JPS61116871A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPS61116871A
JPS61116871A JP23965384A JP23965384A JPS61116871A JP S61116871 A JPS61116871 A JP S61116871A JP 23965384 A JP23965384 A JP 23965384A JP 23965384 A JP23965384 A JP 23965384A JP S61116871 A JPS61116871 A JP S61116871A
Authority
JP
Japan
Prior art keywords
thin film
source
wiring
electrode
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23965384A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Mukaidono
充浩 向殿
Hirohisa Tanaka
田仲 広久
Kozo Yano
耕三 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP23965384A priority Critical patent/JPS61116871A/en
Priority to GB08527474A priority patent/GB2169746B/en
Priority to DE19853539794 priority patent/DE3539794A1/en
Publication of JPS61116871A publication Critical patent/JPS61116871A/en
Priority to US07/235,728 priority patent/US4843438A/en
Priority to US07/304,278 priority patent/US4918494A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To improve insulation between a gate and a source by forming a source electrode on a gate electrode so as not to superpose on the edge of the gate electrode. CONSTITUTION:Source wirings 11 are partly formed in double wirings 11a, 11b. A thin film transistor TFT is formed of one 11b of the double wirings and a branch 12a formed on a gate wiring 12. In other words, wirings 11a, 11b are extended in parallel without superposing on the edge 12b with one edge 12b of the branch 12a of the wiring 12 disposed therebetween. With the thus construction, it can suppress the leakage between the gate and the source, thereby improve the yield of the TFT.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、製造の歩留りの向上を図った構造を有する薄
膜トランジスタ(以下TPTと略す)に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin film transistor (hereinafter abbreviated as TPT) having a structure designed to improve manufacturing yield.

(従来技術) 近年、ぽ晶のアクティブマトリクス表示において、絶縁
性基板上にTFTをマトリクス状に形成したアクティブ
・マトリクス基板の研究が活発に行なわれている。半導
体材料として、ポリS1、a−3i 、 Te 、 C
clSe等がある。a−3iを用いtこTFT+7)構
造の一例を第4図の部分断面図及び第5図の部分平面図
に示す。第4図は、tpIS図のA−A線での断面を示
す。プラス基板1の上に、ゲート電12.2.・・・を
連結するゲート配m3を膜厚2 o o O−3旧)O
入のTa、 Mo、 T i、 A 1等の金属により
形成する。デート配tQ3には枝分れ部3aが設けられ
、TFTは枝分れ部3!を中心に形成される。ゲート絶
縁膜4は、プラズマC\iDによって形成した膜厚1 
fi U l)〜2000人の窒化シリコン(以下Si
Nxと略す)股である。(第5図においては、図示しな
い。)asi屑sは、プラズマCVDIこより膜厚1 
(l OO〜3 o o o人に形成する。ソース電極
6,61・・・を連結するソース配線7をデート配線3
に直交して形成する。
(Prior Art) In recent years, active matrix substrates in which TFTs are formed in a matrix on an insulating substrate have been actively researched in active matrix displays using polycrystalline crystals. As semiconductor materials, poly S1, a-3i, Te, C
There are clSe etc. An example of a TFT+7) structure using a-3i is shown in the partial cross-sectional view of FIG. 4 and the partial plan view of FIG. 5. FIG. 4 shows a cross section taken along line A-A of the tpIS diagram. On the positive substrate 1, gate electrodes 12.2. The gate arrangement m3 connecting... has a film thickness of 2 o o O-3 old) O
It is formed from metals such as Ta, Mo, Ti, and A1. A branch portion 3a is provided in the date distribution tQ3, and the TFT is provided in the branch portion 3! formed around. The gate insulating film 4 has a film thickness of 1 formed by plasma C\iD.
fi U l) ~ 2000 people silicon nitride (hereinafter Si
(abbreviated as Nx) is the crotch. (Not shown in FIG. 5.) ASI scraps are removed from plasma CVDI to a film thickness of 1
(l OO~3o
formed perpendicular to.

ソース電極6とドレイン電極8とは、ともに膜厚2 (
11+ 11−1110旧)人のTa、 Mo、 Ti
、AC等の金属により形成する。なお、ソース電極6及
びドレイン電極8とa−Si薄膜の間に、リンをドープ
した膜厚S 011−2013 (1人のa−3i膜9
を介在させると、ソース環1fi6、ドレイン電1販8
とa−3i層5のオーミックコンタクトがとれ、好まし
い、こうして、デート配置3とソース配線2     
            7どの又点毎に’r F T
が7レイ状に形成される。
Both the source electrode 6 and the drain electrode 8 have a film thickness of 2 (
11+ 11-1110 old) people's Ta, Mo, Ti
, AC, or other metal. Note that between the source electrode 6 and drain electrode 8 and the a-Si thin film, the thickness of the phosphorus-doped film S 011-2013 (one person's a-3i film 9
When intervening, source ring 1fi6, drain electrode 1fi8
It is preferable to make ohmic contact between the a-3i layer 5 and the date arrangement 3 and the source wiring 2.
7 At every point 'r F T
is formed into 7 lays.

さらに、図示しないが、各TPTに対応する絵素電極が
、ドレイン電極8に接して形成されろ。
Furthermore, although not shown, a picture element electrode corresponding to each TPT is formed in contact with the drain electrode 8.

(発明の解決すべき問題点) TPTを用いた7クテイプ・マトリクス基板においては
、マトリクスの各配線ごとに共通のゲート配線からシグ
ナル48号を人力し、共通のソース配線からデータ信号
を入力する。デート配線とソース配線との交点は多数で
あり、例えば250×250マトリクスにおいては、6
2500ケ所存在する。この多数の交点のうち1ケ所で
tlデート・ソース間にリークが生じると必然的に該当
するゲート配線とソース配線での十字型のライン欠陥が
発生し、実用に耐えない表示となり、7クテイプ・マト
リクス基板の歩留りはゼロとなる。デート配線とソース
配線の数が増すにつれ、デート・ソース間の絶縁の確実
性が一層要求される。
(Problems to be Solved by the Invention) In a seven-tape matrix board using TPT, signal No. 48 is manually inputted from a common gate wiring for each wiring of the matrix, and a data signal is inputted from a common source wiring. There are many intersections between the date wiring and the source wiring, for example, in a 250x250 matrix, there are 6 intersections.
There are 2,500 locations. If a leak occurs between the TL date and the source at one of these many intersections, a cross-shaped line defect will inevitably occur between the corresponding gate wiring and source wiring, resulting in a display that is not suitable for practical use. The yield of matrix substrates will be zero. As the number of date lines and source lines increases, reliable insulation between the date and sources is required.

本発明者らは、デート・ソース間のリーク箇所を種々の
方法によって調べた結果、デート・ソース間のリークが
、デートのエツゾ(縁部)とソースとが交差する部分(
第5図における斜a部分)において特に多発することを
見い出した。この原因は、?−1絶縁膜の膜厚がデート
電極の膜J7より大きいか又は同じ程度であるゆえに、
デート配線のエフ7′の部分の膜厚が薄くなり耐圧が低
下するためと、さらに、デート絶縁膜の膜質が毛担な部
分と段差部分とて”74なり、段差部分の力が絶縁性の
面で劣るためと考えられる。
As a result of investigating leak points between date sources using various methods, the present inventors found that leaks between date sources occur at the intersection of the edge of the date and the source (
It has been found that this occurs particularly frequently in the diagonal section a) in Fig. 5. What is the cause of this? -1 Since the film thickness of the insulating film is larger than or about the same as that of the date electrode film J7,
This is because the film thickness of the F7' part of the date wiring becomes thinner and the withstand voltage decreases, and furthermore, the film quality of the date insulating film is thick and the step part becomes "74", and the force at the step part is increased by the insulation. This is thought to be because they are inferior in terms of quality.

本発明の目的は、TPTの製造の歩留りを向上させる構
造を有するTPTを提供することである。
An object of the present invention is to provide a TPT having a structure that improves the manufacturing yield of the TPT.

(問題点を解決するための手段) 本発明に係る薄膜)ランノスタは、絶縁性基板hlこゲ
ート電極、デート絶縁膜、半導体膜、ソース電極・ドレ
イン電極の順に積層してアレイ状に形成される薄膜トラ
ンジスタにおいて、ソース電極がゲート電極の縁部に重
畳しないようiこデート電極上に形成されていることを
特徴とする。
(Means for Solving the Problems) A thin film according to the present invention) is formed in an array by laminating an insulating substrate, a gate electrode, a date insulating film, a semiconductor film, a source electrode and a drain electrode in this order. The thin film transistor is characterized in that the source electrode is formed on the i-codate electrode so as not to overlap the edge of the gate electrode.

(It用及び発明の効果) 本発明においては、ゲート配線の縁部とソース配線との
交差を最少とするのて゛デート・ソース間のリークの発
生が抑制され、TPTの歩留りが向上する。
(For It and Effects of the Invention) In the present invention, by minimizing the intersection between the edge of the gate wiring and the source wiring, the occurrence of leakage between the gate wiring and the source is suppressed, and the yield of TPT is improved.

(実施例) 以下、添付の図面を用いて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

fjS1図とf52図は、それぞれ、本発明の実施例の
部分平面図である。第1図ではソース配線11を一部で
二重配線11m、11bとし、TPTを二重配線の一方
11bとデート配!112に設けた枝分れ部12aとで
形成する。すなわち、二重配線11a、llbは、デー
ト配線12の枝分れff!112aの一方の縁部12b
を問にして、縁部12bに重畳することなく、平行に伸
びる。こうして、TPTにおいて、ソース電極がゲート
電極上にデート電極の縁部に重畳しないように形成され
る。この構造において、ゲート配線12の縁部12bと
ソース配線11との交差部分(第1図の斜線部分)は最
少にしている。なお、二重配線としたのは、TPTを構
成する枝分れ部12aだけでは電流?電が不足するため
である。
Figure fjS1 and Figure f52 are partial plan views of embodiments of the present invention, respectively. In FIG. 1, part of the source wiring 11 is double wiring 11m and 11b, and the TPT is arranged on one side of the double wiring 11b! It is formed by the branching part 12a provided at 112. That is, the double wires 11a and llb are branches ff! of the date wire 12. One edge 12b of 112a
, and extends parallel to the edge 12b without overlapping it. Thus, in the TPT, the source electrode is formed on the gate electrode so as not to overlap the edge of the date electrode. In this structure, the intersection between the edge 12b of the gate line 12 and the source line 11 (the shaded area in FIG. 1) is minimized. The reason for double wiring is that only the branch portion 12a that makes up the TPT can handle the current. This is due to a lack of electricity.

第2図においてはゲート配線21を枝分れをらたない構
造とし、ソース配線22にデート配線21の長手方向に
伸長する枝分れ部22aを設け、TFTをこの枝分れ部
22aに形成する。その技かれ部22aの線幅をデート
配線21の線幅以下にしてデート配線21のkk邪とソ
ース配線22との交差部分(第2図の斜線部分)を最少
としている。
In FIG. 2, the gate wiring 21 has an unbranched structure, the source wiring 22 is provided with a branching part 22a extending in the longitudinal direction of the date wiring 21, and the TFT is formed in this branching part 22a. do. The line width of the cut portion 22a is set to be less than the line width of the date line 21 to minimize the intersection between the date line 21 and the source line 22 (the shaded area in FIG. 2).

なお、第1図、第2図において13.23は夫々半導体
膜、1.1.24は夫々ドレイン電極である。
In FIGS. 1 and 2, 13.23 is a semiconductor film, and 1.1.24 is a drain electrode.

このように、第1図と第2I21の構造のTFTにおい
ては、デート配線の縁部とソース配線との交差部分(斜
線部分)は第4図と第5図とに示した従来のTPTに比
べてはるかに少なくなっており、これによってデート・
ソース間のリークを大幅に減少させることができた。
In this way, in the TFTs with the structures shown in FIGS. 1 and 2I21, the intersections (shaded areas) between the edge of the date wiring and the source wiring are different from those in the conventional TPTs shown in FIGS. 4 and 5. This makes it much less difficult to date.
We were able to significantly reduce leaks between sources.

i1図と第2図に示した構造を有するTPTは、具体的
には、第3I2I(a)〜(d+に示すようにg1造さ
れる。なお、a 3 UIJ(a) −(d)ノg分子
IIr面図は、第り 雪 11               1図の構造のTP
Tにおいて1よ、B−B線の断面を、第2図の構造のT
PTにおいては、C−C線での断面を示す。
Specifically, the TPT having the structure shown in Figure i1 and Figure 2 is constructed as shown in Figures 3I2I(a) to (d+). The g-molecule IIr surface diagram is the TP of the structure shown in Figure 11.
1 at T, take the cross section of line B-B at T of the structure shown in Figure 2.
In PT, a cross section taken along line C-C is shown.

