JPH0473263B2 - - Google Patents

Info

Publication number
JPH0473263B2
JPH0473263B2 JP59251957A JP25195784A JPH0473263B2 JP H0473263 B2 JPH0473263 B2 JP H0473263B2 JP 59251957 A JP59251957 A JP 59251957A JP 25195784 A JP25195784 A JP 25195784A JP H0473263 B2 JPH0473263 B2 JP H0473263B2
Authority
JP
Japan
Prior art keywords
zinc
zinc alloy
granular
granular zinc
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59251957A
Other languages
Japanese (ja)
Other versions
JPS61131366A (en
Inventor
Kenichi Shinoda
Hirohiko Oota
Juzo Tanaka
Kyohide Tsutsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP59251957A priority Critical patent/JPS61131366A/en
Publication of JPS61131366A publication Critical patent/JPS61131366A/en
Publication of JPH0473263B2 publication Critical patent/JPH0473263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 ≪産業上の利用分野≫ この発明は、アルカリ電池の負極材料として使
用される粒状亜鉛合金の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <<Industrial Application Field>> This invention relates to a method for treating a granular zinc alloy used as a negative electrode material for alkaline batteries.

≪従来の技術≫ 周知のように、アルカリ・マンガン電池、水銀
電池、酸化銀電池といつた一般のアルカリ電池で
は、粒状化した亜鉛を加圧成形、焼結あるいはゲ
ル化して負極電極を構成している。粒状亜鉛を用
いることで全体の表面積を大きくし、放電進行に
伴う亜鉛表面の不働態化をできるだけ抑制しよう
としている。
<<Prior art>> As is well known, in general alkaline batteries such as alkaline manganese batteries, mercury batteries, and silver oxide batteries, the negative electrode is formed by pressure molding, sintering, or gelling granulated zinc. ing. By using granular zinc, the overall surface area is increased to suppress passivation of the zinc surface as the discharge progresses as much as possible.

また、亜鉛粒子の製造法から由来される表面状
態、歪み、割れなどは腐蝕を促進する。これを防
止するため粒状亜鉛に水銀を加えてアマルガム化
(汞化)している。亜鉛粒子の表面をアマルガム
化することは、亜鉛粒子の腐蝕防止、アルカリ電
解液中での水素過電圧の増大による水素ガス発生
の抑制といった面で大きな効果が得られる。アマ
ルガム化した粒状亜鉛を用いることで、アルカリ
電池の放電性能および貯蔵性能が大いに向上し
た。
In addition, surface conditions, distortions, cracks, etc. resulting from the manufacturing method of zinc particles promote corrosion. To prevent this, granular zinc is amalgamated by adding mercury. Amalgamating the surface of zinc particles has great effects in terms of preventing corrosion of the zinc particles and suppressing hydrogen gas generation due to an increase in hydrogen overvoltage in an alkaline electrolyte. The use of amalgamated granular zinc greatly improved the discharge and storage performance of alkaline batteries.

≪発明が解決しようとする問題点≫ アルカリ電池の性能向上に大いに寄与した負極
亜鉛をアマルガム化する技術は、有害物質である
水銀を用いるという問題を内在している。公害防
止などの観点から、電池の水銀含有量は極力少い
ほうが望ましい。そのために、負極亜鉛中の水銀
含有率を低下させたり(汞化度を下げる)、ある
いは全く汞化していない亜鉛を負極に用い、電池
性能を低下させないようにする研究が盛んになさ
れている。
<<Problems to be Solved by the Invention>> The technology of amalgamating negative electrode zinc, which has greatly contributed to improving the performance of alkaline batteries, has the inherent problem of using mercury, which is a harmful substance. From the perspective of pollution prevention, it is desirable that the mercury content of batteries be as low as possible. For this reason, active research is being conducted to reduce the mercury content in negative electrode zinc (lower the degree of oxidation), or to use zinc that has not oxidized at all in the negative electrode to prevent deterioration in battery performance.

