JPH0542834B2 - - Google Patents

Info

Publication number
JPH0542834B2
JPH0542834B2 JP58119931A JP11993183A JPH0542834B2 JP H0542834 B2 JPH0542834 B2 JP H0542834B2 JP 58119931 A JP58119931 A JP 58119931A JP 11993183 A JP11993183 A JP 11993183A JP H0542834 B2 JPH0542834 B2 JP H0542834B2
Authority
JP
Japan
Prior art keywords
thin film
solar cell
amorphous silicon
silicon compound
cell substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP58119931A
Other languages
Japanese (ja)
Other versions
JPS6010788A (en
Inventor
Kazunaga Tsushimo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP58119931A priority Critical patent/JPS6010788A/en
Publication of JPS6010788A publication Critical patent/JPS6010788A/en
Publication of JPH0542834B2 publication Critical patent/JPH0542834B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 本発明は太陽電池用基板に関する。さらに詳し
くは金属基体または絶縁物基体上に非晶質シリコ
ン化合物の薄膜を凹凸をつけて作製した上に電極
を設けてなる太陽電池用基板に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell substrate. More specifically, the present invention relates to a solar cell substrate formed by forming a thin film of an amorphous silicon compound on a metal substrate or an insulating substrate with irregularities, and then providing an electrode thereon.

従来、太陽電池の素板として可撓性、耐熱性に
優れたポリイミドなどの樹脂薄膜が使用されてき
たが、該樹脂薄膜だけをかかる素板に使用すると
非晶質シリコン系層をデポジシヨンするばあい太
陽電池全体がカールしてフラツトな太陽電池がえ
られないこと、変形のため均一に加熱されず温度
にむらが生じて均質な非晶質シリコン系層がえら
れないこと、またポリイミドなどの高分子樹脂薄
膜は加熱するとH2Oを放出するのでえられる太
陽電池の性能に支障をきたすことなど種々の問題
があつた。
Conventionally, resin thin films such as polyimide with excellent flexibility and heat resistance have been used as base plates for solar cells, but if only the resin thin film is used for such base plates, it will be difficult to deposit an amorphous silicon layer. The entire solar cell curls, making it impossible to obtain a flat solar cell.Due to deformation, it is not heated evenly, resulting in uneven temperature, making it impossible to obtain a homogeneous amorphous silicon layer. Polymer resin thin films have had various problems, including the fact that they emit H 2 O when heated, which interferes with the performance of the resulting solar cells.

本発明者らはそれらの問題を解決するものとし
て金属箔上に電気絶縁性の薄膜、金属薄膜、非晶
質シリコン系光起電力素子層そよび光透過性電極
層を積層してえられる耐熱薄膜太陽電池を開発し
すでに出願済である(特願昭56−203155号明細
書)。
In order to solve these problems, the present inventors have developed a heat-resistant film that can be obtained by laminating an electrically insulating thin film, a metal thin film, an amorphous silicon-based photovoltaic element layer, and a light-transmitting electrode layer on a metal foil. We have developed a thin film solar cell and have already filed an application (Japanese Patent Application No. 1983-203155).

また、ガラス上のITOまたはSnO2などの表面
を凹凸にする努力が続けられているが、透明導電
膜の性能が低下するうえ製造工程が複雑となるな
どの問題が生じる。
Further, efforts are being made to make the surface of ITO or SnO 2 on glass uneven, but this results in problems such as lowering the performance of the transparent conductive film and complicating the manufacturing process.