まず、ガラス基板31上に、2 t) 0 +1人l0
タンタル層をスパッタにより全面に被着し、ホトエツチ
ングにより、第1図または第2図の?−)配線12.2
1の形にパターン化して、第35A(a)に示すように
、デート電極32とする。次に、第3図(b)に示すよ
うに、プラズマCVDにより、絶縁膜である1 500
人厚l8iNx膜33を、そして引続き、半導体膜であ
るI 5 +、+ (1l4のa  Si層34を全面
に被着する。犬に、通常のホトエツチング法によって、
このa7Si層34を第1図と第2図にそれぞれ13.
23で示すように島状のa−3i層34にパターン化す
る。次に、プラズマCVDによりり/をドープしたa−
3i層35を1000人、引続き真空蒸着によりTi層
36をI 000人、AP層37を2 o o O^被
着する。
First, on the glass substrate 31, 2 t) 0 + 1 person l0
A tantalum layer is deposited over the entire surface by sputtering and photoetched to form the tantalum layer shown in FIG. 1 or 2. -) Wiring 12.2
1 to form a date electrode 32 as shown in No. 35A(a). Next, as shown in FIG. 3(b), an insulating film of 1500
A 18iNx film 33 with a thickness of 18cm is deposited on the entire surface, followed by a semiconductor film 34 of I 5 +,+ (1l4 thickness).
This a7Si layer 34 is shown in FIGS. 1 and 2 as 13.
The a-3i layer 34 is patterned into an island shape as shown at 23. Next, a-
A 3i layer 35 of 1,000 layers is subsequently deposited by vacuum evaporation, followed by a Ti layer 36 of 1,000 layers and an AP layer 37 of 2 o o O^.

次に、第3図(c)或いは第3図(d)に示すように、
ホトエツチングにより第1図または第2図のソース配線
(11,22)とドレイン電極(14,24)に対応し
てパターン化して、ソース電極、ドレイン電極とする6 なお、ff12図に示すように、デート配線21とソー
又配線22との交差する部分に半導体膜23を介在させ
ると、さらにデート・ソー人間のリークが減少する。
Next, as shown in FIG. 3(c) or FIG. 3(d),
The source wiring (11, 22) and drain electrode (14, 24) in FIG. 1 or 2 are patterned by photoetching to form source and drain electrodes. When the semiconductor film 23 is interposed at the intersection between the date wiring 21 and the saw wiring 22, leakage between the date wiring and the saw wiring is further reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は、それぞれ、本発明の実施例の図式的
な部分平面図である。 第3図(a)〜(d)は、本発明の実施例の製造の工程
を図式的に示す拡大部分断面図である。 第4図と第5図は、そバぞれ、従来のa−3i/IMT
I−Tの図式的な部分断面図と部分平面図である。 1・・絶縁性基板、     2・・・デート電極、3
・・ゲート配線、    4・・・デート絶縁膜、5・
・・半導体膜、      6・・・ソース電極、7・
・ソース配線、     訃・・ドレイン電極、21 
・・デート配線、    22−・・ソース配線、22
a  ・・枝分れ部、    23・・・半導体膜、2
・1・・・ドレイン電極、   3I・・・絶縁性基板
、32・・・ゲート電極、    33・・デート絶耘
膜、34・・・半導体膜、  35,36. 3’;、
・電極。
1 and 2 are schematic partial plan views of embodiments of the invention, respectively. FIGS. 3(a) to 3(d) are enlarged partial cross-sectional views schematically showing the manufacturing steps of an embodiment of the present invention. Figures 4 and 5 respectively show conventional a-3i/IMT
FIG. 3 is a schematic partial cross-sectional view and a partial plan view of IT. 1... Insulating substrate, 2... Date electrode, 3
・・Gate wiring, 4・Date insulating film, 5・
・・Semiconductor film, 6・Source electrode, 7・
・Source wiring, ・・Drain electrode, 21
...Date wiring, 22-...Source wiring, 22
a...branching part, 23...semiconductor film, 2
・1...Drain electrode, 3I...Insulating substrate, 32...Gate electrode, 33...Date isolation film, 34...Semiconductor film, 35, 36. 3';,
·electrode.

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁性基板上にゲート電極、ゲート絶縁膜、半導
体膜、ソース電極・ドレイン電極の順に積層してアレイ
状に形成される薄膜トランジスタにおいて、 ソース電極がゲート電極の縁部に重畳しないようにデー
ト電極上に形成されていることを特徴とする薄膜トラン
ジスタ。
(1) In a thin film transistor formed in an array by laminating a gate electrode, a gate insulating film, a semiconductor film, a source electrode and a drain electrode in this order on an insulating substrate, the source electrode should not overlap the edge of the gate electrode. A thin film transistor characterized in that it is formed on a date electrode.
(2)特許請求の範囲第1項に記載された薄膜トランジ
スタにおいて、 薄膜トランジスタの近傍で、ソース配線が、ソース電極
を構成する部分とソース電極を構成しない部分との二重
配線になっていることを特徴とする薄膜トランジスタ。
(2) In the thin film transistor recited in claim 1, the source wiring is double wiring in the vicinity of the thin film transistor, including a portion that constitutes a source electrode and a portion that does not constitute a source electrode. Features of thin film transistors.
(3)特許請求の範囲第1項に記載された薄膜トランジ
スタにおいて、 上記の半導体膜がアモルファスシリコン薄膜であること
を特徴とする薄膜トランジスタ。
(3) The thin film transistor according to claim 1, wherein the semiconductor film is an amorphous silicon thin film.
(4)特許請求の範囲第1項に記載された薄膜トランジ
スタにおいて、 上記のゲート絶縁膜が窒化シリコン膜であることを特徴
とする薄膜トランジスタ。
(4) The thin film transistor according to claim 1, wherein the gate insulating film is a silicon nitride film.
JP23965384A 1984-11-13 1984-11-13 Thin film transistor Pending JPS61116871A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23965384A JPS61116871A (en) 1984-11-13 1984-11-13 Thin film transistor
GB08527474A GB2169746B (en) 1984-11-13 1985-11-07 Thin film transistor
DE19853539794 DE3539794A1 (en) 1984-11-13 1985-11-09 THIN FILM TRANSISTOR
US07/235,728 US4843438A (en) 1984-11-13 1988-08-19 Thin film transistor
US07/304,278 US4918494A (en) 1984-11-13 1989-01-31 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23965384A JPS61116871A (en) 1984-11-13 1984-11-13 Thin film transistor

Publications (1)

Publication Number Publication Date
JPS61116871A true JPS61116871A (en) 1986-06-04

Family

ID=17047900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23965384A Pending JPS61116871A (en) 1984-11-13 1984-11-13 Thin film transistor

Country Status (1)

Country Link
JP (1) JPS61116871A (en)

Similar Documents

Publication Publication Date Title
JPH06160904A (en) Liquid crystal display device and its production
JP2000002892A (en) Liquid crystal display device, matrix array substrate, and manufacture thereof
JPS62126677A (en) Thin film transistor array
JPH01123475A (en) Liquid crystal display equipment
JPH0824185B2 (en) Thin film transistor device and manufacturing method thereof
JPH11119240A (en) Active matrix substrate and liquid crystal display device using the substrate
JPS61116871A (en) Thin film transistor
JPH09101541A (en) Array substrate for display device and its production
JPH0385530A (en) Active matrix display device
JPH11326941A (en) Active matrix display device
JPH01183854A (en) Thin-film transistor and manufacture thereof
JPS62226668A (en) Thin film transistor
JP2570255B2 (en) Thin film transistor matrix array panel and method of manufacturing the same
JPH04111322A (en) Manufacture of thin film transistor
JPH05265039A (en) Liquid crystal display device
JPH07325314A (en) Liquid crystal display device
JP2731302B2 (en) Active matrix liquid crystal display
JP4075220B2 (en) Display panel and manufacturing method thereof
JPH09101542A (en) Array substrate for display device and its production
JPH0618922A (en) Liquid crystal display device
JPH04106938A (en) Thin film field-effect transistor
JP2550692B2 (en) Method of manufacturing thin film transistor array
KR100236614B1 (en) Manufacturing method of liquid crystal display device
JPS61181164A (en) Manufacture of thin-film field-effect transistor
JPH0393274A (en) Thin film transistor