例えば、高純度の粒増亜鉛に代えて、インジウ
ム、ガリウム、鉛などの金属を微量に添加した粒
状亜鉛合金を使用することがすでに実用化されて
いる。この種の亜鉛合金は高純度亜鉛に比べて水
素過電圧が高くなり、そのため従来より汞化度を
下げても実用に耐える性能のアルカリ電池を構成
することができる。しかしこの対策で減少させる
ことができる水銀量は極く僅かで、やはり相当量
の水銀を使用しなければ十分な防蝕効果および水
素ガス発生の抑制効果が得られない。
For example, instead of high-purity granular zinc, the use of granular zinc alloys to which trace amounts of metals such as indium, gallium, and lead are added has already been put into practical use. This type of zinc alloy has a higher hydrogen overvoltage than high-purity zinc, so it is possible to construct an alkaline battery with a performance that can withstand practical use even if the degree of hydrogenation is lower than that of conventional batteries. However, the amount of mercury that can be reduced by this measure is extremely small, and unless a considerable amount of mercury is used, sufficient corrosion prevention effects and hydrogen gas generation suppression effects cannot be obtained.

ところで、水銀使用量をゼロあるいは微小にす
るための対策を考えるに際し、電池性能を低下さ
せないことは勿論、電池の製造工程を極端に複雑
にしないようにすることも重要である。製造工程
が複雑になりすぎると、経費の面で実用化できな
くなる。
By the way, when considering measures to reduce the amount of mercury used to zero or to a very small amount, it is important not only to not reduce battery performance but also to not make the battery manufacturing process extremely complicated. If the manufacturing process becomes too complex, it will not be practical due to cost considerations.

この発明は上述した従来の問題点に鑑みなされ
たものであり、その目的は、水素過電圧の増大、
水素ガス発生の抑制などの面でアマルガム化を全
く必要としないが、アマルガム化するとしても極
く少量の水銀量ですませることができ、しかも製
造工程をあまり複雑にすることがないようにした
アルカリ電池用粒状亜鉛合金の処理方法を提供す
ることにある。
This invention was made in view of the above-mentioned conventional problems, and its purpose is to increase hydrogen overvoltage,
An alkali that does not require amalgamation at all in terms of suppressing hydrogen gas generation, but can be amalgamated with a very small amount of mercury, and does not make the manufacturing process too complicated. An object of the present invention is to provide a method for treating a granular zinc alloy for batteries.

≪問題点を解決するための手段≫ そこでこの発明では、亜鉛を主成分とし、鉄、
カドミウム、鉛、ビスマス、ガリウム、インジウ
ム、タリウム、錫、マグネシウム、アルミニウム
のうちの一種以上の元素を含む粒状亜鉛合金を、
真空中において150〜420℃で焼結することなく焼
鈍処理するようにした。
≪Means for solving the problem≫ Therefore, in this invention, zinc is the main component, iron,
A granular zinc alloy containing one or more elements of cadmium, lead, bismuth, gallium, indium, thallium, tin, magnesium, and aluminum,
The annealing process was performed at 150 to 420°C in a vacuum without sintering.

≪作用≫ 上述のような微量金属を含んだ粒状亜鉛合金で
は亜鉛の水素過電圧を上昇させるという効果があ
る。しかし、この種の粒状亜鉛合金の通常の製造
方法では、粒子表面に結晶歪み(不規則なサブグ
レイン等)が生ずるのを避けられず、粒子表面の
凹凸や割れなどが腐蝕、水素ガス発生の大きな原
因になつている。従来の水銀アマルガム化はこの
表面状態を改善する効果もあるが、亜鉛合金粒子
の表面の結晶歪みや割れなどがあるために、十分
な防蝕効果、ガス発生抑制効果を得るには、多量
の水銀を必要としていた。
<<Function>> The granular zinc alloy containing trace metals as described above has the effect of increasing the hydrogen overvoltage of zinc. However, with the normal manufacturing method of this type of granular zinc alloy, crystal distortion (irregular subgrains, etc.) cannot be avoided on the particle surface, and unevenness and cracks on the particle surface can lead to corrosion and hydrogen gas generation. It's a big cause. Conventional mercury amalgamation has the effect of improving this surface condition, but due to crystal distortion and cracks on the surface of zinc alloy particles, it is necessary to use a large amount of mercury to obtain sufficient corrosion protection and gas generation suppressing effects. was needed.

この発明の処理方法によれば、上記焼鈍処理に
よつて亜鉛合金粒子の表面の結晶歪みが再結晶化
して安定な結晶となり、粒子表面の荒れた状態も
改善される。その結果、この粒状亜鉛合金は腐蝕
しにくくなり、水素ガス発生量も少くなる。この
ままアマルガム化せずに電池に使用しても良好な
性能が実現でき、またアマルガム化するとして
も、粒子の表面状態が改善されているので極く僅
かの水銀量で大きな効果が得られる。
According to the treatment method of the present invention, the crystal strain on the surface of the zinc alloy particles is recrystallized by the annealing treatment to become stable crystals, and the rough state of the particle surface is also improved. As a result, this granular zinc alloy becomes less susceptible to corrosion and generates less hydrogen gas. Good performance can be achieved even if the particles are used in batteries without being amalgamated, and even if they are amalgamated, great effects can be obtained with a very small amount of mercury because the surface condition of the particles has been improved.

≪実施例≫ ここでは亜鉛に対し0.05%(重量%、以下同
じ)の鉛および0.025%のインジウムを含む粒状
亜鉛合金を使用する。この粒状亜鉛合金を、50mm
Hg程度の真空中において、350℃で約1時間焼結
することなく焼鈍する。この焼鈍処理後の無汞化
の粒状亜鉛合金を電池に使用しても良い。あるい
は、この焼鈍処理後の粒状亜鉛合金に3%の水銀
を加えて、通常の方法でその表面をアマルガム化
し、それを電池に組み込んでも良い。
<<Example>> Here, a granular zinc alloy containing 0.05% (weight %, same hereinafter) of lead and 0.025% of indium with respect to zinc is used. 50mm of this granular zinc alloy
Annealed at 350℃ for about 1 hour without sintering in a vacuum of about Hg. After this annealing treatment, the granular zinc alloy that has become non-gradable may be used in batteries. Alternatively, 3% mercury may be added to the annealed granular zinc alloy, the surface thereof may be amalgamated by a conventional method, and this may be incorporated into a battery.

上述の焼鈍処理したままの無汞化の粒状亜鉛合
金を第1実施例とし、その表面をアマルガム化し
た汞化度3%の粒状亜鉛合金を第2実施例とす
る。
The first example is a granular zinc alloy that has undergone the above-mentioned annealing treatment and is no longer grained, and the second example is a granular zinc alloy whose surface has been amalgamated and has a degree of viscosity of 3%.

また、焼鈍処理していない汞化度3%の高純度
粒状亜鉛を比較例Aとし、同じく焼鈍処理してい
ない汞化度6%の高純度粒状亜鉛を比較例Bと
し、0.05%の鉛および0.025%のインジウムを含
み、焼鈍処理していない汞化度3%の粒状亜鉛合
金を比較例Cとする。
In addition, high-purity granular zinc with a viscosity of 3% that was not annealed was used as Comparative Example A, and high-purity granular zinc with a viscosity of 6% that was also not annealed was used as Comparative Example B, and 0.05% lead and Comparative Example C is a granular zinc alloy containing 0.025% indium and having an unannealed grained zinc alloy of 3%.

これら5種について次のような比較試験を行な
つた。5種類の粒状亜鉛合金あるいは粒状亜鉛を
それぞれアルカリ電解液(酸化亜鉛を飽和した水
酸化カリウムの40%溶液)に浸漬し、50℃の温度
で15日間放置し、15日間の水素ガス発生量を測定
した。その結果は次のとおりである。
The following comparative tests were conducted on these five types. Five types of granular zinc alloys or granular zinc were immersed in an alkaline electrolyte (a 40% solution of potassium hydroxide saturated with zinc oxide) and left at a temperature of 50°C for 15 days. It was measured. The results are as follows.

●第1実施例……0.077ml/g・day ●第2実施例……0.026ml/g・day ●比較例A……0.104ml/g・day ●比較例B……0.062ml/g・day ●比較例C……0.064ml/g・day この結果から明らかなように、汞化度3%の高
純度粒状亜鉛(比較例A)に対して0.05%の鉛お
よび0.025%のインジウムを含む汞化度3%の粒
状亜鉛合金(比較例C)のガス発生量は約60%に
減少する。これは鉛およびインジウムの添加によ
り、亜鉛の水素過電圧が上昇した効果による。
●First example...0.077ml/g・day ●Second example...0.026ml/g・day ●Comparative example A...0.104ml/g・day ●Comparative example B...0.062ml/g・day ●Comparative example C...0.064ml/g・day As is clear from this result, the granulated zinc containing 0.05% lead and 0.025% indium is The amount of gas generated from the granular zinc alloy with a degree of carbonization of 3% (Comparative Example C) is reduced to about 60%. This is due to the effect of increasing the hydrogen overvoltage of zinc due to the addition of lead and indium.

また、焼鈍処理したのみで無汞化の第1実施例
では、水素ガス発生量は、従来の実用化されてい
るアルカリ電池の汞化亜鉛(比較例B)に近い数
値を示している。
In addition, in the first example, which was only subjected to annealing treatment and was made non-oxidizing, the amount of hydrogen gas generated was close to that of zinc hydride (comparative example B) of a conventional alkaline battery that has been put into practical use.

そして、第1実施例のものの表面をアマルガム
化した汞化度3%の第2実施例では、汞化度が3
%と極く僅かであるのに水素ガス発生量はさらに
顕著に減少する。これは従来の汞化度8%程度の
汞化亜鉛の水素ガス発生量より少い。
In the second embodiment, the surface of which is amalgamated to have a degree of abrasion of 3%, the degree of abrasion is 3%.
%, the amount of hydrogen gas generated is further significantly reduced. This is smaller than the amount of hydrogen gas generated by conventional zinc filtration, which has a filtration degree of about 8%.

従つて第1実施例あるいは第2実施例による焼
鈍粒状亜鉛合金を使用してアルカリ電池を構成す
れば、その貯蔵性能は従来と同等あるいはそれ以
上になる。
Therefore, if an alkaline battery is constructed using the annealed granular zinc alloy according to the first embodiment or the second embodiment, its storage performance will be equal to or better than that of the conventional battery.

なお、上述の焼鈍処理を真空中で行なつている
が、これは処理工程を非常に簡単にするという効
果がある。つまり空気中で焼鈍処理を行なうと、
粒状亜鉛合金の表面が酸化してしまい、その酸化
膜を後工程で除去しなければならない。この面倒
な酸化膜除去工程が本発明の処理方法では不必要
である。
Note that although the above-mentioned annealing treatment is performed in a vacuum, this has the effect of greatly simplifying the treatment process. In other words, when annealing is performed in air,
The surface of the granular zinc alloy becomes oxidized, and the oxide film must be removed in a subsequent process. This troublesome oxide film removal process is unnecessary in the processing method of the present invention.

また、焼鈍処理は150℃以上で行なわなければ
十分な効果は得られない。また420℃以上であれ
ば亜鉛が溶融してしまうので、それ以下の温度で
行なう。また、焼鈍時間は5分〜3時間の範囲で
適宜に選べば良い。
Further, sufficient effects cannot be obtained unless the annealing treatment is performed at a temperature of 150°C or higher. Also, if the temperature is higher than 420°C, the zinc will melt, so the temperature should be lower than that. Further, the annealing time may be appropriately selected within the range of 5 minutes to 3 hours.

≪発明の効果≫ 以上詳細に説明したように、この発明に係るア
ルカリ電池用粒状亜鉛合金の処理方法によれば、
粒状亜鉛合金の結晶歪みが再結晶化して安定な結
晶となるため、アルカリ電解液中での防蝕性能が
大幅に向上するとともに、水素ガス発生が非常に
少くなり、アマルガム化せずに電池に使用するこ
ともでき、たとえアマルガム化するとしても水銀
量は従来より大幅に少くても良くなる。また、こ
の発明の処理方法では、真空中で焼鈍を行なうだ
けで容易に実施でき、大きな経費増加には繋がら
ない。
<<Effects of the Invention>> As explained in detail above, according to the method for treating granular zinc alloy for alkaline batteries according to the present invention,
The crystal strain in the granular zinc alloy recrystallizes to form stable crystals, which greatly improves corrosion resistance in alkaline electrolytes and generates very little hydrogen gas, allowing it to be used in batteries without amalgamation. Even if it is amalgamated, the amount of mercury can be much smaller than before. Further, the processing method of the present invention can be easily carried out by simply performing annealing in a vacuum, and does not lead to a large increase in costs.

Claims (1)

【特許請求の範囲】[Claims] 1 亜鉛を主成分とし、鉄、カドミウム、鉛、ビ
スマス、ガリウム、インジウム、タリウム、錫、
マグネシウム、アルミニウムのうちの一種以上の
元素を含む粒状亜鉛合金を、真空中にて150〜420
℃で焼結することなく焼鈍することを特徴とする
アルカリ電池用粒状亜鉛合金の処理方法。
1 The main component is zinc, iron, cadmium, lead, bismuth, gallium, indium, thallium, tin,
Granular zinc alloy containing one or more elements of magnesium and aluminum is heated to 150 to 420% in vacuum.
A method for processing a granular zinc alloy for alkaline batteries, characterized by annealing without sintering at °C.
JP59251957A 1984-11-30 1984-11-30 Method of processing granular zinc alloy for alkaline battery Granted JPS61131366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59251957A JPS61131366A (en) 1984-11-30 1984-11-30 Method of processing granular zinc alloy for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59251957A JPS61131366A (en) 1984-11-30 1984-11-30 Method of processing granular zinc alloy for alkaline battery

Publications (2)

Publication Number Publication Date
JPS61131366A JPS61131366A (en) 1986-06-19
JPH0473263B2 true JPH0473263B2 (en) 1992-11-20

Family

ID=17230499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59251957A Granted JPS61131366A (en) 1984-11-30 1984-11-30 Method of processing granular zinc alloy for alkaline battery

Country Status (1)

Country Link
JP (1) JPS61131366A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE57432B1 (en) * 1985-02-12 1992-09-09 Duracell Int Cell corrosion reduction
CA2046148C (en) * 1990-08-14 1997-01-07 Dale R. Getz Alkaline cells that are substantially free of mercury
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
JP2007080547A (en) * 2005-09-12 2007-03-29 Dowa Holdings Co Ltd Zinc alloy powder for alkaline battery and its manufacturing method

Also Published As

Publication number Publication date
JPS61131366A (en) 1986-06-19

Similar Documents

Publication Publication Date Title
JPH0473263B2 (en)
JPS6177259A (en) Zinc alkaline battery
JP3344486B2 (en) Method for producing non-melonized zinc alloy powder for alkaline batteries
JP4639304B2 (en) Zinc alloy powder for alkaline battery with less gas generation and method for producing the same
JPS6240162A (en) Zinc alkaline battery
JPS6164076A (en) Electrochemical battery
JPS61131367A (en) Method of processing granular zinc alloy for alkaline battery
JP3163006B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JPS6177257A (en) Zinc alkaline battery
JP3155201B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JP3163007B2 (en) Method for producing negative electrode zinc-based alloy powder for alkaline battery
JP3155202B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JPS61131365A (en) Alkaline battery
JP3155203B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JPH0578905B2 (en)
JPS62176053A (en) Zinc alkaline battery
JP2007080547A (en) Zinc alloy powder for alkaline battery and its manufacturing method
JP3163005B2 (en) Method for producing negative electrode zinc-based alloy powder for alkaline battery
JPH0471312B2 (en)
JPS61128464A (en) Alkaline battery
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JP2832231B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832230B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPS6316553A (en) Zinc alkaline battery
JPH0357160A (en) Zinc alloy powder having reduced gas evolution for alkaline battery and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees