JPS61119092A - Manufacture of semiconductor laser device - Google Patents

Manufacture of semiconductor laser device

Info

Publication number
JPS61119092A
JPS61119092A JP24115984A JP24115984A JPS61119092A JP S61119092 A JPS61119092 A JP S61119092A JP 24115984 A JP24115984 A JP 24115984A JP 24115984 A JP24115984 A JP 24115984A JP S61119092 A JPS61119092 A JP S61119092A
Authority
JP
Japan
Prior art keywords
type
layer
substrate
multilayer thin
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24115984A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Takashi Sugino
隆 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24115984A priority Critical patent/JPS61119092A/en
Publication of JPS61119092A publication Critical patent/JPS61119092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain the stripe structure having a strong effect of current narrowing by forming the multilayer thin films including a double hetero structure on a substrate in a manner a thickness of the uppermost layer of the multilayer thin films is thin on the projecting part and is thick in other parts and then a conductive type of the uppermost layer of the multilayer thin films becomes the same as the substrate on the projecting part. CONSTITUTION:On an N type GaAs substrate 1, stripe-form projections of a normal mesa are arranged in parallel to <011> direction by photolithography. By an MOCVD method, an N type GaAs buffer layer 2 is grown to 1mum in a flat part by crystal growth and an N type Ga1-xAlxAs clad layer 3 to 1.5mum, an N type Ga1-yAlyAs active layer 4 (0<=y<=x) to 0.07mum, a P type Ga1-xAlxAs clad layer 5 to 1.2mum, and an N type GaAs current blocking layer 6 to level the surface are grown. From the surface 10 of the N type GaAs current blocking layer 6, diffusion of Zn is made without a mask. By making a depth of diffusion of Zn slightly deeper than (d) in the drawing, the front 7 of a Zn diffusion region 8 can enter only in the part above the projection of the P type Ga1-xAlxAs clad layer 5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種電子機器、光学機器の光源として、近年
急速に用途が拡大し、需要の高まっている半導体レーザ
装置の製造方法て関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for manufacturing semiconductor laser devices, whose applications have been rapidly expanding in recent years and demand is increasing as light sources for various electronic devices and optical devices. .

従来例の構成とその問題点 電子機器、光学機器のコヒーレント光源とじて半導体レ
ーザに要求される重要な性能に、低電流動作、単−横モ
ード発振があげられる。これらを実現するためには、レ
ーザ光が伝播する活性領域付近にレーザ素子中を流れる
電流を集中するようにその拡がりを抑制し、かつ光を閉
じ込める必要がある。このような構造を有する半導体レ
ーザは通常ストライプ型半導体レーザと呼ばれている。
Conventional Structures and Problems The important performances required of semiconductor lasers as coherent light sources for electronic and optical equipment include low current operation and single-transverse mode oscillation. In order to achieve these, it is necessary to suppress the spread of the current flowing through the laser element so as to concentrate it near the active region where the laser light propagates, and to confine the light. A semiconductor laser having such a structure is usually called a stripe type semiconductor laser.

比較的簡単なストライプ化の方法に、電流狭さくだけを
用いるものがある。具体的には、プL/ −す型半導体
レーザにプロトン照射を施したもの、Zn拡散を施した
もの、酸化膜などの絶縁膜を形成したもの、結晶成長等
により内部に電流狭さく領域をつくりつけたものが挙げ
られる。しかしながら、これらの方法にはそれぞれ重大
な欠点がある。プロトン照射を施すと、プロトン照射時
に半導体レーザの各層の一部の結晶が損傷を受け、半導
体レーザの特性を損う事がある。Zn拡散型の場合、7
00〜850 ’Cというような高温でZn拡散を行な
う事が多く、Zn等のドーパントが結晶中を移動したり
して、p/n 接合を設計通り形成するのが難しいとい
う問題がある。酸化膜などの絶縁膜による方法は前記二
つの方法と比べ作製された半導体レーザ中での電流狭さ
くの効果が弱い。
A relatively simple striping method uses only current constriction. Specifically, laser-type semiconductor lasers have been subjected to proton irradiation, Zn diffusion has been performed, insulating films such as oxide films have been formed, and current constriction regions have been created inside by crystal growth, etc. Examples include things that are attached. However, each of these methods has significant drawbacks. When proton irradiation is applied, some crystals in each layer of the semiconductor laser are damaged during the proton irradiation, which may impair the characteristics of the semiconductor laser. In the case of Zn diffusion type, 7
Zn diffusion is often carried out at high temperatures such as 00 to 850'C, and there is a problem in that dopants such as Zn move in the crystal, making it difficult to form a p/n junction as designed. The method using an insulating film such as an oxide film has a weaker current narrowing effect in the fabricated semiconductor laser than the above two methods.

発明の目的 本発明は上記欠点に鑑み、強い電流狭さく用ストライプ
構造を容易に形成できる半導体レーザ装置の製造方法を
提供するものである。
OBJECTS OF THE INVENTION In view of the above-mentioned drawbacks, the present invention provides a method for manufacturing a semiconductor laser device that can easily form a strong current confinement stripe structure.

発明の構成 この目的を達成するために本発明の半導体レーザ装置の
製造方法は、有機金属気相エピタキシャル成長法(MO
CVD法)を用いて、ストライプ状凸部を有する基板上
に二重ヘテロ構造を含む多層薄膜を前記多層薄膜の最上
層の膜厚が、凸部上で薄く、他の部分で厚くなるように
形成し、次いで前記多層薄膜の最上層の導電型が凸部上
で前記基板と同一となるよう、ドーパント拡散やイオン
注入などを用いて形成することから構成される。
Structure of the Invention In order to achieve this object, the method for manufacturing a semiconductor laser device of the present invention employs a metal organic vapor phase epitaxial growth method (MO
CVD method) is used to deposit a multilayer thin film containing a double heterostructure on a substrate having striped protrusions so that the thickness of the top layer of the multilayer thin film is thinner on the protrusions and thicker in other parts. Then, the uppermost layer of the multilayer thin film is formed using dopant diffusion, ion implantation, etc. so that the conductivity type of the uppermost layer is the same as that of the substrate on the convex portion.

この構成によって、強い電流狭さく効果を有するストラ
イプ構造が形成され、単−横モード発振。
This configuration forms a stripe structure with a strong current confinement effect, resulting in single-transverse mode oscillation.

低しきい値動作の半導体レーザ装置を比較的容易に実現
することとなる。
A semiconductor laser device with low threshold operation can be realized relatively easily.

実施例の説明 本発明の半導体レーザ装置の製造方法の一実施例を、図
を用いて具体的に説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the method for manufacturing a semiconductor laser device of the present invention will be specifically described with reference to the drawings.

−例として、基板にn型G a A gを用いる。第1
図に示す様に、n型G a A s基板1上にフォトリ
ングラフィにより<011>方向に平行に幅5μm。
- As an example, use n-type GaAg for the substrate. 1st
As shown in the figure, a width of 5 μm is formed on an n-type GaAs substrate 1 by photolithography in parallel to the <011> direction.

高さ1.6μ鵠の順メサのストライプ状凸部を設ける。A mesa striped convex portion with a height of 1.6 μm is provided.

次に第2図に示すようにMOCVD法により、n型G 
a A trバッファ層2を平坦部で1μ−n型G a
 1− tA l 、A sクラッド層3を1.5μm
、G a 1++ y A Z y A s活性層4(
0≦y<x )を0.07ttm 、p型G a 1−
x AZ x A sクラッド層6を1.2μm1n型
GaAs電流阻止層6を表面が平坦になるまで結晶成長
させる。成長条件は、−例として、成長速度2μm/時
、成長温度770’C1全ガス流量5 t/’;3−、
 II族元素に対するI族元素のモル比は40である。
Next, as shown in Figure 2, an n-type G
a A tr buffer layer 2 is 1μ-n type Ga in the flat part
1-tAl, As cladding layer 3 is 1.5 μm
, G a 1++ y A Z y As active layer 4 (
0≦y<x) to 0.07ttm, p-type Ga 1-
x AZ The growth conditions are, for example, a growth rate of 2 μm/hour, a growth temperature of 770'C, a total gas flow rate of 5 t/';
The molar ratio of Group I elements to Group II elements is 40.

この成長条件では、MOCVD法で特徴的なほぼ基板の
凹凸形状をそのまま保存した結晶成長となっている。
Under these growth conditions, crystal growth is achieved while preserving almost the uneven shape of the substrate, which is characteristic of MOCVD.

この後、第2図に示す様にn型G a A s電流阻止
層6の表面10より、マスクレスでZn拡散を行なう。
Thereafter, as shown in FIG. 2, Zn is diffused from the surface 10 of the n-type GaAs current blocking layer 6 without a mask.

この時、凸部中央の結晶成長層は凸部以外の部分より薄
いので、Zn拡散深さを第2図のdより少し大きくとる
ことにより、Zn拡散領域8のフロント7をp型Ga1
−エAtxAsクラッド層6の凸部上部のみに入れる事
ができる。MOCV D法で成長したエビ層の膜厚は、
6%以内におさまり、再現性良(Zn拡散を行なうこと
ができる。
At this time, since the crystal growth layer at the center of the convex part is thinner than the parts other than the convex part, by setting the Zn diffusion depth a little larger than d in FIG. 2, the front 7 of the Zn diffusion region 8 is made of p-type Ga1
- Air can be inserted only into the upper part of the convex part of the AtxAs cladding layer 6. The thickness of the shrimp layer grown by MOCV D method is
It is within 6% and has good reproducibility (Zn diffusion can be performed).

この結果、n型G a A s層のZn拡散領域はp型
G a A sとなり、p型G a 1.、、 x A
 Z x A sクラッド層3の凸部上部に幅Wの電流
狭さく用ストライブ構造が構成される。エビ成長面1o
にp側片−ミック電極、n型G a A s基板9にn
側オーミック電極を付は電流を流したところ、40 m
 A程度のしきい値で単−横モード発振する半導体レー
ザ装置が得られた。
As a result, the Zn diffusion region of the n-type Ga As layer becomes p-type Ga As, and p-type Ga 1. ,, x A
A current narrowing stripe structure having a width W is formed above the convex portion of the Z x As cladding layer 3 . Shrimp growth side 1o
On the p-side one-mic electrode, on the n-type GaAs substrate 9
When a current was applied to the side ohmic electrode, the distance was 40 m.
A semiconductor laser device that oscillates in a single transverse mode with a threshold value of approximately A was obtained.

なお、本実施例では、G a A s系、、 G a 
A tA s 系半導体レーザについて述べたが、In
P系や他の多元混晶系を含む化合物半導体を材料とする
半導体レーザ装置についても本発明を適用することは可
能である。
In addition, in this example, G a As system, G a
Although the A tA s semiconductor laser has been described, the In
The present invention can also be applied to semiconductor laser devices made of compound semiconductors containing P-based and other multi-component mixed crystal systems.

発明の効果 本発明の半導体レーザ装置の製造方法は、低しきい値で
単−横モード発振する半導体レーザ装置を与えるもので
あり、その実用的効果は大きい。
Effects of the Invention The method for manufacturing a semiconductor laser device of the present invention provides a semiconductor laser device that oscillates in a single transverse mode at a low threshold value, and has great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例で述べた半導体レーザ装置を構成する
凹凸を有する基板の断面図、第2図は本発明の製造方法
を用いて作製した半導体レーザ装置の一例を示す図であ
る。 1・・・・・・n型G a A s基板、2・・・・・
・n型G a A sバッファ層、3・・・・・・n型
GaAtAs  クラッド層、4・・・・・・GaA7
As 活性層、6・・・・・・p型G a A tA 
s クラッド層、6・・・・・・n型G a A s電
流阻止層、7・・・・・・Zn拡散フロント、8・・・
・・・Znn拡散梨型領域9・・・・・n側電極作製面
、10・・・・・・p制電、極作製面、d・・・・・・
拡散の深さ、W・・・・・・ストライプ幅。
FIG. 1 is a cross-sectional view of a substrate having unevenness constituting the semiconductor laser device described in this embodiment, and FIG. 2 is a diagram showing an example of a semiconductor laser device manufactured using the manufacturing method of the present invention. 1...N-type GaAs substrate, 2...
・N-type GaAs buffer layer, 3...n-type GaAtAs cladding layer, 4...GaA7
As active layer, 6... p-type Ga A tA
s cladding layer, 6...n-type GaAs current blocking layer, 7...Zn diffusion front, 8...
...Znn diffusion pear-shaped region 9...n-side electrode production surface, 10...p antistatic, electrode production surface, d...
Diffusion depth, W... Stripe width.

Claims (1)

【特許請求の範囲】[Claims]  有機金属気相エピタキシャル成長法を用いて、ストラ
イプ状凸部を有する基板上に二重ヘテロ構造を含む多層
薄膜を、前記多層薄膜の最上層の膜厚が、凸部上で薄く
、他の部分で厚くなるように形成し、その後前記多層薄
膜の最上層の導電型が凸部上で前記基板と逆で、他の部
分で前記基板と同一となるように、不純物を導入するこ
とを特徴とする半導体レーザ装置の製造方法。
Using metal-organic vapor phase epitaxial growth, a multilayer thin film containing a double heterostructure is formed on a substrate having striped convex portions, and the thickness of the top layer of the multilayer thin film is thinner on the convex portions and thinner on other portions. The multilayer thin film is formed to be thick, and then impurities are introduced so that the conductivity type of the uppermost layer of the multilayer thin film is opposite to that of the substrate on the convex portions and is the same as that of the substrate on other portions. A method for manufacturing a semiconductor laser device.
JP24115984A 1984-11-15 1984-11-15 Manufacture of semiconductor laser device Pending JPS61119092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24115984A JPS61119092A (en) 1984-11-15 1984-11-15 Manufacture of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24115984A JPS61119092A (en) 1984-11-15 1984-11-15 Manufacture of semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS61119092A true JPS61119092A (en) 1986-06-06

Family

ID=17070136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24115984A Pending JPS61119092A (en) 1984-11-15 1984-11-15 Manufacture of semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS61119092A (en)

Similar Documents

Publication Publication Date Title
US4948753A (en) Method of producing stripe-structure semiconductor laser
US20170271848A1 (en) Method for manufacturing semiconductor device and semiconductor device
JPS6318877B2 (en)
JPS6144485A (en) Semiconductor laser device and manufacture thereof
JPS61119092A (en) Manufacture of semiconductor laser device
JPS6184888A (en) Buried hetero type semiconductor laser
JPS60235485A (en) Manufacture of semiconductor laser device
JPS6118189A (en) Semiconductor laser array device and manufacture thereof
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPS6191990A (en) Semiconductor laser and manufacture thereof
JPS62179790A (en) Semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
JP2000174388A (en) Semiconductor laser and manufacture thereof
JPS60251687A (en) Manufacture of semiconductor laser device
KR940011276B1 (en) Laser diode and manufacturing method the same
JPH0373584A (en) Semiconductor laser device
JP2547459B2 (en) Semiconductor laser device and manufacturing method thereof
KR940011275B1 (en) Laser diode and manufacturing method the same
JPS60258991A (en) Semiconductor laser device
JPH04120788A (en) Semiconductor laser
JPS6167285A (en) Semiconductor laser device
JPS6118191A (en) Semiconductor laser device and manufacture thereof
JPS60258990A (en) Manufacture of semiconductor laser device
JPS60258986A (en) Manufacture of semiconductor laser device
JPS61171185A (en) Semiconductor laser device