JPS61131366A - Method of processing granular zinc alloy for alkaline battery - Google Patents

Method of processing granular zinc alloy for alkaline battery

Info

Publication number
JPS61131366A
JPS61131366A JP59251957A JP25195784A JPS61131366A JP S61131366 A JPS61131366 A JP S61131366A JP 59251957 A JP59251957 A JP 59251957A JP 25195784 A JP25195784 A JP 25195784A JP S61131366 A JPS61131366 A JP S61131366A
Authority
JP
Japan
Prior art keywords
zinc alloy
granular zinc
granular
zinc
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59251957A
Other languages
Japanese (ja)
Other versions
JPH0473263B2 (en
Inventor
Kenichi Shinoda
健一 篠田
Hirohiko Oota
太田 廣彦
Yuzo Tanaka
田中 雄三
Kiyohide Tsutsui
清英 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP59251957A priority Critical patent/JPS61131366A/en
Publication of JPS61131366A publication Critical patent/JPS61131366A/en
Publication of JPH0473263B2 publication Critical patent/JPH0473263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To completely eliminate the need for amalgamation or to use a very small amount of mercury in the aspect of increasing of hydrogen overvoltage or of restraining of hydrogen gas generation etc. by annealing granular zinc alloy as negative electrode material at specific temperatures in vacuum. CONSTITUTION:Granular zinc alloy which uses zinc as a main component and is containing a kind of element or more of iron, cadmium, lead, bismuth, galli um, indium, thallium, tin, magnesium and aluminium is annealed at the temperatures of 150-420 deg.C in vacuum. By annealing, the crystal strain of a surface in the zinc alloy particles is recrystallized to make stable crystals, and it is possible to strikingly improve the preventing performance of corrosion in alkali electrolytic solution, and to extremely reduce the hydrogen gas genera tion, and to use it in a battery without the need for amalgamation.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、アルカリ電池の負極材料として使用される
粒状亜鉛合金の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention relates to a method for treating granular zinc alloys used as negative electrode materials for alkaline batteries.

(従来の技術) 周知のように、アルカリ・マンガン電池、水銀電池、酸
化!11電池といった一般のアルカリ電池では、粒状化
した亜鉛を加圧成形、焼結あるいはゲル化して負極電極
を構成している。粒状亜鉛を用いることで全体の表面積
を大きくし、放電進行に伴う亜鉛表面の不働態化をでき
るだけ抑制しようとしている。
(Prior art) As is well known, alkaline manganese batteries, mercury batteries, oxidation! In general alkaline batteries such as No. 11 batteries, the negative electrode is formed by pressure molding, sintering, or gelling granulated zinc. By using granular zinc, the overall surface area is increased to suppress passivation of the zinc surface as the discharge progresses as much as possible.

また、亜鉛粒子の製造法から由来される表面状態、歪み
1割れなどは腐蝕を促進する。これを防止するため粒状
亜鉛に水銀を加えてアマルガム化(未化)している。亜
鉛粒子の表面をアマルガム化することは、亜鉛粒子の腐
蝕防止、アルカリ電解液中での水素過電圧の増大による
水素ガス発生の抑制といった面で大きな効果が得られる
。アマルガム化した粒状亜鉛を用いることで、アルカリ
電池の放電性能および貯蔵性能が大いに向上した。
In addition, surface conditions such as distortion and cracking caused by the manufacturing method of zinc particles promote corrosion. To prevent this, mercury is added to granular zinc to form it into an amalgam. Amalgamating the surface of zinc particles has great effects in terms of preventing corrosion of the zinc particles and suppressing hydrogen gas generation due to an increase in hydrogen overvoltage in an alkaline electrolyte. The use of amalgamated granular zinc greatly improved the discharge and storage performance of alkaline batteries.

(発明が解決しようとする問題点) アルカリ電池の性能向上に大いに寄与した負極亜鉛をア
マルガム化する技術は、有害物質である水銀を用いると
いう問題を内在している。公害防止などの観点から、電
池の水銀含有量は極力少いほうが望ましい。そのために
、負極亜鉛中の水銀含有率を低下させたり(氷化度を下
げる)、あるいは全く氷化していない亜鉛を負極に用い
、電池性能を低下さぼないようにする研究が盛んになさ
れている。
(Problems to be Solved by the Invention) The technology of amalgamating negative electrode zinc, which has greatly contributed to improving the performance of alkaline batteries, has the inherent problem of using mercury, which is a harmful substance. From the perspective of pollution prevention, it is desirable that the mercury content of batteries be as low as possible. To this end, research is actively being conducted to reduce the mercury content in negative electrode zinc (lower the degree of freezing), or to use zinc that has not frozen at all in the negative electrode to prevent battery performance from deteriorating. .