本発明者は薄膜太陽電池においてその特性は保
持したままでより太陽電池の性能を向上するべく
鋭意研究を重ねた結果、金属箔または絶縁体の板
を、光入射側と反対側に配置される基体となし、
該基体上に非晶質シリコン化合物の薄膜を形成し
てなる素板の該非晶質シリコン化合物の薄膜側表
面に非晶質半導体とオーミツク接触する薄膜電極
を設けてなる太陽電池用基板において、前記非晶
質シリコン化合物の薄膜が前記薄膜電極と接する
表面に直径約0.1〜5μm、高さ約0.1〜5μmのこぶ
状突起を多数有するように形成されたことを特徴
とする太陽電池用基板が耐熱性に優れた薄膜太陽
電池を提供するとともに該太陽電池の性能を向上
しうるものであることを見出し、本発明を完成す
るにいたつた。
As a result of extensive research in order to further improve the performance of thin-film solar cells while retaining their characteristics, the inventors of the present invention discovered that a metal foil or insulator plate is placed on the side opposite to the light incident side. base and pear,
A solar cell substrate comprising: a base plate having a thin film of an amorphous silicon compound formed on the substrate; and a thin film electrode in ohmic contact with the amorphous semiconductor on the surface of the thin film side of the amorphous silicon compound; A heat-resistant substrate for a solar cell, characterized in that a thin film of an amorphous silicon compound is formed so as to have a large number of knob-like protrusions with a diameter of about 0.1 to 5 μm and a height of about 0.1 to 5 μm on the surface in contact with the thin film electrode. The present inventors have discovered that it is possible to provide a thin-film solar cell with excellent properties and to improve the performance of the solar cell, and have completed the present invention.

すなわち本発明は上記耐熱性薄膜太陽電池に用
いれらた基板において電気絶縁性の薄膜として非
晶質シリコン化合物の薄膜を用い、該薄膜が太陽
電池が発電に利用できる光の波長程度の大きさの
こぶ状突起を多数有するように作製されたところ
に電極を設けることによりその表面を凹凸状とす
るものであり、それによつて受光面を通過し、透
明電極や光起電力素子層を介して基板に到達した
入射光または反射光が乱反射して光起電力素子層
の活性領域に取込まれる光量が増加する結果、太
陽電池の変換効率の改善、性能の向上が図られる
ことを見出したものである。
That is, the present invention uses a thin film of an amorphous silicon compound as an electrically insulating thin film in the substrate used in the heat-resistant thin film solar cell, and the thin film has a size approximately equal to the wavelength of light that the solar cell can use for power generation. The surface of the electrode is made uneven by providing an electrode on a fabric with many bump-like protrusions, so that the light passes through the receiving surface and is connected to the substrate via the transparent electrode and photovoltaic element layer. It was discovered that the incident light or reflected light that reaches the solar cell is diffusely reflected, increasing the amount of light that is taken into the active region of the photovoltaic element layer, thereby improving the conversion efficiency and performance of the solar cell. be.

以下、図面を参照しながら本発明を説明する。 The present invention will be described below with reference to the drawings.

第1図は本発明の太陽電池用基板の一実施態様
を例示する概念図、第2図は本発明の基板を用い
た太陽電池の一実施態様を例示する概念図であ
る。
FIG. 1 is a conceptual diagram illustrating one embodiment of a solar cell substrate of the present invention, and FIG. 2 is a conceptual diagram illustrating one embodiment of a solar cell using the substrate of the present invention.

第1図に例示した本発明の基板の実施例におい
ては金属箔またはガラス板の基板1、凹凸を有す
る非晶質シリコン化合物の薄膜2および薄膜電極
3より構成されている。
The embodiment of the substrate of the present invention illustrated in FIG. 1 is composed of a substrate 1 of metal foil or glass plate, a thin film 2 of an amorphous silicon compound having irregularities, and a thin film electrode 3.

本発明に用いられる基体1としては、たとえば
アルミニウム、銅、クロム、鉄、ニツケル、黄
銅、洋白、ステンレス銅などの厚さ5μm〜25μ
m、好ましくは50μm〜1μmの金属またはガラス
板などの絶縁体であつて、250〜300℃の耐熱性を
有し、かつ凹凸を有する非晶質シリコン化合物の
薄膜の形成に本質的に支障をきたすような突起や
ビツトを該薄膜形成側表面に含まないものであ
る。
The substrate 1 used in the present invention is made of, for example, aluminum, copper, chromium, iron, nickel, brass, nickel silver, stainless copper, etc. and has a thickness of 5 μm to 25 μm.
m, preferably 50 μm to 1 μm, is an insulator such as a metal or glass plate, has a heat resistance of 250 to 300°C, and has irregularities that essentially do not hinder the formation of a thin film of an amorphous silicon compound. The surface of the thin film forming side does not contain any protrusions or bits that may cause damage.

