JPS61144877A - Production of semiconductor device - Google Patents

Production of semiconductor device

Info

Publication number
JPS61144877A
JPS61144877A JP26793584A JP26793584A JPS61144877A JP S61144877 A JPS61144877 A JP S61144877A JP 26793584 A JP26793584 A JP 26793584A JP 26793584 A JP26793584 A JP 26793584A JP S61144877 A JPS61144877 A JP S61144877A
Authority
JP
Japan
Prior art keywords
layer
mask layer
gate
film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26793584A
Other languages
Japanese (ja)
Inventor
Homare Matsumura
松村 誉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26793584A priority Critical patent/JPS61144877A/en
Publication of JPS61144877A publication Critical patent/JPS61144877A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a semiconductor device with low-melting point metallic gate which is capable of high-speed switching operation and suited for miniaturization, by a method wherein a gate is formed on an opening after the mask layer at the time of ion injection has been removed so as to form source and drain diffusion layers and a gate electrode self-matchingly. CONSTITUTION:An insulation film 2 of SiO2 is formed on a p type Si substrate, and an opening is partially opened on the film to form an element region. The region is heat-oxidized to form an insulation film 3 to evaporate Al on the film. Then, the Al is removed to form a mask layer 4 of Al with the photoetching method on the part which is to be a channel region. As is ion- injected to form a high-concentration n type impurity layer 5. An inter-layer insulation film 6 is formed, and a mask layer 4 is exposed with flatening etching method. Then, the layer 4 and lower insulation layer of SiO2 are removed to form a gate insulation film 7 of SiO2 on this part. An opening is opened on the film 6 onthe layer 5 to form a contact hole 10, and Al is evaporated over the surface, and a source electrode, drain electrode 8, and gate electrode 9 are formed to obtain a MOST.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関するもので、特にア
ルミニウム(八1)等の低融点金属をゲート電極、に用
いたMO8型半導体装置のIIJ造に使用されるもので
ある。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a MO8 type semiconductor device using a low melting point metal such as aluminum (81) for the gate electrode. It is used for.

〔発明の技術的背景〕[Technical background of the invention]

低融点金属をゲート電極に用いたMO8型半導体装置、
例えばアルミニウムゲートMO8型半導体装置の製造に
おいては、ゲート電極形成後にアルミニウムの融点(6
60℃)程度以上の高温の熱処理をすることができない
ので、ソース・ドレイン拡散層はゲート電極形成前に形
成されるのが一般的である。従って、ソース・ドレイン
拡散層とゲート電極とは自己整合的に形成されない。換
言すれば、ソース・ドレイン拡散層の端とゲート電極の
端とが重なり合い、両者の端を一致させることができな
かった。
MO8 type semiconductor device using a low melting point metal for the gate electrode,
For example, in manufacturing an aluminum gate MO8 type semiconductor device, the melting point of aluminum (6
Since heat treatment at a high temperature of about 60° C. or higher cannot be performed, the source/drain diffusion layer is generally formed before forming the gate electrode. Therefore, the source/drain diffusion layer and the gate electrode are not formed in a self-aligned manner. In other words, the edges of the source/drain diffusion layer and the edge of the gate electrode overlapped, and it was not possible to make the two edges coincide.

このため、従来からソース・ドレイン拡散層とゲート電
極とを自己整合的に製造する方法が開発されている。
For this reason, methods have been developed for manufacturing source/drain diffusion layers and gate electrodes in a self-aligned manner.

以下、添付図面の第2図を参照して、従来技術による自
己整合可能なアルミニウムゲートMO8型半導体装置の
製造方法を、NチャンネルMOSトランジスタの製造工
程を例として説明する。まず第2図(a)のように、P
型シリコン基板11上に二酸化シリコン膜からなる絶縁
膜12を被着し、素子領域に対応する部分を選択的に開
孔してシリコン基板を露出させる。
Hereinafter, with reference to FIG. 2 of the accompanying drawings, a method of manufacturing a self-alignable aluminum gate MO8 type semiconductor device according to the prior art will be described, taking as an example the manufacturing process of an N-channel MOS transistor. First, as shown in Figure 2(a), P
An insulating film 12 made of a silicon dioxide film is deposited on a mold silicon substrate 11, and holes are selectively opened in portions corresponding to element regions to expose the silicon substrate.

