JPS61144076A - 半導体受光素子 - Google Patents

半導体受光素子

Info

Publication number
JPS61144076A
JPS61144076A JP59265396A JP26539684A JPS61144076A JP S61144076 A JPS61144076 A JP S61144076A JP 59265396 A JP59265396 A JP 59265396A JP 26539684 A JP26539684 A JP 26539684A JP S61144076 A JPS61144076 A JP S61144076A
Authority
JP
Japan
Prior art keywords
layer
multiplication
grown
applying
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59265396A
Other languages
English (en)
Inventor
Tatsuaki Shirai
達哲 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59265396A priority Critical patent/JPS61144076A/ja
Publication of JPS61144076A publication Critical patent/JPS61144076A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、通常、アバランシェ・フォト・ダイオード(
avalanche  photo  diode:A
PD)と呼ばれる半導体受光素子の改良に関する。
〔従来の技術〕
近年、1 (IIn)帯の光通信用受光素子としてI 
nP/I nGaAs (P)系化合物半導体や例えば
C,aSb/GaAjtSb系化合物半導体を材料とす
るAPDの開発及び研究が盛んであり、現在、特に動作
が安定で且つ信鯨性が高い埋め込み型プレーナ構造に関
して種々の検討が行われている。
第7図は従来の埋め込み型APDを表す要部切断側面図
である。
図に於いて、21はn+型1nP基板、22はn型1 
nGaAs光吸収層、23はn型I nGaAsP中間
層、24はn型1nP増倍層、25はn−型1nP受光
領域形成層、26はp+型InP受光領域、27はp型
ガード・リング、28はパッシベーション膜、29は無
反射コーテイング膜、30はn側電極、31はp側電極
をそれぞれ示している。
第8図及び第9図は第7図に関して説明した従来のAP
Dを製造する場合について解説するのに必要な工程要所
に於けるAPDの要部切断側面図であり、以下、これ等
の図及び第7図を参照しつつ説明する。尚、各図では第
7図に関して説明した部分と同部分は同記号で指示しで
ある。
第8図参照 (a)  通常の技法を適用することに依り、基板21
上に光吸収層22、中間層23、増倍層24をエピタキ
シャル成長させる。
伽)通常のフォト・リソグラフィ技術及び化学エツチン
グ法を適用することに依り、増倍層24のメサ・エツチ
ングを行い、メサ部分24Aを形成する。
第9図参照 (C)  通常の技法を適用することに依り、メサ部分
24Aを有する増倍層24上に受光領域形成層25をエ
ピタキシャル成長させる。
第7図参照 (dl  通常の技法を適用することに依り、受光領域
26、ガード・リング27を形成する。
(a)  パッシベーション膜28及び無反射コーテイ
ング膜29を形成し、また、n側電極30及びp側電極
31を形成して完成する。
第10図は第7図について説明したAPDとは異なる構
造を有する従来のAPDを表す要部切断側面図であり、
第7図に関して説明した部分と同部分は同記号で指示し
である。
第10図に見られるAPDが第7図に示したそれと相違
する点は、n型1nP増倍層24をn−型1nP埋め込
み層25′で埋め込んだところであり、この相違点は、
本従来例の製造工程を説明すると良く理解できる。
第11図及び第12図は第10図に関して説明した従来
のAPDを製造する場合について解説するのに必要な工
程要所に於けるAPDの要部切断側面図であり、以下、
これ等の図及び第10図を参照しつつ説明する。尚、各
図では第7図乃至第10図に関して説明した部分と同部
分は同記号で指示しである。
第11図参照 (a)  通常の技法を適用することに依り、基板21
上に光吸収層22、中間層23、増倍層24をエピタキ
シャル成長させる。
第12図参照 (b)  例えば窒化シリコン(3i3N4)膜からな
る選択エピタキシャル成長マスク膜32を形成する。
(C)  増倍層24の一部をメルト・バックすると共
に埋め込み層25′を成長させる。
第10図参照 (d)  この後の工程は第7図に関して説明した工程
ld)及び(11)と全く同じである。
〔発明が解決しようとする問題点〕
前記従来技術に依るAPDは、いずれも増倍層24とそ
れを埋め込む受光領域形成層25或いは埋め込み層25
′との界面は高電界が印加される受光領域26の近傍に
存在している為、その成長界面の形状如何が素子特性に
大きな影響を与えることになる。
即ち、メルト・バック法に依り、二回目の成長を行った
際に生成されるウェハ表面のダメージ層を除去した場合
、メルト・バックが均一に行われず界面に凹凸が発生し
易い。そして、このような界面の凹凸は、電界不均一の
原因となり、光怒度の面内分布に不均一を生じさせる。
このような場合、素子の増倍雑音が高くなり、受信感度
を低下させる旨の問題がある。
また、前記の問題とは別に、受光領域26及びガード・
リング27は、結晶成長後の段階で高温の熱処理に依り
形成されるものであるから、各半化、或いは、製造歩留
りの低下を招来する虞かあ導体層が熱に依るダメージを
受け、素子特性の劣る。
〔問題点を解決するための手段〕
本発明に依る半導体受光素子は、メサ状に形成され且つ
高濃度一導電型受光領域を有する一導電      、
型ガード・リング層と、該一導電型ガード・リング層の
下に連なってメサ状に形成された反対導電型増倍層と、
それ等メサ状の一導電型ガード・リング層及び反対導電
型増倍層を埋め込み且つそれ等との界面が前記高濃度一
導電型受光領域の外側に存在するように形成された反対
導電型埋め込み層とを備えた構造になっている。
〔作用〕
前記のような構造になっている為、一導電型ガード・リ
ング層及び反対導電型増倍層と、それを埋め込む反対導
電型埋め込み層との界面は高電界が印加される高濃度一
導電型受光領域から外方に離隔された部分に存在してい
るので、その成長界面の如何に依って素子特性が悪影響
を受けることはなく、そして、ガード・リング層はエピ
タキシャル成長で形成されるものであるし、また、高濃
度一導電型受光領域は工程初期の埋め込み成長の段階で
形成できるので、熱処理が半導体層にダメージを与える
虞は少なくなると共に製作工程を簡略化することが可能
である。
〔実施例〕
第1図は本発明一実施例の要部切断側面図を表している
図に於いて、1はn++1nP基板、2はn型1nGa
As光吸収層、3はn型1nGaAsP中間層、4はn
型1nP埋倍層、5はp型InPガード・リング層、6
はp+型型光光領域7はn型1nP埋め込み層、8はバ
ンシベーション膜、9は無反射コーテイング膜、10は
n側電極、11はp側電極をそれぞれ示している。
第2図乃至第6図は第1図に見られる実施例を製造する
場合を解説する為に必要な工程要所に於ける半導体受光
素子の要部切断側面図であり、以下、これ等の図を参照
しつつ説明する。尚、各図は第1図に関して説明した部
分と同部分は同記号で指示しである。
第2図参照 (al  液相エピタキシャル成長(liquid  
phase  epitaxy:LPE)法を適用する
ことに依り、基板1上に光吸収層2、中間層3、増倍層
4、ガード・リング層5を成長させる。
このときの各半導体層のデータを例示すると次の通りで
ある。
(1)  光吸収層2について 厚さ:2 〔μm〕 不純物濃度:5〜10×lO夏5 (am−’)  (
於ノン・ドープ状態) (2)中間層3について 厚さ:0.5Cμm〕 不純物濃度: 5〜10 X 1016 (am−’)
  (於ノン・ドープ状態) (3)増倍層4について 厚さ:1〜1.5 〔μm〕 不純物濃度:1〜2 X 1016 (ell−”) 
 (ノン・ドープ或いは錫(Sn)  ドープ) (4)ガード・リング層5について 厚さ:1〜1.5 〔μm〕 不純物濃度: 2〜3 X 10I6(am−’)不純
物:カドミウム(Cd) 第3図参照 (b)  受光領域6の形成予定部分に対応するように
開口12Aが設けられたマスク膜12を形成する。尚、
マスク膜12の材料としてはフォト・レジストを用いる
ことができる。
(C)  イオン注入法を適用することに依り、ベリリ
ウムCBf3’)  ・イオンの打ち込みを行う。
この時のBeイオンのドーズ量はlX1014(am 
−” )程度、加速電圧は100〜140(KeV)と
した。
第4図参照      ・ (d)  化学気相堆積(chemical  vap
ur  deposition:CVD)法を適用する
ことに依り、選択成長用マスク膜となる窒化シリコン(
SisN4)膜13を厚さ例えば1000〜1500 
(人〕程度に成長させる。
(e)  通常のフォト・リソグラフィ技術並びに化学
エツチング法を適用することに依り、窒化シリコン膜1
3のパターニングを行い被選択成長面を露出させる。
(flLPE法を適用することに依り、破線で指示しで
ある部分のメルト・バックを行う。
第5図参照 (gl  埋め込み層7を厚さ約2〔μm〕程度に成長
させる。尚、前記工程(f)及び本工程(幻に於ける6
50〜750(’C)の高温に依り、前記工程(0)で
打ち込まれたBeは熱処理される。
第6図参照 ChlcVD法を適用することに依り、厚さ約1800
C人〕程度のパッシベーション膜8を形成する。尚、パ
ッシベーション膜8の材料としては、例えば窒化シリコ
ンを用いることができる。
第1図参照 (1)  この後、通常の技法を適用することに依り、
無反射コーテイング膜9、n側電極10、p側電極11
などを形成して完成する。
このように2回成長の技術を適用して製造された本発明
の半導体受光素子では、図からも明らかなように、2回
成長の界面が受光領域6の近傍、即ち、高電界領域から
離隔されている。
〔発明の効果〕
本発明に依る半導体受光素子は、メサ状に形成され且つ
高濃度一導電型受光領域を有する−4電型ガード・リン
グ層と、該一導電型ガード・リング層の下に連なってメ
サ状に形成された反対導電型増倍層と、それ等メサ状の
−4電型ガード・リング層及び反対導電型増倍層を埋め
込み且つそれ等との界面が前記高濃度一導電型受光領域
の外側に存在する反対導電型埋め込み層とを備えてなる
構成になっている。
この構成に依れば、前記界面は高電界領域には存在せず
、従って、アバランシェ増倍を生じた場合、その増倍特
性に埋め込み形状の影響は現れない。また、ガード・リ
ング層も受光領域も結晶成長の段階で形成され、その後
は高温の熱処理工程が存在しないので、精密に制御して
成長される半導体層がダメージを受ける機会は低減され
、その結果、素子特性の劣化は防止され、製造歩留りは
向上する。
【図面の簡単な説明】
第1図は本発明一実施例の要部切断側面図、第2図乃至
第6図は第1図に見られる実施例を製造する場合を説明
する為に必要な工程要所に於ける半導体受光素子の要部
切断側面図、第7図は従来例の要部切断側面図、第8図
及び第9図は第7図に見られる従来例を製造する場合を
説明する為に必要な工程要所に於ける半導体受光素子の
要部切断側面図、第10図は他の従来例の要部切断側面
図、第11図及び第12図は第1O図に見られる従来例
を製造する場合を説明する為に必要な工程要所に於ける
半導体受光素子の要部切断側面図をそれぞれ表している
。 図に於いて、1はn++1nP基板、2はn型I nG
aAs光吸収層、3はn型InGaAsP中間層、4は
n型1nP増倍層、5はp型1nPガード・リング層、
6はp+型型光光領域7はn型埋め込み層、8はパッシ
ベーション膜、9は無反射コーテイング膜、10はn側
電極、11はp側電極をそれぞれ示している。 特許出願人   富士通株式会社 代理人弁理士  相 谷 昭 司 代理人弁理士  渡 邊 弘 − 第f!1 第2図 第3図 2A 第41!1 第5m !#6凹 第7図 第9閏 第101M 3゜

Claims (1)

    【特許請求の範囲】
  1. メサ状に形成され且つ高濃度一導電型受光領域を有する
    一導電型ガード・リング層と、該一導電型ガード・リン
    グ層の下に連なってメサ状に形成された反対導電型増倍
    層と、それ等メサ状の一導電型ガード・リング層及び反
    対導電型増倍層を埋め込み且つそれ等との界面が前記高
    濃度一導電型受光領域の外側に存在するように形成され
    た反対導電型埋め込み層とを備えてなることを特徴とす
    る半導体受光素子。
JP59265396A 1984-12-18 1984-12-18 半導体受光素子 Pending JPS61144076A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59265396A JPS61144076A (ja) 1984-12-18 1984-12-18 半導体受光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59265396A JPS61144076A (ja) 1984-12-18 1984-12-18 半導体受光素子

Publications (1)

Publication Number Publication Date
JPS61144076A true JPS61144076A (ja) 1986-07-01

Family

ID=17416584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59265396A Pending JPS61144076A (ja) 1984-12-18 1984-12-18 半導体受光素子

Country Status (1)

Country Link
JP (1) JPS61144076A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610416A (en) * 1995-02-16 1997-03-11 Hewlett-Packard Company Avalanche photodiode with epitaxially regrown guard rings
US5612550A (en) * 1994-02-24 1997-03-18 Nec Corporation Heterojunction type semiconductor device having ordered phase alloy layers for active and cladding layers
US5866936A (en) * 1997-04-01 1999-02-02 Hewlett-Packard Company Mesa-structure avalanche photodiode having a buried epitaxial junction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612550A (en) * 1994-02-24 1997-03-18 Nec Corporation Heterojunction type semiconductor device having ordered phase alloy layers for active and cladding layers
US5610416A (en) * 1995-02-16 1997-03-11 Hewlett-Packard Company Avalanche photodiode with epitaxially regrown guard rings
US5866936A (en) * 1997-04-01 1999-02-02 Hewlett-Packard Company Mesa-structure avalanche photodiode having a buried epitaxial junction

Similar Documents

Publication Publication Date Title
US5144381A (en) Semiconductor light detector utilizing an avalanche effect and having an improved guard ring structure
EP0159544B1 (en) Avalanche photodiode and its manufacturing method
EP0216572B1 (en) Semiconductor photo-detector having a two-stepped impurity profile
US5866936A (en) Mesa-structure avalanche photodiode having a buried epitaxial junction
EP0451852A1 (en) Avalanche photodiode having guard ring and method of manufacturing the same
JPS60254675A (ja) 半導体受光素子の製造方法
US5001335A (en) Semiconductor photodetector device and method of manufacturing the same
JPS6058686A (ja) 光検出器及びその製造方法
JPS61144076A (ja) 半導体受光素子
KR100509355B1 (ko) 포토 다이오드의 구조 및 제조 방법
US5416030A (en) Method of reducing leakage current in an integrated circuit
JP4401036B2 (ja) フォトダイオードの製造方法
JP3074574B2 (ja) 半導体受光素子の製造方法
JPH02144974A (ja) 半導体受光素子の製造方法
JP3055030B2 (ja) アバランシェ・フォトダイオードの製造方法
JPH02226777A (ja) 半導体受光素子及びその製造方法
JPH0621503A (ja) 半導体光検出装置とその製造方法
JP2658013B2 (ja) 半導体受光素子の製造方法
JPH02139975A (ja) 半導体受光素子の製造方法
JPS60173882A (ja) 半導体装置
JP2670525B2 (ja) 受光素子およびその製造方法
JPS6259907B2 (ja)
JPS6222475B2 (ja)
JPS61129882A (ja) 半導体受光素子の製造方法
KR970006610B1 (ko) 매립 메사 애벌런치 포토다이오드(Buried Mesa Avalanche Photodiode)구조 및 제조방법