また本発明に用いられる非晶質シリコン化合物
の薄膜2は電気絶縁性を有し、室温での電気伝導
度が光照射時においても10-7(Ω・cm)-1以下、好
ましくは10-9(Ω・cm)-1以下のものである。非晶
質シリコン化合物としては一般式a−Si:H、a
−Si(1-x)C(x):H、a−Si(1-y)N(y):Hまたはa−
Si(1-x-y)C(x)N(y):Hなどで示される化合物よりな
るものが好ましく、さらにホウ素などの周期表第
族元素またはリンなどの周期表第族元素を微
量ドープすることにより電気絶縁性が向上する。
Further, the thin film 2 of the amorphous silicon compound used in the present invention has electrical insulating properties, and its electrical conductivity at room temperature is 10 -7 (Ω cm) -1 or less, preferably 10 - even when irradiated with light. 9 (Ω・cm) -1 or less. The amorphous silicon compound has the general formula a-Si:H, a
-Si (1-x) C (x) :H, a-Si (1-y) N (y) :H or a-
Si (1-xy) C (x) N (y) : It is preferable to use a compound represented by H, etc., and further dope a small amount of a periodic table group element such as boron or a periodic table group element such as phosphorus. This improves electrical insulation.

薄膜2の厚さは基体1を絶縁できる厚さであれ
ばよく最も薄いところで0.5μm、最も厚いところ
で100μmの範囲が好ましい。
The thickness of the thin film 2 is preferably in the range of 0.5 μm at its thinnest and 100 μm at its thickest as long as it can insulate the base 1.

本発明においては光を乱反射させるために薄膜
2はこぶ状突起を多数有するように形成される
が、該突起の大きさは直径約0.1〜5μm、高さ約
0.1〜5μm、好ましくは前2者とも0.2〜2μmであ
る。突起の大きさが約0.1〜5μmの範囲をはずれ
ると発電に有効な波長を有する光を効果的に乱反
射することができず好ましくない。
In the present invention, the thin film 2 is formed to have a large number of knob-like protrusions in order to diffusely reflect light, and the protrusions have a diameter of approximately 0.1 to 5 μm and a height of approximately
The thickness is 0.1 to 5 μm, preferably 0.2 to 2 μm for both. If the size of the protrusions is outside the range of about 0.1 to 5 μm, it is not preferable because light having a wavelength effective for power generation cannot be effectively reflected diffusely.

かから薄膜2はスパツタ蒸着法やグロー放電分
解法、アーク放電分解法またはメツキなどによつ
て基体1上に作製される。スパツタ蒸着法のばあ
いは多結晶のsic、Si3N4またはSiとグラフアイト
などをターゲツトにしてえられる。またグロー放
電分解法によつて上記こぶ状突起を作製する製膜
条件としては、とくにガス圧力、rfパワー、
SiH4の流量に配慮する必要がさるが一般にSiH4
の分解率が大きいほど好結果がえられる。なお、
製膜速度を向上させるためにはrf電界と少なくと
も部分的に直交した領域を有する磁界を備えてい
る装置を用いてグロー放電分解することができ
る。前記薄膜2の突起の大きさ(薄膜2の凹凸の
程度)は製造装置により異なるので一概には言え
ないが、印加するパワー、原料ガスの流量、製膜
温度などをコントロールすることにより所望の大
きさに調整することができる。一例を挙げると、
ガス流量100sccm、rfパワー600mW/cm2、製膜
温度200℃で製膜すれば、本願発明における特定
寸法の突起を形成することができる。さらに薄膜
材料として前記化合物a−Si(1-x)C(x):Hを選ぶ
ばあいその炭素源は不飽和炭化水素たとえば
C2H4などが好ましい。
The thin film 2 is formed on the substrate 1 by sputter deposition, glow discharge decomposition, arc discharge decomposition, plating, or the like. In the case of sputter deposition, polycrystalline SIC, Si 3 N 4 or Si and graphite can be used as targets. In addition, the film forming conditions for producing the above-mentioned bump-like protrusions by the glow discharge decomposition method include gas pressure, RF power,
It is necessary to consider the flow rate of SiH 4 , but in general, SiH 4
The higher the decomposition rate, the better the results. In addition,
To increase the deposition rate, glow discharge decomposition can be performed using an apparatus equipped with a magnetic field having a region at least partially orthogonal to the RF electric field. The size of the protrusions of the thin film 2 (degree of unevenness of the thin film 2) varies depending on the manufacturing equipment, so it cannot be stated unconditionally, but the desired size can be determined by controlling the applied power, the flow rate of the raw material gas, the film forming temperature, etc. It can be adjusted to For example,
If the film is formed at a gas flow rate of 100 sccm, an RF power of 600 mW/cm 2 , and a film forming temperature of 200° C., it is possible to form protrusions with specific dimensions according to the present invention. Furthermore, if the compound a-Si (1-x) C (x) :H is selected as the thin film material, the carbon source may be an unsaturated hydrocarbon, e.g.
C 2 H 4 and the like are preferred.

本発明に用いられる薄膜電極8は、たとえば
銀、アルミニウム、モリブデン、ステンレス銅、
アンチモン、クロム、ニクロム、白金などのよう
な適正な電気伝導度を有する金属またそれらのシ
リサイドなどの薄膜であるが、好ましくは光を効
果的に乱反射するために反射率の高い物質を用い
るのがよく、たとえばAg、Cu、AlまたはAuな
どの薄膜が有効に用いられる。
The thin film electrode 8 used in the present invention can be made of, for example, silver, aluminum, molybdenum, stainless copper,
Thin films such as metals with appropriate electrical conductivity such as antimony, chromium, nichrome, platinum, and their silicides, but preferably materials with high reflectivity are used to effectively diffuse light. Often, thin films such as Ag, Cu, Al or Au are effectively used.

かかる電極3を凹凸を有する非晶質シリコン化
合物の薄膜2上に300〜10000Åの厚さになるよう
に蒸着またはスパツタなどにより設けて本発明の
太陽電池用基板4をうる。電極3の厚さが300Å
未満であると充分な電気伝導性がえられず太陽電
池特性が低下してしまい、10000Åを超えると非
晶質シリコン化合物の薄膜の凹凸を減少させいず
れも好ましくない。
Such an electrode 3 is provided on a thin film 2 of an amorphous silicon compound having irregularities to a thickness of 300 to 10,000 Å by vapor deposition or sputtering to obtain a solar cell substrate 4 of the present invention. The thickness of electrode 3 is 300Å
When it is less than 10,000 Å, sufficient electrical conductivity cannot be obtained and the solar cell characteristics deteriorate, and when it exceeds 10,000 Å, the unevenness of the thin film of the amorphous silicon compound is reduced, both of which are undesirable.

さらに電極3としAg、Cu、Cr、Ni、Al、Pt
またはAuなどの薄膜上に酸化物、フツ化物もし
くは他の金属などの保護材料をごく薄く形成した
ものを使用すると電極としての機能や性能が安定
する。または前記保護材料として透明導電性の材
料を用いるばあいは上記におけるよりも厚く形成
してよい。
Furthermore, as electrode 3, Ag, Cu, Cr, Ni, Al, Pt
Alternatively, the function and performance of the electrode will be stabilized by using a thin film such as Au with a very thin layer of protective material such as oxide, fluoride or other metal formed thereon. Alternatively, if a transparent conductive material is used as the protective material, it may be formed thicker than the above.

かくしてえられた太陽電池用基板4を用いて製
造された太陽電池においては既述したごとく入射
光が基板4の薄膜電極3表面で乱反射する結果、
光起電力素子層の活性領域に取込まれる光量が増
加し、太陽電池の性能を向上するが、第2図に例
示したごとく、まず基体1としてSUS基体、非
晶質シリコン化合物の薄膜2としてSiH4とC2H4
とをグロー放電分解してえられたa−Si0.2C0.8
Hで表わされる化合物の厚さ5μmの電気絶縁化
膜および薄膜電極3として厚さ1000ÅのAg薄膜
上にSnO2を200Åの厚さに保護コーテイングした
金属薄膜を用いて作製した基板4の上にプラズグ
ロー放電法またはスパツタ蒸着法によりたとえば
非晶質シリコン系光起電力素子層5を形成し、さ
らにたとえばITO、SnO2またはITOとSnO2との
複合層などからなる光透過性電極層6を蒸着形成
することにより製造された太陽電池においては受
光面7からの入射光または一旦太陽電池内に入射
したのちの反射光が基板4の薄膜電極3表面で乱
反射する結果、光起電子素子層5の活性領域に取
込まれる光量が増加し、太陽電池の変換効率が改
善されて性能が向上するのが認められた。
In the solar cell manufactured using the thus obtained solar cell substrate 4, as described above, the incident light is diffusely reflected on the surface of the thin film electrode 3 of the substrate 4.
The amount of light taken into the active region of the photovoltaic element layer increases, improving the performance of the solar cell. SiH4 and C2H4
a-Si 0.2 C 0.8 obtained by glow discharge decomposition of:
A substrate 4 was prepared using a 5 μm thick electrical insulating film of a compound represented by H and a metal thin film formed by a 1000 Å thick Ag thin film and a 200 Å thick protective coating of SnO 2 as the thin film electrode 3. For example, an amorphous silicon-based photovoltaic element layer 5 is formed by a plasma glow discharge method or a sputter deposition method, and a light-transmitting electrode layer 6 made of, for example, ITO, SnO 2 or a composite layer of ITO and SnO 2 is deposited. In the solar cell manufactured by forming the photovoltaic element layer 5, the incident light from the light-receiving surface 7 or the reflected light after once entering the solar cell is diffusely reflected on the surface of the thin film electrode 3 of the substrate 4. It was observed that the amount of light absorbed into the active region was increased, and the conversion efficiency of the solar cell was improved, resulting in improved performance.

さらに第2図に概念的に例示したように、本発
明の基板4上に光起電力素子層5および光透過性
電極層6をプラズマグロー放電法またはスパツタ
蒸着法などによつて形成する際、形成条件を選ぶ
ことにより基板4の薄膜電極3表面の凹凸パター
ン構造が該光起電力素子層5および電極層6に保
持され、いきおい太陽電池の受光面7に凹凸パタ
ーン構造が現われる。
Furthermore, as conceptually illustrated in FIG. 2, when forming the photovoltaic element layer 5 and the light-transmitting electrode layer 6 on the substrate 4 of the present invention by a plasma glow discharge method or a sputter deposition method, By selecting formation conditions, the uneven pattern structure on the surface of the thin film electrode 3 of the substrate 4 is retained in the photovoltaic element layer 5 and the electrode layer 6, and the uneven pattern structure appears on the light receiving surface 7 of the Ikioi solar cell.

かかる太陽電池においては入射光は受光面7お
よび各接合部分においても乱反射し、薄膜電極3
表面での乱反射と相乗する結果、光起電力素子層
5に取込まれる光量がさらに増加する。
In such a solar cell, incident light is also diffusely reflected at the light receiving surface 7 and each junction, and the thin film electrode 3
As a result of combining with the diffused reflection on the surface, the amount of light taken into the photovoltaic element layer 5 further increases.

本発明の基板4上に形成する光起電力素子層5
としては、たとえばp−i−n接合型半導体、p
−n接合型半導体、ヘテロ接合型半導体、p−i
−n−p−i−nなどの多層接合半導体など従来
より太陽電池に用いられている半導体層が適用さ
れる。
Photovoltaic element layer 5 formed on substrate 4 of the present invention
For example, p-i-n junction type semiconductor, p
-n junction semiconductor, heterojunction semiconductor, p-i
- Semiconductor layers conventionally used in solar cells, such as multilayer junction semiconductors such as n-p-i-n, are applied.

また本発明の基板4を用いて製造した太陽電池
の受光面7上にさらに酸化ジルコニウム膜などの
反射防止膜や種々の保護膜などが形成されてもよ
い。
Furthermore, an anti-reflection film such as a zirconium oxide film, various protective films, etc. may be further formed on the light-receiving surface 7 of the solar cell manufactured using the substrate 4 of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の太陽電池用基板の一実施態様
を例示する概念図および第2図は本発明の基板を
用いた太陽電池の一実施態様を例示する概念図で
ある。 (図面の符号)、1:基体、2:非晶質シリコ
ン化合物の薄膜、3:薄膜電極、4:太陽電池用
基板、5:光起電力素子層、6:光透過性電極
層、7:受光面。
FIG. 1 is a conceptual diagram illustrating an embodiment of a solar cell substrate of the present invention, and FIG. 2 is a conceptual diagram illustrating an embodiment of a solar cell using the substrate of the present invention. (Symbols in drawings), 1: Substrate, 2: Thin film of amorphous silicon compound, 3: Thin film electrode, 4: Substrate for solar cell, 5: Photovoltaic element layer, 6: Light-transparent electrode layer, 7: Light receiving surface.

Claims (1)

【特許請求の範囲】 1 金属箔または絶縁体の板を、光人射側と反対
側に配置される基体となし、該基体上に非晶質シ
リコン化合物の薄膜を形成してなる素板の該非晶
質シリコン化合物の薄膜側表面に非晶質半導体と
オーミツク接触する薄膜電極を設けてなる太陽電
池用基板において、前記非晶質シリコン化合物の
薄膜が前記薄膜電極と接する表面に直径0.1〜5μ
m、高さ0.1〜5μmのこぶ状突起を多数有するよ
うに形成されたことを特徴とする太陽電池用基
板。 2 前記非晶質シリコン化合物の薄膜の室温での
電気伝導度が光照射時においても10-7(Ω・cm)-1
以下である特許請求の範囲第1項記載の太陽電池
用基板。 3 前記非晶質シリコン化合物の薄膜の室温での
電気伝導度が光照射時においても10-9(Ω・cm)-1
以下である特許請求の範囲第1項記載の太陽電池
用基板。 4 前記非晶質シリコン化合物の薄膜の厚さが
0.5〜100μmである特許請求の範囲第1項記載の
太陽電池用基板。 5 前記非晶質シリコン化合物が一般式a−Si:
H、a−Si(1-x)C(x):H、a−Si(1-y)N(y):Hまた
はa−Si(1-x-y)C(x)N(y):Hで示される特許請求の
範囲第1項記載の太陽電池用基板。 6 前記非晶質シリコン化合物が微量の周期表第
族元素または第V族元素でドープされた特許請
求の範囲第1項記載の太陽電池用基板。 7 前記周期表第族元素、第V族元素がそれぞ
れホウ素、リンである特許請求の範囲第1項記載
の太陽電池用基板。 8 前記非晶質シリコン化合物の薄膜が、rf電界
と少なくとも部分的に直交した領域を有する磁界
を備えている装置を用いてグロー放電分解により
形成される特許請求の範囲第1項記載の太陽電池
用基板。 9 前記薄膜電極がAg、Cu、Cr、Ni、Al、Pt、
Auまたはそれらのシリサイドの薄膜である特許
請求の範囲第1項記載の太陽電池用基板。 10 前記薄膜電極の厚さが300〜10000Åである
特許請求の範囲第1項記載の太陽電池用基板。 11 前記薄膜電極がAg、Cu、Cr、Ni、Al、
PtまたはAuの薄膜上に酸化物、フツ化物もしく
は他の金属をごく薄く形成せしめたものである特
許請求の範囲第1項記載の太陽電池用基板。
[Scope of Claims] 1. A base plate formed by using a metal foil or an insulating plate as a base disposed on the side opposite to the light emission side, and forming a thin film of an amorphous silicon compound on the base. In a solar cell substrate comprising a thin film electrode in ohmic contact with an amorphous semiconductor on the thin film side surface of the amorphous silicon compound, the thin film of the amorphous silicon compound has a diameter of 0.1 to 5 μm on the surface in contact with the thin film electrode.
1. A substrate for a solar cell, characterized in that it is formed to have a large number of knob-like protrusions with a height of 0.1 to 5 μm. 2 The electrical conductivity of the thin film of the amorphous silicon compound at room temperature is 10 -7 (Ω cm) -1 even when irradiated with light.
A solar cell substrate according to claim 1, which is as follows. 3 The electrical conductivity of the thin film of the amorphous silicon compound at room temperature is 10 -9 (Ω cm) -1 even when irradiated with light.
A solar cell substrate according to claim 1, which is as follows. 4 The thickness of the thin film of the amorphous silicon compound is
The solar cell substrate according to claim 1, which has a thickness of 0.5 to 100 μm. 5 The amorphous silicon compound has the general formula a-Si:
H, a-Si (1-x) C (x) :H, a-Si (1-y) N (y) :H or a-Si (1-xy) C (x) N (y) :H A solar cell substrate according to claim 1, which is represented by: 6. The solar cell substrate according to claim 1, wherein the amorphous silicon compound is doped with a trace amount of a group element or a group V element of the periodic table. 7. The solar cell substrate according to claim 1, wherein the Group V element and the Group V element of the periodic table are boron and phosphorus, respectively. 8. The solar cell of claim 1, wherein the thin film of amorphous silicon compound is formed by glow discharge decomposition using an apparatus comprising a magnetic field having a region at least partially perpendicular to the RF electric field. board for. 9 The thin film electrode is Ag, Cu, Cr, Ni, Al, Pt,
The solar cell substrate according to claim 1, which is a thin film of Au or a silicide thereof. 10. The solar cell substrate according to claim 1, wherein the thin film electrode has a thickness of 300 to 10,000 Å. 11 The thin film electrode is Ag, Cu, Cr, Ni, Al,
2. The solar cell substrate according to claim 1, wherein a very thin layer of oxide, fluoride or other metal is formed on a thin film of Pt or Au.
JP58119931A 1983-06-30 1983-06-30 Substrate for solar cell Granted JPS6010788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58119931A JPS6010788A (en) 1983-06-30 1983-06-30 Substrate for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58119931A JPS6010788A (en) 1983-06-30 1983-06-30 Substrate for solar cell

Publications (2)

Publication Number Publication Date
JPS6010788A JPS6010788A (en) 1985-01-19
JPH0542834B2 true JPH0542834B2 (en) 1993-06-29

Family

ID=14773711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58119931A Granted JPS6010788A (en) 1983-06-30 1983-06-30 Substrate for solar cell

Country Status (1)

Country Link
JP (1) JPS6010788A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2846677B2 (en) * 1989-11-27 1999-01-13 キヤノン株式会社 Photovoltaic element
JPH03190283A (en) * 1989-12-20 1991-08-20 Sanyo Electric Co Ltd Formation of photovoltaic device
JPH0763669B2 (en) * 1990-05-11 1995-07-12 東洋製罐株式会社 Seamless can holding material
EP1548852B1 (en) 2003-12-22 2013-07-10 Samsung Electronics Co., Ltd. Top-emitting nitride-based light emitting device and method of manufacturing the same
DE202009018249U1 (en) * 2009-07-10 2011-05-19 EppsteinFOILS GmbH & Co.KG, 65817 Composite system for photovoltaic modules

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857756A (en) * 1981-10-01 1983-04-06 Agency Of Ind Science & Technol Amorphous silicon solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857756A (en) * 1981-10-01 1983-04-06 Agency Of Ind Science & Technol Amorphous silicon solar battery

Also Published As

Publication number Publication date
JPS6010788A (en) 1985-01-19

Similar Documents

Publication Publication Date Title
US5127964A (en) Flexible photovoltaic device
US5296045A (en) Composite back reflector for photovoltaic device
US4605813A (en) Amorphous silicon solar battery
US5603778A (en) Method of forming transparent conductive layer, photoelectric conversion device using the transparent conductive layer, and manufacturing method for the photoelectric conversion device
JP3801342B2 (en) Solar cell substrate, manufacturing method thereof, and semiconductor element
JP2014103259A (en) Solar cell, solar cell module, and method of manufacturing the same
EP0311690A1 (en) Integrated solar battery and method of producing the same
JP2000058888A (en) Solar battery and manufacture thereof
JP3025179B2 (en) Method for forming photoelectric conversion element
JPH0542834B2 (en)
JP3653379B2 (en) Photovoltaic element
JPH0864850A (en) Thin film solar battery and fabrication thereof
JPH0566753B2 (en)
JPS58103178A (en) Heat resistant thin film solar battery
JPH065770B2 (en) Manufacturing method of heat-resistant thin film photoelectric conversion element
JPH08288529A (en) Photoelectric conversion device and manufacture thereof
JP2975751B2 (en) Photovoltaic device
JP2648698B2 (en) Heat-resistant solar cell
JP3049889B2 (en) Solar cell and manufacturing method thereof
JPS58176977A (en) Flexible thin film photovoltaic apparatus
JPS6310590B2 (en)
JP3063326B2 (en) Solar cell and manufacturing method thereof
JPH06112514A (en) Manufacture of photoelectric conversion semiconductor device
JPH02205078A (en) Flexible photoelectric transducer
JP2815688B2 (en) Manufacturing method of thin film solar cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees