製造する方法において、
前記基板上に前記半導体層及び前記透明導電膜を形成
し、形成した前記透明導電膜の端部に選択的に高抵抗化
処理を施すことを特徴とする。
A method for manufacturing a photovoltaic device according to a first aspect of the present invention comprises a semiconductor layer, a transparent conductive film and a collector electrode formed in this order on a substrate, and mainly from the collector electrode side. In a method of manufacturing a photovoltaic device that emits light,
The semiconductor layer and the transparent conductive film are formed on the substrate, and an end portion of the formed transparent conductive film is selectively subjected to a resistance increasing treatment.

【0007】第1発明にあっては、基板上に半導体層及
び透明導電膜を形成した後、透明導電膜の中央の有効部
分をマスキングして、端部のみを選択的に高抵抗化す
る。よって、半導体層の形成領域を越えて余分に透明導
電膜が形成されても、その部分は高抵抗化されるため、
基板とのリークは生じない。
In the first invention, after the semiconductor layer and the transparent conductive film are formed on the substrate, the effective portion at the center of the transparent conductive film is masked to selectively increase the resistance only at the end portions. Therefore, even if an extra transparent conductive film is formed beyond the formation region of the semiconductor layer, that portion has high resistance,
Leakage with the substrate does not occur.

【0008】第2発明に係る光起電力装置の製造方法
は、第1発明において、前記高抵抗化処理は、酸素プラ
ズマ処理であることを特徴とする。
A method of manufacturing a photovoltaic device according to a second aspect of the invention is characterized in that, in the first aspect of the invention, the resistance increasing treatment is an oxygen plasma treatment.

【0009】第2発明にあっては、酸素プラズマ処理に
よって透明導電膜の端部のみを選択的に高抵抗化する。
よって、容易に高抵抗化処理を行える。
In the second aspect of the invention, only the end portions of the transparent conductive film are selectively made high in resistance by the oxygen plasma treatment.
Therefore, the resistance increasing process can be easily performed.

【0010】第3発明に係る光起電力装置の製造方法
は、第1発明において、前記高抵抗化処理は、酸素雰囲
気中でのエネルギービーム照射処理であることを特徴と
する。
The method for manufacturing a photovoltaic device according to a third aspect of the present invention is characterized in that, in the first aspect, the resistance increasing treatment is an energy beam irradiation treatment in an oxygen atmosphere.

【0011】第3発明にあっては、酸素雰囲気中でのエ
ネルギービーム照射によって透明導電膜の端部のみを選
択的に高抵抗化する。よって、容易に高抵抗化処理を行
える。
According to the third aspect of the invention, only the end portions of the transparent conductive film are selectively made high in resistance by irradiation with an energy beam in an oxygen atmosphere. Therefore, the resistance increasing process can be easily performed.

【0012】[0012]

【発明の実施の形態】以下、本発明をその実施の形態を
示す図面を参照して具体的に説明する。 (第1実施の形態)図1は、第1実施の形態による光起
電力装置の製造方法の工程図である。まず、約1Ω・c
m,厚さ300μmのn型(100)シリコンウエハを
通常洗浄して、不純物を除去して基板1を準備する(図
1(a))。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below with reference to the drawings showing the embodiments thereof. (First Embodiment) FIG. 1 is a process diagram of a method for manufacturing a photovoltaic device according to the first embodiment. First, about 1Ω ・ c
An n-type (100) silicon wafer having a thickness of m and a thickness of 300 μm is normally washed to remove impurities and prepare a substrate 1 (FIG. 1A).

【0013】次に、基板1上の一方の表面に、プラズマ
CVD方法にて、i型非晶質シリコン層2及びp型非晶
質シリコン層3をこの順に形成する(図1(b))。具
体的には、公知のRFプラズマCVD装置(13.56
MHz)を用いて、基板温度:100〜250℃,反応
圧力:0.2〜0.6Torr,RFパワー:10〜1
00W/cm2 の条件にて、i型非晶質シリコン層2及
びp型非晶質シリコン層3の夫々の膜厚を50Å以下と
した。
Next, an i-type amorphous silicon layer 2 and a p-type amorphous silicon layer 3 are formed in this order on one surface of the substrate 1 by a plasma CVD method (FIG. 1 (b)). . Specifically, a known RF plasma CVD apparatus (13.56
MHz), substrate temperature: 100 to 250 ° C., reaction pressure: 0.2 to 0.6 Torr, RF power: 10 to 1
The film thickness of each of the i-type amorphous silicon layer 2 and the p-type amorphous silicon layer 3 was set to 50 Å or less under the condition of 00 W / cm 2 .

【0014】次に、p型非晶質シリコン層3上に、スパ
ッタ法にて、透明導電膜4を形成する(図1(c))。
具体的には、公知のマグネトロンスパッタ装置を用い
て、基板温度:250℃以下,ガス流量:Arが200
sccm以下でO2 が50sccm以下,パワー:0.
5〜3kWの条件にて、膜厚1000Å程度のITO膜
を形成した。ここで、形成した透明導電膜4の端部で
は、下地層(p型非晶質シリコン層3/i型非晶質シリ
コン層2)よりも外側の部分に起因する微小リークが発
生し、光電変換特性低下の原因となる。
Next, a transparent conductive film 4 is formed on the p-type amorphous silicon layer 3 by the sputtering method (FIG. 1 (c)).
Specifically, using a known magnetron sputtering apparatus, the substrate temperature: 250 ° C. or less, the gas flow rate: Ar is 200.
O 2 at 50 sccm or less, power: 0.
An ITO film having a film thickness of about 1000Å was formed under the condition of 5 to 3 kW. Here, in the end portion of the formed transparent conductive film 4, a minute leak occurs due to a portion outside the base layer (p-type amorphous silicon layer 3 / i-type amorphous silicon layer 2), and photoelectric conversion is performed. It causes deterioration of conversion characteristics.

【0015】そこで、第1実施の形態では、酸素プラズ
マ処理により、透明導電膜4の端部(ハッチングを付し
た部分)のみに選択的に高抵抗化処理を施す(図1
(d))。具体的には、上記のRFプラズマCVD装置
(13.56MHz)を用いて、基板温度:200℃,
2 :200sccm,圧力:50Pa,パワー:30
0mW/cm2 の条件にて酸素プラズマを発生させ、中
央の有効部分をSUS,Al等の金属製のマスク材7に
てマスキングして、透明導電膜4の端部にのみ酸素を選
択的に導入して高抵抗化した。
Therefore, in the first embodiment, the resistance increasing treatment is selectively applied only to the end portion (hatched portion) of the transparent conductive film 4 by the oxygen plasma treatment (FIG. 1).
(D)). Specifically, using the RF plasma CVD device (13.56 MHz) described above, the substrate temperature: 200 ° C.,
O 2 : 200 sccm, pressure: 50 Pa, power: 30
Oxygen plasma is generated under the condition of 0 mW / cm 2 and the central effective portion is masked with a metal mask material 7 such as SUS or Al so that oxygen is selectively present only at the end portions of the transparent conductive film 4. Introduced to increase the resistance.

【0016】図2は、ガラス基板上に形成したITO膜
(膜厚:1000Å)に対して公知のRFプラズマCV
D法による酸素プラズマ処理を行った場合のプラズマ処
理時間とシート抵抗との関係を示すグラフである。図2
のシート抵抗は、酸素プラズマ処理を行わなかった場合
のシート抵抗に対する規格化値で表している。図2の結
果から、プラズマ処理時間の増加に従ってシート抵抗が
増加することを確認でき、この第1実施の形態における
酸素プラズマ処理によって、透明導電膜4(ITO膜)
の端部を十分に高抵抗化できることが分かる。
FIG. 2 shows a known RF plasma CV for an ITO film (thickness: 1000Å) formed on a glass substrate.
9 is a graph showing the relationship between plasma processing time and sheet resistance when oxygen plasma processing by method D is performed. Figure 2
The sheet resistance of No. 2 is represented by a normalized value with respect to the sheet resistance when the oxygen plasma treatment is not performed. From the results of FIG. 2, it can be confirmed that the sheet resistance increases as the plasma processing time increases, and the transparent conductive film 4 (ITO film) is obtained by the oxygen plasma processing in the first embodiment.
It can be seen that the end portion of can be made sufficiently high in resistance.

【0017】最後に、透明導電膜4上に櫛形の集電極5
及びバスバー電極をプラス側の電極として形成すると共
に、基板1の裏面に裏面電極6をマイナス側の電極とし
て形成して(図1(e))、光起電力装置を製造する。
具体的には、エポキシ樹脂にAgの微粉末を練り込んだ
Agペーストをスクリーン印刷法にて厚さ約10〜30
μm,幅100〜500μmにて透明導電膜4上に塗布
した後、150〜250℃で焼成硬化させることによ
り、複数の互いに平行な枝部を有する櫛形の集電極5と
集電極5に流れる電流を集合させるバスバー電極とを形
成すると共に、基板1の裏面にAlを蒸着させて裏面電
極6を形成した。
Finally, a comb-shaped collector electrode 5 is formed on the transparent conductive film 4.
Further, the bus bar electrode is formed as a plus side electrode, and the back surface electrode 6 is formed as a minus side electrode on the back surface of the substrate 1 (FIG. 1E) to manufacture the photovoltaic device.
Specifically, an Ag paste obtained by kneading Ag fine powder into an epoxy resin has a thickness of about 10 to 30 by a screen printing method.
After being applied on the transparent conductive film 4 with a width of 100 μm and a width of 100 to 500 μm, it is baked and cured at 150 to 250 ° C. to form a comb-shaped collector electrode 5 having a plurality of parallel branches and a current flowing through the collector electrode 5. And a bus bar electrode for assembling are formed, and Al is vapor-deposited on the back surface of the substrate 1 to form the back surface electrode 6.

【0018】第1実施の形態にあって、透明導電膜4を
形成した後に下地の非晶質半導体層(p型非晶質シリコ
ン層3/i型非晶質シリコン層2)の形成領域の周囲1
mm内側にマスキングを行い、上記の条件(基板温度:
200℃,O2 :200sccm,圧力:50Pa,パ
ワー:300mW/cm2 )にて、プラズマ処理の時間
を変化させた複数種の光起電力装置を製造した。製造し
たこれらの光起電力装置について開放電圧Vocと曲線因
子FFとの積を測定した。図3は、酸素プラズマ処理時
間とVoc×FFとの関係を示すグラフである。図3のV
oc×FFの値は、酸素プラズマ処理を行わなかった場合
のVoc×FFの値で規格化している。
In the first embodiment, after forming the transparent conductive film 4, the formation region of the underlying amorphous semiconductor layer (p-type amorphous silicon layer 3 / i-type amorphous silicon layer 2) is formed. Surrounding 1
mm inside is masked and the above conditions (substrate temperature:
At 200 ° C., O 2 : 200 sccm, pressure: 50 Pa, power: 300 mW / cm 2 ), a plurality of types of photovoltaic devices in which the plasma processing time was changed were manufactured. The product of the open circuit voltage Voc and the fill factor FF was measured for these manufactured photovoltaic devices. FIG. 3 is a graph showing the relationship between the oxygen plasma treatment time and Voc × FF. V in FIG.
The value of oc × FF is normalized by the value of Voc × FF when the oxygen plasma treatment is not performed.

【0019】図3の結果から、酸素プラズマ処理時間の
増加に伴ってVoc×FFの値が改善されていることが分
かる。これは、ITO膜の端部が選択的に高抵抗化され
たために、端部のリークに伴うVoc×FFが抑制された
ことに起因する。上記プラズマ条件では、処理時間が1
20秒以上になった場合に、Voc×FFの値が変化しな
いことが分かるが、この特性(Voc×FF)はプラズマ
処理の条件及びITOの膜質に大きく影響されることは
勿論である。
From the results shown in FIG. 3, it can be seen that the value of Voc × FF is improved as the oxygen plasma treatment time is increased. This is because the resistance of the edge of the ITO film was selectively increased to suppress Voc × FF due to the leakage of the edge. Under the above plasma conditions, the processing time is 1
It can be seen that the value of Voc × FF does not change when the time is 20 seconds or more, but it goes without saying that this characteristic (Voc × FF) is greatly affected by the plasma processing conditions and the ITO film quality.

【0020】なお、プラズマ処理時にマスク材を用いな
くてもよいように、端部領域に対応した開口型放電電極
を用いて基板近傍のみにプラズマを生成させた場合で
も、マスク材を使用した場合と同様の効果が得られるこ
とを確認した。
Even when plasma is generated only in the vicinity of the substrate by using the aperture type discharge electrodes corresponding to the end regions, the mask material is used so that the mask material does not have to be used during the plasma processing. It was confirmed that the same effect as was obtained.

【0021】(第2実施の形態)図4は、第2実施の形
態による光起電力装置の製造方法の工程図である。第1
実施の形態と同様に、n型(100)シリコンウエハか
らなる基板1を準備し(図4(a))、基板1上の一方
の表面に、i型非晶質シリコン層2及びp型非晶質シリ
コン層3をこの順に形成し(図4(b))、p型非晶質
シリコン層3上に、透明導電膜4を形成する(図4
(c))。
(Second Embodiment) FIG. 4 is a process diagram of a method for manufacturing a photovoltaic device according to a second embodiment. First
Similar to the embodiment, a substrate 1 made of an n-type (100) silicon wafer is prepared (FIG. 4A), and the i-type amorphous silicon layer 2 and the p-type non-silicon layer 2 are formed on one surface of the substrate 1. The crystalline silicon layer 3 is formed in this order (FIG. 4B), and the transparent conductive film 4 is formed on the p-type amorphous silicon layer 3 (FIG. 4).
(C)).

【0022】次に、酸素雰囲気でのエネルギビーム照射
により、透明導電膜4の端部(ハッチングを付した部
分)のみに選択的に高抵抗化処理を施す(図4
(d))。具体的には、中央の有効部分をSUS,Al
等の金属製のマスク材7にてマスキングし、形成した透
明導電膜4の端部の非晶質半導体層の形成領域の周囲1
mmを含む外側部分にのみ酸素雰囲気中でエキシマレー
ザによってレーザビームを照射して、照射領域の高抵抗
化を行った。
Next, by the energy beam irradiation in the oxygen atmosphere, only the end portion (hatched portion) of the transparent conductive film 4 is selectively subjected to the resistance increasing treatment (FIG. 4).
(D)). Specifically, the central effective part is SUS, Al
Around the region where the amorphous semiconductor layer is formed at the end of the transparent conductive film 4 formed by masking with a metal mask material 7 such as
Only the outer part including mm was irradiated with a laser beam by an excimer laser in an oxygen atmosphere to increase the resistance of the irradiation region.

【0023】図5は、ガラス基板上に形成したITO膜
(膜厚:1000Å)に対して酸素雰囲気中でのエキシ
マレーザビームによりレーザ処理を行った場合のレーザ
パワーとシート抵抗との関係を示すグラフである。図5
のシート抵抗は、レーザ処理を行わなかった場合のシー
ト抵抗に対する規格化値で表している。図5の結果か
ら、レーザパワーの増加に従ってシート抵抗が増加する
ことを確認でき、この第2実施の形態におけるレーザビ
ーム照射によって、透明導電膜4(ITO膜)の端部を
十分に高抵抗化できることが分かる。
FIG. 5 shows the relationship between the laser power and the sheet resistance when an ITO film (thickness: 1000Å) formed on a glass substrate is laser-treated by an excimer laser beam in an oxygen atmosphere. It is a graph. Figure 5
The sheet resistance of is represented by a standardized value with respect to the sheet resistance when the laser processing is not performed. From the result of FIG. 5, it can be confirmed that the sheet resistance increases as the laser power increases, and the edge of the transparent conductive film 4 (ITO film) is sufficiently increased in resistance by the laser beam irradiation in the second embodiment. I see what I can do.

【0024】最後に、第1実施の形態と同様に、櫛形の
集電極5及びバスバー電極と裏面電極6とを形成して
(図4(e))、光起電力装置を製造する。
Finally, as in the first embodiment, the comb-shaped collector electrode 5, the bus bar electrode and the back surface electrode 6 are formed (FIG. 4E), and the photovoltaic device is manufactured.

【0025】第2実施の形態にあって、透明導電膜4を
形成した後に下地の非晶質半導体層(p型非晶質シリコ
ン層3/i型非晶質シリコン層2)の形成領域の周囲1
mm内側にマスキングを行い、酸素雰囲気中でエキシマ
レーザビームを照射してその照射部に選択的に酸素を導
入し、そのレーザパワーを変化させた複数種の光起電力
装置を製造した。製造したこれらの光起電力装置につい
て開放電圧Vocと曲線因子FFとの積を測定した。図6
は、レーザパワーとVoc×FFとの関係を示すグラフで
ある。図6のVoc×FFの値は、レーザパワーを0.1
J/cm2 とした場合のVoc×FFの値で規格化してい
る。
In the second embodiment, after forming the transparent conductive film 4, the formation region of the underlying amorphous semiconductor layer (p-type amorphous silicon layer 3 / i-type amorphous silicon layer 2) is Surrounding 1
mm was masked, and an excimer laser beam was irradiated in an oxygen atmosphere to selectively introduce oxygen into the irradiation portion to manufacture a plurality of types of photovoltaic devices in which the laser power was changed. The product of the open circuit voltage Voc and the fill factor FF was measured for these manufactured photovoltaic devices. Figure 6
4 is a graph showing the relationship between laser power and Voc × FF. The value of Voc × FF in FIG.
It is standardized by the value of Voc × FF when J / cm 2 .

【0026】図6の結果から、レーザパワーが0.25
J/cm2 である場合にVoc×FFの値が最も大きくな
り、最適なレーザパワーが存在することが分かる。レー
ザパワーが強くなり過ぎると、下地の非晶質半導体層が
微結晶化して新たなリーク成分となる。
From the result of FIG. 6, the laser power is 0.25.
It can be seen that the value of Voc × FF becomes the largest when J / cm 2 , and the optimum laser power exists. When the laser power becomes too strong, the underlying amorphous semiconductor layer is microcrystallized and becomes a new leak component.

【0027】なお、エキシマレーザビームの代わりに、
他のエネルギビームを照射しても、また、スポット状プ
ラズマによる処理を施しても、同様の効果が得られるこ
とを確認した。
In place of the excimer laser beam,
It was confirmed that the same effect can be obtained by irradiating with another energy beam or by performing treatment with spot-shaped plasma.

【0028】(第3実施の形態)夫々にi型非晶質シリ
コン層2/p型非晶質シリコン層3及び透明導電膜4を
形成した複数の基板1を積み重ねて、その積重体の最表
面及び最裏面をダミーウエハを用いて固定治具にて覆っ
た状態で、第1実施の形態による酸素プラズマ処理また
は第2実施の形態によるエキシマレーザビームの照射処
理を行うことにより、各ウエハでの透明導電膜4の端部
を高抵抗化できる。この第3実施の形態では、一度に複
数枚のウエハに対する処理を行えるので、生産性が極め
て高い。
(Third Embodiment) A plurality of substrates 1 each having an i-type amorphous silicon layer 2 / p-type amorphous silicon layer 3 and a transparent conductive film 4 formed thereon are stacked, and a stack of the stacked substrates is stacked. By performing the oxygen plasma treatment according to the first embodiment or the excimer laser beam irradiation treatment according to the second embodiment in a state where the front and back surfaces are covered with a fixing jig using a dummy wafer, The end portion of the transparent conductive film 4 can have a high resistance. In the third embodiment, since a plurality of wafers can be processed at one time, the productivity is extremely high.

【0029】なお、酸素プラズマ処理,エネルギビーム
の照射処理以外に、HCl溶液への浸漬、または、HC
lプラズマ処理によっても、透明導電膜4の端部の高抵
抗化は可能である。また、半導体層として非晶質シリコ
ンを用いる場合について説明したが、結晶系シリコンに
て構成しても同様の効果を奏する。更に、透明導電膜4
としてITO膜を用いることとしたが、ZnO膜でも良
いことは勿論である。。また、基板の裏面にi型非晶質
シリコン,n型非晶質シリコン,透明導電膜,集電極を
形成した場合には、裏面側にも本発明を適用することが
できる。
In addition to the oxygen plasma treatment and the energy beam irradiation treatment, dipping in an HCl solution or HC
The resistance of the end portion of the transparent conductive film 4 can be increased by the plasma treatment. Although the case where amorphous silicon is used as the semiconductor layer has been described, the same effect can be obtained even if the semiconductor layer is made of crystalline silicon. Furthermore, the transparent conductive film 4
Although the ITO film is used as the above, it goes without saying that a ZnO film may be used. . Further, when the i-type amorphous silicon, the n-type amorphous silicon, the transparent conductive film, and the collector electrode are formed on the back surface of the substrate, the present invention can be applied to the back surface side.

【0030】[0030]

【発明の効果】以上のように本発明では、基板上に半導
体層及び透明導電膜を形成した後、透明導電膜の中央の
有効部分をマスキングして、端部のみを選択的に高抵抗
化するようにしたので、基板と余分な透明導電膜とのリ
ークを防止でき、高い歩留りと高い光電変換特性とを実
現することができる。
As described above, according to the present invention, after the semiconductor layer and the transparent conductive film are formed on the substrate, the effective portion at the center of the transparent conductive film is masked to selectively increase the resistance only at the end portions. By doing so, leakage between the substrate and the extra transparent conductive film can be prevented, and high yield and high photoelectric conversion characteristics can be realized.

【0031】また、酸素プラズマ処理または酸素雰囲気
中でのエネルギービーム照射処理によって、透明導電膜
の端部の高抵抗化を図るようにしたので、容易に高抵抗
化処理を行うことができる。
Further, since the end portions of the transparent conductive film are made to have a high resistance by the oxygen plasma treatment or the energy beam irradiation treatment in an oxygen atmosphere, the high resistance treatment can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施の形態による光起電力装置の製造方法
の工程図である。
FIG. 1 is a process drawing of a method for manufacturing a photovoltaic device according to a first embodiment.

【図2】第1実施の形態における酸素プラズマ処理時間
とシート抵抗との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between oxygen plasma treatment time and sheet resistance in the first embodiment.

【図3】第1実施の形態における酸素プラズマ処理時間
とVoc×FFとの関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the oxygen plasma processing time and Voc × FF in the first embodiment.

【図4】第2実施の形態による光起電力装置の製造方法
の工程図である。
FIG. 4 is a process drawing of the method for manufacturing the photovoltaic device according to the second embodiment.

【図5】第2実施の形態におけるレーザパワーとシート
抵抗との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between laser power and sheet resistance in the second embodiment.

【図6】第2実施の形態におけるレーザパワーとVoc×
FFとの関係を示すグラフである。
FIG. 6 shows laser power and Voc × in the second embodiment.
It is a graph which shows the relationship with FF.

【符号の説明】[Explanation of symbols]

1 基板 2 i型a−Si層 3 p型a−Si層 4 透明導電膜 5 集電極 6 裏面電極 7 マスク材 1 substrate 2 i-type a-Si layer 3 p-type a-Si layer 4 Transparent conductive film 5 collecting electrodes 6 Back electrode 7 Mask material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に半導体層,透明導電膜及び集電
極がこの順に形成されており、主に前記集電極側から光
を入射する光起電力装置を製造する方法において、前記
基板上に前記半導体層及び前記透明導電膜を形成し、形
成した前記透明導電膜の端部に選択的に高抵抗化処理を
施すことを特徴とする光起電力装置の製造方法。
1. A method for manufacturing a photovoltaic device in which a semiconductor layer, a transparent conductive film, and a collecting electrode are formed in this order on a substrate, and in the method for manufacturing a photovoltaic device in which light is mainly incident from the collecting electrode side, A method for manufacturing a photovoltaic device, comprising forming the semiconductor layer and the transparent conductive film, and selectively subjecting an end portion of the formed transparent conductive film to a resistance increasing treatment.
【請求項2】 前記高抵抗化処理は、酸素プラズマ処理
である請求項1記載の光起電力装置の製造方法。
2. The method for manufacturing a photovoltaic device according to claim 1, wherein the resistance increasing treatment is an oxygen plasma treatment.
【請求項3】 前記高抵抗化処理は、酸素雰囲気中での
エネルギービーム照射処理である請求項1記載の光起電
力装置の製造方法。
3. The method for manufacturing a photovoltaic device according to claim 1, wherein the resistance increasing treatment is an energy beam irradiation treatment in an oxygen atmosphere.
JP2001298513A 2001-09-27 2001-09-27 Photovoltaic device manufacturing method Expired - Lifetime JP4197863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001298513A JP4197863B2 (en) 2001-09-27 2001-09-27 Photovoltaic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298513A JP4197863B2 (en) 2001-09-27 2001-09-27 Photovoltaic device manufacturing method

Publications (2)

Publication Number Publication Date
JP2003101048A true JP2003101048A (en) 2003-04-04
JP4197863B2 JP4197863B2 (en) 2008-12-17

Family

ID=19119406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298513A Expired - Lifetime JP4197863B2 (en) 2001-09-27 2001-09-27 Photovoltaic device manufacturing method

Country Status (1)

Country Link
JP (1) JP4197863B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153831A (en) * 2014-02-12 2015-08-24 株式会社カネカ Solar cell and manufacturing method therefor, and solar cell module
CN106449815A (en) * 2016-08-11 2017-02-22 上海大学 Heterojunction solar cell device production method based on amorphous silicon thin films
CN106654067A (en) * 2017-01-11 2017-05-10 京东方科技集团股份有限公司 Touch control substrate, fabrication method thereof and display device
JP2017126750A (en) * 2016-01-14 2017-07-20 エルジー エレクトロニクス インコーポレイティド Solar cell
WO2019235219A1 (en) * 2018-06-05 2019-12-12 パナソニック株式会社 Solar battery cell, solar battery module, and method of manufacturing solar battery cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153831A (en) * 2014-02-12 2015-08-24 株式会社カネカ Solar cell and manufacturing method therefor, and solar cell module
JP2017126750A (en) * 2016-01-14 2017-07-20 エルジー エレクトロニクス インコーポレイティド Solar cell
CN106449815A (en) * 2016-08-11 2017-02-22 上海大学 Heterojunction solar cell device production method based on amorphous silicon thin films
CN106654067A (en) * 2017-01-11 2017-05-10 京东方科技集团股份有限公司 Touch control substrate, fabrication method thereof and display device
WO2019235219A1 (en) * 2018-06-05 2019-12-12 パナソニック株式会社 Solar battery cell, solar battery module, and method of manufacturing solar battery cell
CN112219284A (en) * 2018-06-05 2021-01-12 松下电器产业株式会社 Solar cell, solar cell module, and method for manufacturing solar cell

Also Published As

Publication number Publication date
JP4197863B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
EP1039554B1 (en) Method of manufacturing thin film solar cell-modules
JP3510740B2 (en) Manufacturing method of integrated thin-film solar cell
JPH09129904A (en) Photovoltaic element and its manufacture
JP2009512214A (en) Method for manufacturing n-type polycrystalline silicon solar cell
KR100343241B1 (en) Method for producing photovoltaic element
US20100323471A1 (en) Selective Etch of Laser Scribed Solar Cell Substrate
JP2020017763A (en) Manufacturing method of photoelectric conversion device
US9859454B2 (en) Photoelectric conversion device and fabrication method thereof
JP5520834B2 (en) Method for forming passivation film and method for manufacturing solar cell element
JPH0432552B2 (en)
JPH1079522A (en) Thin-film photoelectric conversion device and its manufacturing method
JP4171166B2 (en) Photovoltaic device and manufacturing method thereof
JP2000349325A (en) Thin film solar battery module
JP2002305315A (en) Method of forming semiconductor element, and semiconductor element
JP4197863B2 (en) Photovoltaic device manufacturing method
WO2019181834A1 (en) Method for producing solar cell, and solar cell
WO2020184706A1 (en) Method for producing back contact solar cell
JP4215697B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4440389B2 (en) Method for manufacturing thin film solar cell module
JPS6249753B2 (en)
JP2000277764A (en) Solar cell module
JP4052782B2 (en) Integrated photovoltaic device and method for manufacturing the same
JP2020150110A (en) Manufacturing method of back contact type solar cell
JP3065878B2 (en) Method of forming semiconductor thin film
JPH06232430A (en) Manufacture of photovoltaic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4