次に第2図(b)のように、露出したシリコン基板11
の表面に薄い二酸化シリコン膜13を形成した後、写真
蝕刻法によりチャンネルとなる部分を含む領域上にレジ
スト14を残し、このレジスト14をマスクにしてN型
不純物をイオン注入して高濃度ソース・ドレイン拡散層
15を形成する。
Next, as shown in FIG. 2(b), the exposed silicon substrate 11
After forming a thin silicon dioxide film 13 on the surface of the channel, a resist 14 is left on the region including the channel portion by photolithography, and using this resist 14 as a mask, N-type impurities are ion-implanted to form a high-concentration source. A drain diffusion layer 15 is formed.

さらに第2図(C)のように、CVD法等によって全表
面に層間絶縁膜16を堆積し、写真蝕刻法で素子領域内
の高濃度ソース・ドレイン層にまたがる領域を開孔する
(第2図(d))。その後、新たに二酸化シリコン膜を
例えば熱酸化法によって成長させ、第2図(e)のよう
にゲート絶縁膜17とし、再度、写真蝕刻法によって高
濃度ソース・ドレイン拡散1!15上の眉間絶縁膜を開
孔してコンタクトホール21を形成する。
Furthermore, as shown in FIG. 2(C), an interlayer insulating film 16 is deposited on the entire surface by CVD or the like, and holes are formed in the region spanning the high concentration source/drain layers in the element region by photolithography (second Figure (d)). Thereafter, a new silicon dioxide film is grown by, for example, a thermal oxidation method to form a gate insulating film 17 as shown in FIG. A contact hole 21 is formed by opening the film.

次いで、アルミニウムを蒸着させ、写真蝕刻法により、
ソース・ドレイン電極18およびゲート電極19を形成
するが、この場合においてはゲート電極19が高濃度ソ
ース・ドレイン拡散層領域上に重ならないようにして行
なう。続いて、ゲート電極19をマスクとしてN型不純
物をイオン注入し、第2図(f)のように、ゲート電極
19と高濃度ソース・ドレイン拡散層15の間に、これ
らを連継する不純物1i20を形成する。そして、アル
ミニウムの融点以下の温度で熱処理を行なって不純物1
lI20を活性化させると共に、しきい値電圧の安定化
を図り、第2図(lのような半導体装置が製造される。
Next, aluminum was deposited and photolithographically applied.
Source/drain electrodes 18 and gate electrodes 19 are formed in such a way that gate electrodes 19 do not overlap the heavily doped source/drain diffusion layer regions. Next, N-type impurity ions are implanted using the gate electrode 19 as a mask, and as shown in FIG. form. Then, heat treatment is performed at a temperature below the melting point of aluminum to remove impurities.
By activating lI20 and stabilizing the threshold voltage, a semiconductor device as shown in FIG. 2 (l) is manufactured.

このようにして製造された半導体装置では、不純物層2
0がゲート電極19と自己整合に形成されるので、ゲー
ト電極の端部とソース・ドレイン領域のM部との重複は
なくなる。
In the semiconductor device manufactured in this way, the impurity layer 2
0 is formed in self-alignment with the gate electrode 19, so there is no overlap between the end of the gate electrode and the M portion of the source/drain region.

〔背景技術の問題点〕[Problems with background technology]

以上のような製造方法においては、ゲート電極よりも先
に形成されるソース・ドレイン拡散層はアルミニウムの
ような低融点合金が被着される前に形成されるため、1
000℃以上の高温の熱処理が可能となり、十分な活性
化を行なうことができる。従って、ソース・ドレイン拡
散層は抵抗値の小さな拡散層となる。
In the above manufacturing method, the source/drain diffusion layer, which is formed before the gate electrode, is formed before a low melting point alloy such as aluminum is deposited, so
It becomes possible to perform heat treatment at a high temperature of 000° C. or higher, and sufficient activation can be performed. Therefore, the source/drain diffusion layer becomes a diffusion layer with a small resistance value.

しかしながら、ゲート電極との自己整合のために形成さ
れる不純物1120は、アルミニウムの融点濃度程度(
660℃)にしか熱処理することができないため、十分
な活性化ができず、抵抗値が高くなる。このため、動作
時にはソース1F111と、チャンネル間、ドレインf
fi!fAとチャンネル間に高い抵抗が生じてコンダク
タンスの低下をまねき、高速スイッチング動作が難しく
なる。また、ゲート電極をソース・ドレイン拡散層に重
ならないような余裕をもって形成する必要があるので微
細化、高集積化に適していないという欠点を有する。
However, the impurity 1120 formed for self-alignment with the gate electrode has a concentration around the melting point of aluminum (
Since the heat treatment can only be performed at a temperature of 660° C., sufficient activation is not possible, resulting in a high resistance value. Therefore, during operation, between the source 1F111 and the channel, the drain f
Fi! A high resistance is generated between fA and the channel, leading to a decrease in conductance and making high-speed switching operation difficult. Furthermore, since the gate electrode needs to be formed with enough margin to avoid overlapping the source/drain diffusion layer, it has the disadvantage that it is not suitable for miniaturization and high integration.

〔発明の目的) 本発明は上記の如き従来技術の欠点を解決するためにな
されたもので、極めて抵抗値の小さいソース・ドレイン
拡散層とゲート電極とを自己整合可能に形成することで
、高速スイッチング動作ができ、さらには微細化に適し
た低融点金属ゲート電極を有する半導体装置の製造方法
を提供することを目的とする。
[Purpose of the Invention] The present invention has been made to solve the above-mentioned drawbacks of the conventional technology, and by forming source/drain diffusion layers with extremely low resistance values and gate electrodes in a self-alignable manner, high-speed operation can be achieved. It is an object of the present invention to provide a method for manufacturing a semiconductor device having a low melting point metal gate electrode that can perform a switching operation and is suitable for miniaturization.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明は、チャンネル間域とな
る部分に絶縁膜を介してマスク層を形成してこれを不純
物イオン注入時のマスクとし、次いで層間絶縁膜を形成
し、平坦化技術により平らにした後にマスク層を選択的
に除去し、その後このマスク層を取り除いた跡の開口部
にゲート絶縁膜を形成するようにした半導体装置の製造
方法を提供するものである。
In order to achieve the above object, the present invention forms a mask layer through an insulating film in the area that will become the inter-channel region, uses this as a mask during impurity ion implantation, then forms an interlayer insulating film, and uses planarization technology to A method of manufacturing a semiconductor device is provided, in which a mask layer is selectively removed after flattening, and a gate insulating film is then formed in an opening where the mask layer is removed.

(発明の実施例) 以下、添付図面の第1図を参照して本発明の一実施例を
説明する。
(Embodiment of the Invention) Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 of the accompanying drawings.

第1図は同実施例に係る製造方法によってNチャンネル
へ1ゲートMO8t−ランジスタを形成するための、半
導体装置の製造工程の断面図である。
FIG. 1 is a cross-sectional view of the manufacturing process of a semiconductor device for forming a 1-gate MO8T-transistor into an N channel by the manufacturing method according to the same embodiment.

まず、P型シリコン基板1上に熱酸化で二酸化シリコン
膜を厚さ5000人に成長させて第1の絶縁膜2を形成
する。そして、第1図(a)のように、写真蝕刻法でこ
の第1の絶縁I12を部分的に開口して基板1上に素子
領域を形成する。
First, a first insulating film 2 is formed by growing a silicon dioxide film to a thickness of 5000 nm on a P-type silicon substrate 1 by thermal oxidation. Then, as shown in FIG. 1(a), the first insulator I12 is partially opened by photolithography to form an element region on the substrate 1. Then, as shown in FIG.

次に、この素子領域上に熱酸化で二酸化シリコン膜を厚
さ500八に成長させて第2の絶縁膜3を形成し、全表
面に厚さ5000Aのアルミニウムを蒸着させ、写真蝕
刻法によりアルミニウムを除去して、第1図(b)のよ
うにチャンネル領域となる部分にだけアルミニウムのマ
スクl!14を形成する。ここで、このマスク層はイオ
ン注入時にマスクとなると共に後工程で簡単に、かつ選
択的に除去ができる金属であれば、アルミニウム以外の
ものであってもよい。次いで、加速電圧80KVで5×
1015/aiのヒ素をイオン注入し、第1図(b)の
ような高濃度N型不純物層5を形成する。この場合、チ
ャンネルとなるEa域には前記マスク層4が形成されて
いるのでイオン注入は行なわれない。
Next, a second insulating film 3 is formed by growing a silicon dioxide film to a thickness of 5,000 Å on the entire surface by thermal oxidation, and aluminum is deposited to a thickness of 5,000 Å on the entire surface, and a second insulating film 3 is formed by photolithography. is removed, and an aluminum mask l! is applied only to the portion that will become the channel region, as shown in FIG. 1(b). form 14. Here, this mask layer may be made of a metal other than aluminum as long as it serves as a mask during ion implantation and can be easily and selectively removed in a subsequent process. Then, 5× at an accelerating voltage of 80KV
Arsenic ions of 1015/ai are ion-implanted to form a high concentration N-type impurity layer 5 as shown in FIG. 1(b). In this case, since the mask layer 4 is formed in the Ea region which becomes the channel, ion implantation is not performed.

次いで、例えばプラズマCVD法のような低温気相成長
法により1.0μmの厚さの二酸化シリコンを堆積して
、第1図(C)のように層間絶縁膜6を形成する。その
後、公知の平坦化技術を用いて最上部からエツチングを
行ない、平らにする。
Next, silicon dioxide is deposited to a thickness of 1.0 μm by low-temperature vapor phase growth such as plasma CVD to form interlayer insulating film 6 as shown in FIG. 1(C). It is then etched from the top using known planarization techniques to make it planar.

なおこのエツチングは、第1図(d)の如くマスク層4
が露出するまで行なう。そして、露出したマスク層4を
エツチングで除去した後、マスク層4の下部に形成され
ている第2の絶縁層3を除去し、この部分に例えば熱酸
化法で純粋な二酸化シリコン幕を500人の厚さで成長
させて、第1図(e)のようにゲート絶縁膜7を形成す
る。
Note that this etching is performed on the mask layer 4 as shown in FIG. 1(d).
Continue until exposed. Then, after removing the exposed mask layer 4 by etching, the second insulating layer 3 formed under the mask layer 4 is removed, and a pure silicon dioxide film is applied to this part using, for example, a thermal oxidation method. The gate insulating film 7 is formed as shown in FIG. 1(e).

次いで、この状態で高温(例えばi ooo℃)での熱
処理を行なって高濃度N型不純物層5を十分に活性化さ
せ、そののち写真蝕刻法で高濃度N型不純物層5上の厚
い層間絶縁116を部分的に開口してコンタクトホール
10を形成する(第1図(f))。そして、全表面にア
ルミニウムを例えば約1μの厚さで蒸着し、第1図(9
)のようにソース電極、ドレイン電極8およびゲート電
極9を形成する。なお、以後は公知のアルミニウムゲー
トMOSトランジスタの製造工程に従って処理を行ない
半導体装置を製造する。
Next, in this state, a heat treatment is performed at a high temperature (for example, Iooo°C) to sufficiently activate the high concentration N-type impurity layer 5, and then a thick interlayer insulation layer on the high concentration N-type impurity layer 5 is formed by photolithography. 116 is partially opened to form a contact hole 10 (FIG. 1(f)). Then, aluminum is deposited on the entire surface to a thickness of about 1 μm, for example, as shown in Fig. 1 (9).
), a source electrode, a drain electrode 8 and a gate electrode 9 are formed. Note that the subsequent processing is performed in accordance with a known manufacturing process for aluminum gate MOS transistors to manufacture a semiconductor device.

従ってこの方法によれば、ソース・ドレイン拡@層とな
る高濃度N型不純物層をイオン注入する際のマスクとな
るマスク層を除去した跡に、ゲート電極9を形成するこ
とになるので、ゲート電極9と不純物層5とを自己整合
的に形成することができる。
Therefore, according to this method, the gate electrode 9 is formed in the area where the mask layer that is used as a mask when ion-implanting the high concentration N-type impurity layer that will become the source/drain expansion layer is removed. Electrode 9 and impurity layer 5 can be formed in a self-aligned manner.

なお、以上の方法はNチャンネルMO8型半導体装置の
製造について説明したが、本発明はPチャンネルMO8
型半導体装置の製造にも応用することができる。
Note that the above method has been described for manufacturing an N-channel MO8 type semiconductor device, but the present invention is applicable to manufacturing a P-channel MO8 type semiconductor device.
It can also be applied to the manufacture of type semiconductor devices.

〔発明の効果〕〔Effect of the invention〕

上記の如く本発明によれば、イオン注入の際のマスク層
を取り除いた跡にゲートを形成することにより、ソース
・ドレイン拡散層とゲート電極とを自己整合的に形成で
きるので、シリーズ抵抗によるコンダクタンスの低下が
少なく、従って高速スイッチング動作が可能であり、か
つ微細化に適した低融点金属ゲートの半導体装置の製造
方法が得られる。また、従来技術ではゲート絶縁膜を形
成する際に写真蝕刻法が不可欠であるのに比べ、本発明
ではこれが必要なく、従ってマスク合せ工程を1回少な
くして、その分だけ製品のコストダウンを図ることが可
能である。
As described above, according to the present invention, by forming the gate in the area where the mask layer was removed during ion implantation, the source/drain diffusion layer and the gate electrode can be formed in a self-aligned manner, so that the conductance due to the series resistance can be reduced. A method for manufacturing a semiconductor device with a low-melting-point metal gate, which exhibits a small decrease in performance, enables high-speed switching operation, and is suitable for miniaturization can be obtained. In addition, in contrast to the conventional technology, which requires photolithography to form a gate insulating film, this invention does not require this process, thus reducing the number of mask alignment steps by one, thereby reducing the cost of the product. It is possible to achieve this goal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る製造方法を説明するた
めの半導体装置の断面図、第2図は従来技術による製造
工程を説明するための半導体装置の断面図である。 1・・・シリコン、2・・・第1の絶縁膜、3・・・第
2の絶縁膜、4・・・マスク層、5・・・不純物層、6
・・・層間絶縁膜、7・・・ゲート絶縁膜。
FIG. 1 is a sectional view of a semiconductor device for explaining a manufacturing method according to an embodiment of the present invention, and FIG. 2 is a sectional view of a semiconductor device for explaining a manufacturing process according to a conventional technique. DESCRIPTION OF SYMBOLS 1... Silicon, 2... First insulating film, 3... Second insulating film, 4... Mask layer, 5... Impurity layer, 6
...Interlayer insulating film, 7... Gate insulating film.

Claims (1)

【特許請求の範囲】 1、半導体基板上に第1の絶縁膜を形成したのち素子領
域に対応する部分を選択的に除去して開口部を形成する
工程と、 前記素子領域に第2の絶縁膜を形成したのちチャンネル
領域となる部分にマスク層を形成する工程と、 このマスク層以外の前記素子領域に不純物拡散層を形成
する工程と、 少くとも前記素子領域の全面に層間絶縁膜を形成したの
ち前記マスク層が露出するまでエッチングしてこの層間
絶縁膜を平坦化する工程と、前記マスク層を選択的に除
去する工程と、 このマスク層下部の前記第2の絶縁層を除去したのちゲ
ート絶縁膜を形成する工程とを備える半導体装置の製造
方法。 2、前記マスク層は低融点金属の蒸着により形成される
特許請求の範囲第1項記載の半導体装置の製造方法。 3、前記低融点金属はアルミニウムである特許請求の範
囲第2項記載の半導体装置の製造方法。
[Claims] 1. After forming a first insulating film on a semiconductor substrate, selectively removing a portion corresponding to an element region to form an opening; and forming a second insulating film in the element region. After forming the film, a step of forming a mask layer in a portion that will become a channel region, a step of forming an impurity diffusion layer in the device region other than the mask layer, and a step of forming an interlayer insulating film over at least the entire surface of the device region. After that, a step of planarizing the interlayer insulating film by etching until the mask layer is exposed, a step of selectively removing the mask layer, and a step of removing the second insulating layer under the mask layer. A method for manufacturing a semiconductor device, comprising: forming a gate insulating film. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the mask layer is formed by vapor deposition of a low melting point metal. 3. The method of manufacturing a semiconductor device according to claim 2, wherein the low melting point metal is aluminum.
JP26793584A 1984-12-19 1984-12-19 Production of semiconductor device Pending JPS61144877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26793584A JPS61144877A (en) 1984-12-19 1984-12-19 Production of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26793584A JPS61144877A (en) 1984-12-19 1984-12-19 Production of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61144877A true JPS61144877A (en) 1986-07-02

Family

ID=17451646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26793584A Pending JPS61144877A (en) 1984-12-19 1984-12-19 Production of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61144877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624961B1 (en) * 1999-10-20 2006-09-19 주식회사 하이닉스반도체 Method for manufacturing transistor adopted metal gate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624961B1 (en) * 1999-10-20 2006-09-19 주식회사 하이닉스반도체 Method for manufacturing transistor adopted metal gate

Similar Documents

Publication Publication Date Title
KR920009745B1 (en) Manufacturing method of semiconductor
KR880006790A (en) MOS field effect transistor, integrated circuit including the same, and method of manufacturing the circuit
US4640000A (en) Method of manufacturing semiconductor device
JP2629995B2 (en) Thin film transistor
JPH098135A (en) Manufacture of semiconductor device
JPH08288303A (en) Vertical field-effect transistor and fabrication thereof
JPH0621445A (en) Semiconductor device and manufacture thereof
JPH06349856A (en) Thin-film transistor and its manufacture
JPS61144877A (en) Production of semiconductor device
JPS6197967A (en) Semiconductor device and manufacture thereof
JPS61154172A (en) Manufacture of semiconductor device
JP3132455B2 (en) Method for manufacturing semiconductor device
JPS62285468A (en) Manufacture of ldd field-effect transistor
JPS63275181A (en) Manufacture of semiconductor device
JPH06163890A (en) Manufacture of semiconductor device
JPS60263468A (en) Manufacture of semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JPH0778979A (en) Fabrication of semiconductor device
JPH0529624A (en) Thin film transistor and manufacture thereof
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPH06268225A (en) Semiconductor device
JPH06314782A (en) Manufacture of semiconductor device
JPS59150477A (en) Manufacture of semiconductor device
JPS6265465A (en) Manufacture of insulated-gate type semiconductor device
JPH10275912A (en) Semiconductor device and its manufacture