JPS61131365A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPS61131365A
JPS61131365A JP59251956A JP25195684A JPS61131365A JP S61131365 A JPS61131365 A JP S61131365A JP 59251956 A JP59251956 A JP 59251956A JP 25195684 A JP25195684 A JP 25195684A JP S61131365 A JPS61131365 A JP S61131365A
Authority
JP
Japan
Prior art keywords
zinc
bismuth
mercury
spherical
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59251956A
Other languages
Japanese (ja)
Inventor
Kenichi Shinoda
健一 篠田
Hirohiko Oota
太田 廣彦
Yuzo Tanaka
田中 雄三
Kiyohide Tsutsui
清英 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP59251956A priority Critical patent/JPS61131365A/en
Publication of JPS61131365A publication Critical patent/JPS61131365A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To completely eliminate or to extremely reduce the mercury content of a negative electrode zinc side by using globular zinc or globular zinc alloy which is coated and formed with an alloy layer of bismuth or bismuth and mercury as a negative electrode. CONSTITUTION:An alloy layer of bismuth or bismuth and mercury is coated and formed on the surface of globular zinc, in which the shape of zinc particles is approximately a globe, or of globular zinc alloy which uses zinc as a main component and is containing a kind of element or more of iron, cadmium, lead, bismuth, gallium, indium, thallium, tin, magnesium and aluminium to use it as a negative electrode. Whereby, it is possible to increase hydrogen overvoltage and to highly increase the restraining effect of hydrogen gas generation and the preventing effect of corrosion, and even when completely eliminating or extremely reducing mercury, it is possible to obtain the battery performance equivalent to or in excess of the conventional battery performance.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、亜鉛を負極として用いるアルカリ電池の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to improvements in alkaline batteries using zinc as a negative electrode.

(従来の技術) 周知のように、アルカリ・マンガン電池、水銀電池、酸
化銀電池といった一般のアルカリ電池では、粒状化した
亜鉛を加圧成形、焼結あるいはゲル化して負極電極を構
成している。粒状亜鉛を用いることで全体の表面積を大
きくし、放電進行に伴う亜鉛表面の不働態化をできるだ
け抑制しようとしている。
(Prior art) As is well known, in general alkaline batteries such as alkaline manganese batteries, mercury batteries, and silver oxide batteries, the negative electrode is formed by pressure forming, sintering, or gelling granulated zinc. . By using granular zinc, the overall surface area is increased to suppress passivation of the zinc surface as the discharge progresses as much as possible.

また、亜鉛粒子の製造法から由来される表面状態、歪み
9割れなどは腐蝕を促進する。これを防止するため粒状
亜鉛に水銀を加えてアマルガム化(未化)している。亜
鉛粒子の表面をアマルガム化することは、亜鉛粒子の腐
蝕防止、アルカリ電解液中での水素過電圧の増大による
水素ガス発生の抑制といった面で大きな効果が得られる
。アマルガム化した粒状亜鉛を用いることで、アルカリ
電池の放電性能および貯蔵性能が大いに向上した。
In addition, surface conditions such as distortion and cracking resulting from the manufacturing method of zinc particles promote corrosion. To prevent this, mercury is added to granular zinc to form it into an amalgam. Amalgamating the surface of zinc particles has great effects in terms of preventing corrosion of the zinc particles and suppressing hydrogen gas generation due to an increase in hydrogen overvoltage in an alkaline electrolyte. The use of amalgamated granular zinc greatly improved the discharge and storage performance of alkaline batteries.

(発明が解決しようとする問題点) アルカリ電池の性能向上に大いに寄与した負極亜鉛をア
マルガム化する技術は、有害物質である水銀を用いると
いう問題を内在している。公害防止などの観点から、電
池の水銀含有量は極力少いほうが望ましい。そのために
、負極の亜鉛中の水銀含有率を低下させたり(氷化度を
下げる)、あるいは全く未化していない亜鉛を負極に用
い、電池性能を低下させないようにする研究が盛んにな
されている。
(Problems to be Solved by the Invention) The technology of amalgamating negative electrode zinc, which has greatly contributed to improving the performance of alkaline batteries, has the inherent problem of using mercury, which is a harmful substance. From the perspective of pollution prevention, it is desirable that the mercury content of batteries be as low as possible. To this end, research is actively being conducted to reduce the mercury content in zinc in the negative electrode (lower the degree of freezing), or to use completely unoxidized zinc in the negative electrode to avoid deteriorating battery performance. .

現状では、インジウム、ガリウム、鉛などの金属を亜鉛
に添加する対策が実用化されている。しかし上述のよう
な金属添加だけでは十分な防蝕効果や水素ガス発生の抑
制効果が得られず、水銀と併用することである程度の効
果が得られている。
Currently, countermeasures such as adding metals such as indium, gallium, and lead to zinc have been put into practical use. However, adding metals as described above alone does not provide sufficient corrosion protection or suppressing hydrogen gas generation, and a certain degree of effectiveness has been obtained by using them in combination with mercury.

それでも用いる水I1mを従来より大幅に減らすことが
できる程ではない。
Even so, it is not enough to significantly reduce the amount of water I1m used compared to the conventional method.

また、亜鉛の粒子形状についても見直しの研究がなされ
ている。例えば特開昭58−21b760号に開示され
ているように、従来の不規則な形状の粒状亜鉛に代え、
粒子形状がほぼ球状をなす球状亜鉛を用いると、防蝕性
が向上するとともに水素ガス発生が少くなることが分っ
た。しかし前記と同様に、球状亜鉛を用いた場合でも、
相当量の水銀でアマルガム化しなければ十分な実用性能
は実現できない。
Research is also being conducted to review the particle shape of zinc. For example, as disclosed in JP-A No. 58-21b760, instead of the conventional irregularly shaped granular zinc,
It has been found that when spherical zinc, which has a particle shape that is almost spherical, is used, corrosion resistance is improved and hydrogen gas generation is reduced. However, as mentioned above, even when using spherical zinc,
Sufficient practical performance cannot be achieved unless it is amalgamated with a considerable amount of mercury.

この発明は上述した従来の181題点に鑑みなされたも
のであり、その目的は、負極亜鉛のアマルガム化に用い
る水銀を大幅に少くし、場合によっては全く水銀を用い
なくても、従来と同等の性能を維持できるようにしたア
ルカリ電池を提供することにある。
This invention was made in view of the above-mentioned 181 problems of the conventional technology, and its purpose is to significantly reduce the amount of mercury used in the amalgamation of negative electrode zinc, and in some cases even without using mercury at all. Our objective is to provide an alkaline battery that maintains its performance.

(問題点を解決するための手段) そこでこの発明では、亜鉛粒子形状がほぼ球状をなす球
状亜鉛または亜鉛を主成分とし、鉄、カドミウム、鉛、
ビスマス、ガリウム、インジウム。
(Means for Solving the Problems) Therefore, in the present invention, zinc particles are mainly composed of spherical zinc or zinc having an almost spherical shape, and iron, cadmium, lead,
Bismuth, gallium, indium.

タリウム、錫、マグネシウム、アルミニウムのうちの一
種以上の元素を含む球状亜鉛合金で、かつその表面部分
にビスマスあるいはビスマスと水銀による合金化層が被
覆形成された球状亜鉛または球状亜鉛合金を負極として
用いた。
A spherical zinc alloy containing one or more elements of thallium, tin, magnesium, and aluminum, and whose surface is coated with bismuth or an alloyed layer of bismuth and mercury, is used as the negative electrode. there was.

(作 用) 球状亜鉛、または前述の微量元素を含む球状亜鉛合金表
面に、ビスマスあるいはビスマスと水銀による合金化層
を被覆形成することで、水素過電圧を高め、水素ガス発
生の抑制効果および防蝕効果は飛躍的に高まり、水銀を
全くなくすか、極く優かにしても、従来と同等あるいは
それ以上の電池性能が得られる。
(Function) By coating the surface of spherical zinc or a spherical zinc alloy containing the aforementioned trace elements with a layer of bismuth or an alloyed layer of bismuth and mercury, hydrogen overvoltage is increased, hydrogen gas generation is inhibited, and corrosion prevention is achieved. has dramatically increased, and even if mercury is completely eliminated or mercury is reduced to a very low level, battery performance equivalent to or better than conventional batteries can be obtained.

(実 施 例) 本発明の実施例を、その製造方法とともに説明する。粒
子形状がほぼ球状の球状亜鉛または前述の微量元素を含
む球状亜鉛合金の表面部分に次の手順でビスマスを被覆
形成する。
(Example) An example of the present invention will be described together with a manufacturing method thereof. Bismuth is coated on the surface of a spherical zinc particle having a substantially spherical particle shape or a spherical zinc alloy containing the above-mentioned trace element by the following procedure.

まず1.09の金属ビス7スを3−の希硝酸(HNO3
)に溶解し、これを多量の水で希釈して次硝酸ビスvス
[Bi  (OH)2 NO3、Bi  (OH)(N
O3)2など]のゾル状溶液を作る。この溶液に979
の上記球状亜鉛または球状亜鉛合金を投入して混合し、
亜鉛とビスマスの置換反応により均一なビスマス被lJ
層を得る。このようにして作られた球状亜鉛を第1貢施
例とし、球状亜鉛合金(鉛を0.05%含む)を第2実
施例とする。
First, add 1.09 metal bis7s to 3-dilute nitric acid (HNO3).
) and diluted with a large amount of water to obtain bissubnitrate vs [Bi (OH)2 NO3, Bi (OH) (N
03)2, etc.] to make a sol-like solution. 979 to this solution
Add and mix the above spherical zinc or spherical zinc alloy,
Uniform bismuth coating by substitution reaction of zinc and bismuth
Get layers. The spherical zinc produced in this way is the first example, and the spherical zinc alloy (containing 0.05% lead) is the second example.

上記の第1,2貢施例のビスマス被覆層を有する球状亜
鉛2球状亜鉛合金に3gの水銀を加えて通常の処理方法
で表面をアマルガム化する。その結果、表面には亜鉛−
ビスマス−水銀合金化層が被覆形成される。このように
して作られた氷化度3%の球状亜鉛を第3実施例とし、
球状亜鉛合金(鉛を0.05%含む)を第4実施例とす
る。
3 g of mercury is added to the spherical zinc 2 spherical zinc alloy having the bismuth coating layer of the first and second embodiments described above, and the surface is amalgamated by a conventional treatment method. As a result, the surface has zinc-
A bismuth-mercury alloy layer is applied. A third example of spherical zinc with a freezing degree of 3% made in this way,
A fourth example is a spherical zinc alloy (containing 0.05% lead).

上記4つの実施例のビスマスあるいはビスマスと水銀に
よる合金化層が被覆形成された球状亜鉛または球状亜鉛
合金と、未化度5%の球状亜鉛(比較例Aとする)と、
無末化の球状亜鉛(比較例Bとする)との6種について
次のような比較試験行なった。
Spherical zinc or spherical zinc alloy coated with bismuth or an alloyed layer of bismuth and mercury of the above four examples, and spherical zinc with an unoxidized degree of 5% (referred to as Comparative Example A),
The following comparative tests were conducted on six types of powderless spherical zinc (referred to as Comparative Example B).

61!類の粉末をそれぞれアルカリ電解液(H化亜鉛を
飽和した水酸化カリウムの40%溶液)に浸漬し、50
℃の温度で15日間放置し、15日目の水素ガス発生量
を測定した。その結果は次のとおりである。
61! Each of the above powders was immersed in an alkaline electrolyte (a 40% solution of potassium hydroxide saturated with zinc hydride).
C. for 15 days, and the amount of hydrogen gas generated on the 15th day was measured. The results are as follows.

・第1実施例−−−−−−0,oo511i2/a −
day・第2寅施例・・・・・・0.004mG / 
!It ・day・第3実施例・・・・・・0.002
−/Q ・day・第4実施例・・・・・・0.001
+nQ/i)・day・比較例 A・−・−0,005
m2/+J −daV・比較例 B・・・・・・0.0
3 mQ/g ・dayこの結果より明らかなように、
本発明の第1実施例および第2実施例による無氷化でビ
スマスを被覆した球状亜鉛および球状亜鉛合金の水素ガ
ス発生層は、従来実用に供されている氷化層5%の比較
例Aと同程度である。
・First embodiment---0,oo511i2/a-
day・2nd example...0.004mG/
! It・day・3rd example・・・・・・0.002
-/Q・day・4th example...0.001
+nQ/i)・day・Comparative example A・−・−0,005
m2/+J -daV・Comparative example B...0.0
3 mQ/g ・dayAs is clear from this result,
The hydrogen gas generating layer of spherical zinc and spherical zinc alloy coated with bismuth without ice according to the first and second embodiments of the present invention is a comparative example A with a 5% ice layer, which is conventionally used in practical use. It is about the same.

また氷化層3%と水銀量を大幅に減らした本発明の第3
実施例および第4実施例の場合、水素ガス発生量は比較
例Aの半分以下に減少した。
In addition, the third method of the present invention, which has a 3% frozen layer and a significantly reduced amount of mercury,
In the case of Example and Fourth Example, the amount of hydrogen gas generated was reduced to less than half that of Comparative Example A.

このように実施例で示したビスマスあるいはビスマスと
水銀による合金化層が被覆形成された球状亜鉛または微
齢添加元素を含む球状亜鉛合金を用いてアルカリ電池を
構成すれば、その貯蔵性能は従来と同程度かあるいはざ
らに向上する。
If an alkaline battery is constructed using a spherical zinc coated with bismuth or an alloyed layer of bismuth and mercury as shown in the examples, or a spherical zinc alloy containing a very young additive element, its storage performance will be the same as that of conventional batteries. It will improve to the same degree or roughly.

しかもその水銀量は大幅に少くなり、あるいは全くなく
すこともできる。
Moreover, the amount of mercury can be significantly reduced or even eliminated altogether.

なお、以上の説明では正極について触れていないが、本
発明は正極にどのような材料を用いるかにかかわりなく
、各種のアルカリ電池に適用できるものである。
Although the above description does not mention the positive electrode, the present invention is applicable to various alkaline batteries regardless of what material is used for the positive electrode.

(発明の効果) 以上詳細に説明したように、この発明に係るアルカリ電
池にあっては、負極亜鉛側の水銀含有量を全くなくすか
、あるいは従来より大幅に少くしても、放電性能および
貯蔵性能は従来の氷化層の^い亜鉛を用いた電池と同等
あるいはそれ以上になる。
(Effects of the Invention) As explained in detail above, in the alkaline battery according to the present invention, even if the mercury content on the negative electrode zinc side is completely eliminated or is significantly reduced compared to the conventional one, the discharge performance and storage The performance will be equivalent to or better than conventional batteries using zinc with a low ice layer.

Claims (1)

【特許請求の範囲】[Claims] (1)亜鉛粒子形状がほぼ球状をなす球状亜鉛または亜
鉛を主成分とし、鉄、カドミウム、鉛、ビスマス、ガリ
ウム、インジウム、タリウム、錫、マグネシウム、アル
ミニウムのうちの一種以上の元素を含む球状亜鉛合金で
、かつその表面部分にビスマスあるいはビスマスと水銀
による合金化層が被覆形成された球状亜鉛または球状亜
鉛合金を負極として用いたことを特徴とするアルカリ電
池。
(1) Spherical zinc whose zinc particle shape is almost spherical or spherical zinc whose main component is zinc and which contains one or more elements of iron, cadmium, lead, bismuth, gallium, indium, thallium, tin, magnesium, and aluminum. An alkaline battery characterized in that a spherical zinc alloy or a spherical zinc alloy whose surface is coated with bismuth or an alloyed layer of bismuth and mercury is used as a negative electrode.
JP59251956A 1984-11-30 1984-11-30 Alkaline battery Pending JPS61131365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59251956A JPS61131365A (en) 1984-11-30 1984-11-30 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59251956A JPS61131365A (en) 1984-11-30 1984-11-30 Alkaline battery

Publications (1)

Publication Number Publication Date
JPS61131365A true JPS61131365A (en) 1986-06-19

Family

ID=17230484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59251956A Pending JPS61131365A (en) 1984-11-30 1984-11-30 Alkaline battery

Country Status (1)

Country Link
JP (1) JPS61131365A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240161A (en) * 1985-08-14 1987-02-21 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
US6461768B1 (en) * 1999-06-08 2002-10-08 Dowa Mining Co., Ltd. Negative electrode material containing bismuth-coated zinc powder particles for use in alkaline cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240161A (en) * 1985-08-14 1987-02-21 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPH0665032B2 (en) * 1985-08-14 1994-08-22 三井金属鉱業株式会社 Zinc alkaline battery
US6461768B1 (en) * 1999-06-08 2002-10-08 Dowa Mining Co., Ltd. Negative electrode material containing bismuth-coated zinc powder particles for use in alkaline cell

Similar Documents

Publication Publication Date Title
EP0172255B1 (en) Zinc alkaline battery
JPS61131365A (en) Alkaline battery
JP3617743B2 (en) Negative electrode material for alkaline manganese battery and method for producing the same
JPH0473263B2 (en)
JPS61131367A (en) Method of processing granular zinc alloy for alkaline battery
JPS636749A (en) Zinc alkaline battery
JPS61128464A (en) Alkaline battery
JPS61253764A (en) Zinc alkaline battery
JPH0622119B2 (en) Zinc alkaline battery
JPS6177265A (en) Zinc alkaline battery
KR890002672B1 (en) Zn-alkali battery
JPS636747A (en) Zince alkaline battery
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JPH0622118B2 (en) Zinc alkaline battery
JPS6273565A (en) Zinc alkaline battery
JPH0622116B2 (en) Zinc alkaline battery
JPH0622121B2 (en) Zinc alkaline battery
JPH0682551B2 (en) Zinc alkaline battery
JPS61140066A (en) Zinc alkali battery
JPS60175369A (en) Zinc-alkaline primary cell
JPS6177266A (en) Zinc alkaline battery
JPH0516143B2 (en)
JPH0365621B2 (en)
JPS60114548A (en) Zinc alloy for electrode
JPS63178452A (en) Zinc alkaline battery