例えば、高純度の粒状亜鉛に代えて、インジウム、ガリ
ウム、鉛などの金属を微量に添加した粒状亜鉛合金を使
用することがすでに実用化されている。この種の亜鉛合
金は高純度亜鉛に比べて水素過電圧が高くなり、そのた
め従来より水化度を下げても実用に耐える性能のアルカ
リ電池を構成することができる。しかしこの対策で減少
さぼることができる水銀量は極く僅かで、やはり相当量
の水銀を使用しなければ十分な防蝕効果および水素ガス
発生の抑制効果が得られない。
For example, instead of high-purity granular zinc, it has already been put into practical use to use a granular zinc alloy to which trace amounts of metals such as indium, gallium, and lead are added. This type of zinc alloy has a higher hydrogen overvoltage than high-purity zinc, so it is possible to construct an alkaline battery with performance that can withstand practical use even if the degree of hydration is lower than that of conventional batteries. However, the amount of mercury that can be reduced by this measure is extremely small, and unless a considerable amount of mercury is used, sufficient corrosion prevention effects and hydrogen gas generation suppression effects cannot be obtained.

ところで、水銀使用量をゼロあるいは微小にするための
対策を考えるに際し、電池性能を低下ざゼないことは勿
論、電池の@造工程を極端に複雑にしないようにするこ
とも重要である。製造工程がWIMになりすぎると、経
費の面で実用化できなくなる。
By the way, when considering measures to reduce the amount of mercury used to zero or to a very small amount, it is important not only to avoid deteriorating battery performance but also to avoid making the battery manufacturing process extremely complicated. If the manufacturing process becomes WIM too much, it will not be practical due to costs.

この発明は上述した従来の問題点に鑑みなされたもので
あり、その目的は、水素過電圧の増大。
This invention was made in view of the above-mentioned conventional problems, and its purpose is to increase hydrogen overvoltage.

水素ガス発生の抑制などの面でアマルガム化を全く必要
としないか、アマルガム化するとしても掻く少量の水銀
量ですませることができ、しかも製造工程をあまり11
雑にすることがないようにしたアルカリ電池用粒状亜鉛
合金の処理方法を提供することにある。
In terms of suppressing hydrogen gas generation, there is no need for amalgamation at all, or even if it is amalgamation, only a small amount of mercury is required, and the manufacturing process can be reduced to 11.
An object of the present invention is to provide a method for processing a granular zinc alloy for alkaline batteries without causing any complication.

(問題点を解決するための手段) そこでこの発明では、亜鉛を主成分とし、鉄。(Means for solving problems) Therefore, in this invention, zinc is the main component, and iron is used as the main component.

カドミウム、鉛、ビスマス、ガリウム、インジウム、タ
リウム、錫、マグネシウム、アルミニウムのうちの−[
1以上の元素を含む粒状亜鉛合金を、真空中において1
50〜420℃で焼鈍処理するようにした。
Of cadmium, lead, bismuth, gallium, indium, thallium, tin, magnesium, aluminum - [
A granular zinc alloy containing one or more elements is
The annealing treatment was performed at 50 to 420°C.

(作 用) 上述のような微量金属を含んだ粒状亜鉛合金では亜鉛の
水素過電圧を上昇させるという効果がある。しかし、こ
の樺の粒状亜鉛合金の通常の製造方法では、粒子表面に
結晶歪み(不規則なサブグレイン等)が生ずるのを避け
られず、粒子表面の凹凸や割れなどが腐蝕、水素ガス発
生の大きな原因になっている。従来の水銀アマルガム化
はこの表面状態を改善する効果−6あるが、亜鉛台金粒
子の表面の結晶歪みや割れなどがあるために、十分な防
蝕効果、ガス発生抑制効果を得るには、多聞の水銀を必
要としていた。
(Function) A granular zinc alloy containing trace metals as described above has the effect of increasing the hydrogen overvoltage of zinc. However, with the normal manufacturing method of this birch granular zinc alloy, crystal distortion (irregular subgrains, etc.) cannot be avoided on the particle surface, and unevenness and cracks on the particle surface can lead to corrosion and hydrogen gas generation. This is a major cause. Conventional mercury amalgamation has the effect of improving this surface condition-6, but due to crystal distortions and cracks on the surface of the zinc base metal particles, it takes a long time to obtain sufficient corrosion protection and gas generation suppressing effects. of mercury.

この発明の処理方法によれば、上記焼鈍処理によって亜
鉛合金粒子の表面の結晶歪みが再結晶化して安定な結晶
となり、粒子表面の荒れた状態も改善される。その結果
、この粒状亜鉛合金は腐蝕しにくくなり、水素ガス発生
量も少くなる。このままアマルガム化せずに電池に使用
しても良好な性能が実現でき、またアマルガム化すると
しても、粒子の表面状態が数倍されているので極く僅か
の水銀量で大きな効果が得られる。
According to the treatment method of the present invention, the crystal strain on the surface of the zinc alloy particles is recrystallized by the annealing treatment to become stable crystals, and the rough state of the particle surface is also improved. As a result, this granular zinc alloy becomes less susceptible to corrosion and generates less hydrogen gas. Good performance can be achieved even if the particles are used in batteries without being amalgamated, and even if they are amalgamated, the surface condition of the particles is several times greater, so a great effect can be obtained with a very small amount of mercury.

(実 施 例) ここでは亜鉛に対し0.05%(重量%、以下同じ)の
鉛および0.025%のインジウムを含む粒状亜鉛合金
を使用する。この粒状亜鉛合金を、50+111118
a程度の真空中において、350℃で約1時間焼鈍する
。この焼鈍処理後の無未化の粒状亜鉛合金を電池に使用
しても良い。あるいは、この焼鈍処理後の粒状亜鉛合金
に3%の水銀を加えて、通常の方法でその表面をアマル
ガム化し、それを電池に組み込んでも良い。
(Example) Here, a granular zinc alloy containing 0.05% (by weight, the same applies below) of lead and 0.025% of indium to zinc is used. This granular zinc alloy is 50+111118
Annealing is performed at 350° C. for about 1 hour in a vacuum of about 300° C. The untreated granular zinc alloy after this annealing treatment may be used in batteries. Alternatively, 3% mercury may be added to the annealed granular zinc alloy, the surface thereof may be amalgamated by a conventional method, and this may be incorporated into a battery.

上述の焼鈍処理したままの無氷化の粒状亜鉛合金を第1
実施例とし、その表面をアマルガム化した水化度3%の
粒状亜鉛合金を第2実施例とする。
The ice-free granular zinc alloy that has been annealed as described above is used as the first
As an example, a granular zinc alloy with a hydration degree of 3% whose surface is amalgamated is used as a second example.

また、焼鈍処理していない水化度3%の高純度粒状亜鉛
を比較例Aとし、同じく焼鈍処理していない水化度6%
の高純度粒状亜鉛を比較例Bとし、0.05%の鉛およ
び0.025%のインジウムを含み、焼鈍処理していな
い水化度3%の粒状亜鉛合金を比較例Cとする。
In addition, high-purity granular zinc with a hydration degree of 3% that was not annealed was used as Comparative Example A, and a hydration degree of 6% that was also not annealed.
Comparative Example B is a high-purity granular zinc alloy containing 0.05% lead and 0.025% indium, and Comparative Example C is a 3% hydration granular zinc alloy that is not annealed.

これら5種について次のような比較試験を行なった。5
種類の粒状亜鉛合金あるいは粒状亜鉛をそれぞれアルカ
リ電解液(酸化亜鉛を飽和した水酸化カリウムの40%
溶液)に浸漬し、50℃の温度で15日間放置し、15
日間の水素ガス発生量を測定した。その結果は次のとお
りである。
The following comparative tests were conducted on these five types. 5
Different types of granular zinc alloys or granular zinc are each dissolved in an alkaline electrolyte (40% of potassium hydroxide saturated with zinc oxide).
solution) and left at a temperature of 50°C for 15 days.
The amount of hydrogen gas generated per day was measured. The results are as follows.

・第1実施例・・・・・・0.077n+ff / Q
 ・day・第2実施例・・・・・・0.026aJ/
(1・day・比較例 八−−0,1(14m(2/ 
!1−(FV・比較例 3−=−0,062nt2/q
−day・比較例 C・・・・・・0.064mQ /
 IJ ・dayこの結果から明らかなように、水化度
3%の高純度粒状亜鉛(比較例A)に対して0.05%
の鉛および0.025%のインジウムを含む水化度3%
の粒状亜鉛合金(比較例C)のガス発生量は約60%に
減少する。これは鉛およびインジウムの添加により、亜
鉛の水素過電圧が上テ?した効果による。
・First example...0.077n+ff/Q
・day・2nd example・・・・・・0.026aJ/
(1 day Comparative example 8--0,1 (14 m (2/
! 1-(FV/Comparative example 3-=-0,062nt2/q
-day Comparative example C...0.064mQ/
IJ day As is clear from this result, 0.05% for high purity granular zinc with a hydration degree of 3% (Comparative Example A)
3% hydration with lead and 0.025% indium
The gas generation amount of the granular zinc alloy (Comparative Example C) is reduced to about 60%. Does this mean that the addition of lead and indium increases the hydrogen overvoltage of zinc? It depends on the effect.

また、焼鈍処理したのみで無氷化の第1実施例では、水
素ガス発生率は、従来の実用化されているアルカリ電池
の氷化亜1(比較例B)に近い数値を示している。
In addition, in the first example, which was made ice-free by only being annealed, the hydrogen gas generation rate showed a value close to that of ice-free Alkaline 1 (Comparative Example B) of a conventional alkaline battery that has been put into practical use.

そして、第1実施例のものの表面をアマルガム化した水
化度3%の第2実施例では、水化度が3%と極く僅かで
あるのに水素ガス発生mはさらに顕著に減少する。これ
は従来の水化度8冗程度の氷化亜鉛の水素ガス発生量よ
り少い。
In the second example where the surface of the first example was amalgamated and the degree of hydration was 3%, the hydrogen gas generation m was further significantly reduced even though the degree of hydration was as small as 3%. This is less than the amount of hydrogen gas generated by conventional frozen zinc with a degree of hydration of about 8.

従って第1実m例あるいは第2実施例による焼鈍粒状亜
鉛合金を使用してアルカリ電池を構成すれば、その貯蔵
性能は従来と/iJ等あるいはそれ以上になる。
Therefore, if an alkaline battery is constructed using the annealed granular zinc alloy according to the first example or the second example, its storage performance will be equal to or higher than that of the conventional battery.

なお、上述の焼鈍処理を真空中で行なっているが、これ
は処理工程を非常に簡単にするという効果がある。つま
り空気中で焼鈍処理を行なうと、粒状亜鉛合金の表面が
酸化してしまい、その酸化膜を後工程で除去しなければ
ならない。この面倒な酸化膜除去工程が本発明の処理方
法では不必要である。
Note that although the above-mentioned annealing treatment is performed in a vacuum, this has the effect of greatly simplifying the treatment process. That is, when annealing is performed in air, the surface of the granular zinc alloy is oxidized, and the oxide film must be removed in a subsequent process. This troublesome oxide film removal process is unnecessary in the processing method of the present invention.

また、焼鈍処理は150℃以上で行なわなければ」−分
な効果は得られない。また420℃以上であれば亜鉛が
溶融してしまうので、それ以下の温度で行なう。また、
焼鈍時間は5分〜3時間の範囲で適宜に選べば良い。
Further, unless the annealing treatment is performed at a temperature of 150° C. or higher, significant effects cannot be obtained. Furthermore, since zinc will melt if the temperature is higher than 420°C, the temperature should be lower than that. Also,
The annealing time may be appropriately selected within the range of 5 minutes to 3 hours.

(発明の効果) 以上詳細に説明したように、この発明に係るアルカリ電
池用粒状亜鉛合金の処理方法によれば、粒状亜鉛合金の
結晶歪みが再結晶化して安定な結晶となるため、アルカ
リ電解液中での防蝕性能が大幅に向上するとともに、水
素ガス発生が非常に少くなり、アマルガム化せずに電池
に使用りることもでき、たとえアマルガム化するとし−
Cも水銀用は従来より大幅に少くても良くなる。また、
この発明の処理方法では、真空中で焼鈍を行なうだけで
容易に実施でき、大きな経費増加には繋がらない。
(Effects of the Invention) As explained in detail above, according to the method for treating granular zinc alloy for alkaline batteries according to the present invention, the crystal strain of the granular zinc alloy is recrystallized to become stable crystals, so that alkaline electrolytic In addition to greatly improving its corrosion resistance in liquid, hydrogen gas generation is extremely reduced, and it can be used in batteries without being amalgamated.
For mercury, C can be used in a much smaller amount than before. Also,
The processing method of the present invention can be easily carried out by simply performing annealing in a vacuum, and does not lead to a large increase in costs.

Claims (1)

【特許請求の範囲】[Claims] (1)亜鉛を主成分とし、鉄、カドミウム、鉛、ビスマ
ス、ガリウム、インジウム、タリウム、錫、マグネシウ
ム、アルミニウムのうちの一種以上の元素を含む粒状亜
鉛合金を、真空中にて150〜420℃で焼鈍すること
を特徴とするアルカリ電池用粒状亜鉛合金の処理方法。
(1) A granular zinc alloy containing zinc as the main component and one or more of the following elements: iron, cadmium, lead, bismuth, gallium, indium, thallium, tin, magnesium, and aluminum is heated at 150 to 420°C in a vacuum. A method for treating a granular zinc alloy for alkaline batteries, which comprises annealing the granular zinc alloy for use in alkaline batteries.
JP59251957A 1984-11-30 1984-11-30 Method of processing granular zinc alloy for alkaline battery Granted JPS61131366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59251957A JPS61131366A (en) 1984-11-30 1984-11-30 Method of processing granular zinc alloy for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59251957A JPS61131366A (en) 1984-11-30 1984-11-30 Method of processing granular zinc alloy for alkaline battery

Publications (2)

Publication Number Publication Date
JPS61131366A true JPS61131366A (en) 1986-06-19
JPH0473263B2 JPH0473263B2 (en) 1992-11-20

Family

ID=17230499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59251957A Granted JPS61131366A (en) 1984-11-30 1984-11-30 Method of processing granular zinc alloy for alkaline battery

Country Status (1)

Country Link
JP (1) JPS61131366A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2577351A1 (en) * 1985-02-12 1986-08-14 Duracell Int ELECTROCHEMICAL CELLS AND THEIR MANUFACTURE
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
EP0845827A2 (en) * 1990-08-14 1998-06-03 Eveready Battery Company, Inc. Substantially mercury-free electrochemical cells
JP2007080547A (en) * 2005-09-12 2007-03-29 Dowa Holdings Co Ltd Zinc alloy powder for alkaline battery and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2577351A1 (en) * 1985-02-12 1986-08-14 Duracell Int ELECTROCHEMICAL CELLS AND THEIR MANUFACTURE
EP0845827A2 (en) * 1990-08-14 1998-06-03 Eveready Battery Company, Inc. Substantially mercury-free electrochemical cells
EP0845827A3 (en) * 1990-08-14 2002-06-19 Eveready Battery Company, Inc. Substantially mercury-free electrochemical cells
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
JP2007080547A (en) * 2005-09-12 2007-03-29 Dowa Holdings Co Ltd Zinc alloy powder for alkaline battery and its manufacturing method

Also Published As

Publication number Publication date
JPH0473263B2 (en) 1992-11-20

Similar Documents

Publication Publication Date Title
JPH01211858A (en) Rechargeable cell
CN109295350B (en) Anode material for seawater aluminum-air battery and preparation method thereof
LU102451B1 (en) Aluminum (al) anode plate material for al-air battery and preparation method thereof, al anode plate for al-air battery and preparation method and use thereof
JPS61131366A (en) Method of processing granular zinc alloy for alkaline battery
JPS6177259A (en) Zinc alkaline battery
JP3352965B2 (en) Zinc alloy powder for alkaline batteries with low gas generation
JPS61131367A (en) Method of processing granular zinc alloy for alkaline battery
JP4639304B2 (en) Zinc alloy powder for alkaline battery with less gas generation and method for producing the same
JP2832228B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPS6177257A (en) Zinc alkaline battery
JPS61116755A (en) Zinc powder for alkaline manganese battery and alkaline manganese battery
JPH0578905B2 (en)
JPH05299082A (en) Zinc alloy powder for alkaline battery and manufacture thereof
JPS61131365A (en) Alkaline battery
JPS633942B2 (en)
JPS62176053A (en) Zinc alkaline battery
Straumanis et al. Surface Disintegration of Zinc Hono-and Polycrystals Dissolving Anodically in Sodium Bromate Solutions and the Apparent Valency of Zinc Ions
JPS6231941A (en) Zinc can for dry battery
JPS61128464A (en) Alkaline battery
JPS61131363A (en) Alkaline battery
JPS6251160A (en) Alkaline battery
JPS61121263A (en) Zinc negative electrode for alkaline battery
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JP2932285B2 (en) Method for producing zinc alloy powder for alkaline batteries with low gas generation
CN117721472A (en) Zinc-aluminum-magnesium alloy sacrificial anode material for power plant slag conveyor chain

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees