JPS61181164A - Manufacture of thin-film field-effect transistor - Google Patents

Manufacture of thin-film field-effect transistor

Info

Publication number
JPS61181164A
JPS61181164A JP2225385A JP2225385A JPS61181164A JP S61181164 A JPS61181164 A JP S61181164A JP 2225385 A JP2225385 A JP 2225385A JP 2225385 A JP2225385 A JP 2225385A JP S61181164 A JPS61181164 A JP S61181164A
Authority
JP
Japan
Prior art keywords
film
gate electrode
photosensitive resin
resin film
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2225385A
Other languages
Japanese (ja)
Inventor
Daizo Ando
安藤 大蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2225385A priority Critical patent/JPS61181164A/en
Publication of JPS61181164A publication Critical patent/JPS61181164A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78636Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with supplementary region or layer for improving the flatness of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate

Abstract

PURPOSE:To form a thin-film field-effect transistor having flattened gate structure without disconnecting a gate by a method wherein a gate electrode is shaped onto the surface of a light-transmitting insulating substrate through selective etching, a light-transmitting insulating film is applied and formed onto the whole surface as a photosensitive resin film used at that time is left as it is, the photosensitive resin film is removed and flattened gate electrode structure is shaped. CONSTITUTION:Chromium is evaporated onto a soda glass substrate 1, a photosensitive resin film 9 is formed selectively onto the surface of chromium, and a chromium thin-film 2 is etched to shape a gate electrode 2. An silicon nitride film 8 is deposited on the whole surface while leading the resin film 9, and the resin film 9 is removed to form a flattened gate electrode 2. An silicon nitride film 3, an amorphous silicon film 4 and an silicon nitride film 5 are deposited in succession. The silicon nitride film 5 and the amorphous photosensitive resin film 4 are etched selectively in succession, a contact hole is bored to the silicon nitride film 5, ITO is applied onto the whole surface, and a source electrode 6 and a drain electrode 7 are shaped through selective etching. Accordingly, a large-sized active-matrix substrate having high accuracy can be formed with high yield.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、薄膜電界効果トランジスタの製造方法、特に
平坦化ゲート構造を有する薄膜電界効果トランジスタの
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a thin film field effect transistor, and in particular to a method for manufacturing a thin film field effect transistor having a planarized gate structure.

従来の技術 近年、液晶ディスプレイ用アクティブ・マトリクス基板
の研究開発が盛んとなっている、(たとえば、口径エレ
クトロニクス 1982年12−20  P13311
984年9−10P211)。
Prior Art In recent years, research and development of active matrix substrates for liquid crystal displays has become active (for example, Aperture Electronics, 1982, 12-20, P13311
9-10 P211).

アクティブ・マトリクス基板とは、画素の1つ1つにス
イッチング用トランジスタを作り込んだもので、これに
よりクロストークをなくし、液晶ディスプレイをより高
精細、高コントラストとすることができる。このスイッ
チング用トランジスタは、以前は単結晶シリコンが用い
られていたが、透過形にできないため画面が暗く、カラ
ー化ができない、大面積パネルは困難である等の理由か
ら、現在では非晶質シリコン、多結晶シリコン等を半導
体薄膜として用いた薄膜電界効果トランジスタが主流と
なっている。
An active matrix substrate is one in which a switching transistor is built into each pixel, which eliminates crosstalk and allows for higher definition and higher contrast LCD displays. This switching transistor used to be made of single-crystal silicon, but it is now made of amorphous silicon because it cannot be made into a transmissive type, resulting in a dark screen, cannot be made into color, and is difficult to produce large-area panels. , thin film field effect transistors using polycrystalline silicon or the like as a semiconductor thin film have become mainstream.

第2図に従来の薄膜電界効果トランジスタの一構成例を
示す。これはスタガー型と呼ばれるものでラし、他にも
いくつかの構成例があるが(S、M、Sze著 Phy
sics of Sem1conductorDevi
ces ) 、ゲート絶縁膜、半導体薄膜、ノくツシペ
ーション膜が連続的に形成できるため、この型が一般的
に用いられている。1はガラス、石英等の透光性絶縁性
基板で、その表面にゲート電極2が形成され、ゲート絶
縁膜3を介して島状に半導体薄膜4が形成され、その表
面にソース電極6、ドレイン電極7が配設されている。
FIG. 2 shows an example of the configuration of a conventional thin film field effect transistor. This is called a staggered type, and there are several other configuration examples (Phys.
sics of Sem1conductorDevi
ces), a gate insulating film, a semiconductor thin film, and a cutting film can be formed continuously, so this type is generally used. Reference numeral 1 denotes a transparent insulating substrate made of glass, quartz, etc., on the surface of which a gate electrode 2 is formed, an island-shaped semiconductor thin film 4 is formed with a gate insulating film 3 interposed therebetween, and a source electrode 6 and a drain electrode are formed on the surface of the substrate. An electrode 7 is provided.

また、半導体薄膜4の表面にはパッシベーション膜5が
設けられている。
Further, a passivation film 5 is provided on the surface of the semiconductor thin film 4.

しかし、この構造の薄膜電界効果トランジスタでは、ゲ
ート電極2が最下層にあし、その上にゲート絶縁膜3、
半導体薄膜4を堆積しているため、ゲート絶縁膜3がゲ
ート電極2の段差部で段切れを起こしたり、クラックが
入ったりして、ゲート電極2とソース電極6、ドレイン
電極7間でショートシたり、リークしたりしていた。こ
のような各電極間でのショートやリークは、そのまま線
欠陥や点欠陥となし、液晶ディスプレイにとっては致命
的である。
However, in a thin film field effect transistor with this structure, the gate electrode 2 is the lowest layer, and the gate insulating film 3 is formed on top of the gate electrode 2.
Because the semiconductor thin film 4 is deposited, the gate insulating film 3 may break or crack at the step portion of the gate electrode 2, resulting in short circuits between the gate electrode 2, source electrode 6, and drain electrode 7. or leaked. Such short circuits and leaks between electrodes directly result in line defects or point defects, which are fatal to liquid crystal displays.

そこで、第3図のように、ゲート電極2を、透光性絶縁
性基板1に設けられた凹部に埋設した平坦化構造を有す
る薄膜電界効果トランジスタが考案されている。(特開
昭58−48466号公報)この構造の薄膜電界効果ト
ランジスタの製造方法は、第4図aに示すように、まず
透光性絶縁性基板1に選択的に感光性樹脂膜9を形成し
、これをマスクとして、基板1表面をエツチングして凹
部を形成する。次に第4図すに示すように、感光性樹脂
膜9を残したまま、全面にゲート電極材料2を被着形成
した後、第4図Cに示すように、感光性樹脂膜9を除去
して凹部に埋設されたゲート電極2を形成する。次いで
、第4図dに示すように、ゲート絶縁膜3、半導体薄膜
4、パッシベーション膜6を堆積し、第4図eに示すよ
うに島状にパターニングした後、第4図fに示すように
パッシベーション膜6にコンタクトホールヲ設ffだ後
、ソース電極6、ドレイン電極7を形成して完成する。
Therefore, as shown in FIG. 3, a thin film field effect transistor having a flattened structure in which a gate electrode 2 is buried in a recess provided in a transparent insulating substrate 1 has been devised. (Japanese Unexamined Patent Publication No. 58-48466) A method for manufacturing a thin film field effect transistor having this structure is as shown in FIG. Then, using this as a mask, the surface of the substrate 1 is etched to form recesses. Next, as shown in FIG. 4, gate electrode material 2 is deposited on the entire surface while leaving the photosensitive resin film 9, and then, as shown in FIG. 4C, the photosensitive resin film 9 is removed. Then, a gate electrode 2 buried in the recess is formed. Next, as shown in FIG. 4d, a gate insulating film 3, a semiconductor thin film 4, and a passivation film 6 are deposited and patterned into an island shape as shown in FIG. 4e, and then as shown in FIG. 4f. After forming contact holes in the passivation film 6, a source electrode 6 and a drain electrode 7 are formed to complete the process.

発明が解決しようとする問題点 しかしながら上記の製造方法では感光性樹脂膜をつけた
まま、ゲート電極材料を被着するのであるから、被着時
の温度はせいぜい1oo″Cまでであり、あまり高温に
はできない。このため、被着強度が弱く、ゲート電極材
料を全面に被着形成後、リフトオフしてゲート電極を形
成する際、ゲート電極として残すべきところまではがれ
てしまうことがあし、ゲート断線が生じやすいという問
題点があった。
Problems to be Solved by the Invention However, in the above manufacturing method, the gate electrode material is deposited with the photosensitive resin film still attached, so the temperature at the time of deposition is at most 10''C, which is not too high. For this reason, the adhesion strength is weak, and when the gate electrode material is deposited on the entire surface and then lifted off to form the gate electrode, it may peel off to the part that should remain as the gate electrode, resulting in gate disconnection. There was a problem in that it was easy for this to occur.

本発明の目的は、前記問題点に鑑み、ゲート断線を生じ
ることなく平坦化ゲート構造を有する薄膜電界効果トラ
ンジスタを製造する方法を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a method for manufacturing a thin film field effect transistor having a flattened gate structure without causing gate disconnection.

問題点を解決するための手段 上記問題点を解決するために、本発明の平坦化ゲート電
極構造の製造方法は、透光性絶縁性基板表面に選択エツ
チングによりゲート電極を形成し、その除用いた感光性
樹脂膜を残したまま、所望の厚さの透光性絶縁膜を全面
に被着形成し、その後前記感光性樹脂膜を除去して、前
記透光性絶縁膜に埋設された平坦化ゲート電極構造を形
成することを特徴とする。
Means for Solving the Problems In order to solve the above problems, the method for manufacturing a planarized gate electrode structure of the present invention involves forming a gate electrode on the surface of a light-transmitting insulating substrate by selective etching, and removing the gate electrode. A light-transmitting insulating film of a desired thickness is deposited on the entire surface while leaving the photosensitive resin film in place, and then the photosensitive resin film is removed to remove the flat surface buried in the light-transmitting insulating film. It is characterized by forming a gate electrode structure.

作用 上記のような製造方法では、最初にゲート電極を形成す
るため、ゲート電極材料の被着温度を2oo℃以上にす
ることができ、被着強度を上げることができる。しかも
、上記構造を製造する方法として、いわゆるリフトオフ
法を用いているため、きわめて簡単に自己整合的に製造
できる。
Effect: In the above-described manufacturing method, since the gate electrode is formed first, the deposition temperature of the gate electrode material can be set to 200° C. or higher, and the deposition strength can be increased. Furthermore, since the so-called lift-off method is used as a method for manufacturing the above structure, it can be manufactured extremely easily and in a self-aligning manner.

実施例 以下、本発明の実施例について、図面を参照しながら説
明する。第1図2L −gは本発明の薄膜電界効果トラ
ンジスタの製造方法を示したものである。第4図と対応
する部分には同一の番号がつけである。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings. FIGS. 1-2L-g show a method for manufacturing a thin film field effect transistor according to the present invention. Parts corresponding to those in FIG. 4 are numbered the same.

まず、第1図aに示すように、ソーダガラス基板1上に
、ゲート電極材料としてクロムを基板温度200″Cで
2000人、電子ビーム蒸着し、次に第1図すに示すよ
うに、その表面に選択的に感光性樹脂膜9を形成し、こ
れをマスクとしてクロム薄膜2をエツチングしてゲート
電極2を形成する。その後、第1図gに示すように、感
光性樹脂膜9を残したまま、全面に窒化シリコン膜をN
2−NH3−SiH4混合ガスのグロー放電分解法によ
り2000人堆積した後、第1図dに示すように、感光
性樹脂膜9を除去して平坦化ゲート電極を形成する。
First, as shown in Fig. 1a, chromium was deposited as a gate electrode material on a soda glass substrate 1 by electron beam evaporation at a substrate temperature of 200''C by 2000 people. A photosensitive resin film 9 is selectively formed on the surface, and using this as a mask, the chromium thin film 2 is etched to form the gate electrode 2. Thereafter, as shown in FIG. 1g, the photosensitive resin film 9 is left behind. Leave a silicon nitride film on the entire surface.
After 2,000 layers are deposited by a glow discharge decomposition method using a 2-NH3-SiH4 mixed gas, the photosensitive resin film 9 is removed to form a planarized gate electrode, as shown in FIG. 1d.

次に、第1図eに示すように、ゲート絶縁膜として窒化
シリコン膜3をN2− NH,−SiH4混合ガスのグ
ロー放電分解法により5ooo人堆積し、半導体薄膜と
して非晶質シリコン膜4をSiH4ガスのグロー放電分
解法により1500人堆積し、さらにパッシベーション
膜として窒化シリコン膜5を1000人堆積する。なお
、この三層の膜は真空を破ることなく連続的に堆積した
。その後、第1図fに示すように、上部窒化シリコン膜
5、非晶質シリコン膜4を所定の形状に順次選択エツチ
ングする。最後に、第1図gに示すように上部ffl化
シリコン膜5にコンタクトホールを開口し、その抜工T
Oを全面に被着形成し、それを選択エツチングしてソー
ス電極6、ドレイン電極7を形成する。
Next, as shown in FIG. 1e, 5000 silicon nitride film 3 was deposited as a gate insulating film by a glow discharge decomposition method using a N2-NH, -SiH4 mixed gas, and an amorphous silicon film 4 was deposited as a semiconductor thin film. 1500 layers are deposited by glow discharge decomposition method of SiH4 gas, and 1000 layers of silicon nitride film 5 is further deposited as a passivation film. Note that this three-layer film was deposited continuously without breaking the vacuum. Thereafter, as shown in FIG. 1f, the upper silicon nitride film 5 and the amorphous silicon film 4 are sequentially selectively etched into a predetermined shape. Finally, as shown in FIG.
O is selectively deposited on the entire surface and selectively etched to form a source electrode 6 and a drain electrode 7.

発明の効果 以上のようにして製造された平坦化構造を有する薄膜電
界効果トランジスタは、リーク電流も少なく、またゲー
ト電極配線、ソース電極配線の断線もない等、高精細大
型アクティブ・マトリクス基板を歩留まりよく製造する
には有用なものである。
Effects of the Invention The thin film field effect transistor with a flattened structure manufactured as described above has low leakage current, and there is no disconnection of gate electrode wiring or source electrode wiring, etc., and has a high yield rate for high-definition large active matrix substrates. It is useful for good manufacturing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の薄膜電界効果トランジスタの製造工程
を示した図、第2図は従来の薄膜電界効果トランジスタ
の断面図、第3図は平坦化ゲート電極構造を有する薄膜
電界効果トランジスタの断面図、第4図は従来の平坦化
ゲート電極構造を有する薄膜電界効果トランジスタの製
造工程を示した図である。 1・・・・・・透光性絶縁性基板、2・・・・・・ゲー
ト電極、3・・・・・・ゲート絶縁膜、4・・・・・・
半導体薄膜、6・・・・・・パッシベーション膜、6・
・・・・・ソース電極、7・・・・・・ドレイン電極、
8・・・・・・透光性絶縁膜、9・・・・・・感光性樹
脂膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第1図 第2図 第3図 第4図 第4図 手続補正書働側 昭和60年6320日
Fig. 1 is a diagram showing the manufacturing process of the thin film field effect transistor of the present invention, Fig. 2 is a sectional view of a conventional thin film field effect transistor, and Fig. 3 is a sectional view of a thin film field effect transistor having a flattened gate electrode structure. 4 are diagrams showing the manufacturing process of a thin film field effect transistor having a conventional planarized gate electrode structure. 1... Translucent insulating substrate, 2... Gate electrode, 3... Gate insulating film, 4...
Semiconductor thin film, 6... Passivation film, 6.
...Source electrode, 7...Drain electrode,
8...Transparent insulating film, 9...Photosensitive resin film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1 Figure 2 Figure 3 Figure 4 Figure 4 Procedural amendment form working side 6320, 1985

Claims (1)

【特許請求の範囲】[Claims]  透光性絶縁性基板表面にゲート電極を形成し、前記ゲ
ート電極表面にゲート絶縁膜、半導体薄膜、パッシベー
ション膜を堆積し、前記パッシベーション膜に選択的に
設けられたコンタクトホール上にソース、ドレイン電極
を形成して薄膜電界効果トランジスタを製造するに際し
、前記ゲート電極を選択エッチングにて形成した後、マ
スクとして用いた感光性樹脂膜を残したまま、所望の厚
さの透光性絶縁膜を全面に被着形成し、その後、前記感
光性樹脂膜を除去して、前記透光性絶縁膜に埋設された
ゲート電極を形成することを特徴とする薄膜電界効果ト
ランジスタの製造方法。
A gate electrode is formed on the surface of a light-transmitting insulating substrate, a gate insulating film, a semiconductor thin film, and a passivation film are deposited on the surface of the gate electrode, and source and drain electrodes are formed on contact holes selectively provided in the passivation film. After forming the gate electrode by selective etching, a transparent insulating film of a desired thickness is deposited on the entire surface while leaving the photosensitive resin film used as a mask. A method for manufacturing a thin film field effect transistor, comprising: depositing the photosensitive resin film on the transparent insulating film, and then removing the photosensitive resin film to form a gate electrode embedded in the transparent insulating film.
JP2225385A 1985-02-07 1985-02-07 Manufacture of thin-film field-effect transistor Pending JPS61181164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2225385A JPS61181164A (en) 1985-02-07 1985-02-07 Manufacture of thin-film field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2225385A JPS61181164A (en) 1985-02-07 1985-02-07 Manufacture of thin-film field-effect transistor

Publications (1)

Publication Number Publication Date
JPS61181164A true JPS61181164A (en) 1986-08-13

Family

ID=12077618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2225385A Pending JPS61181164A (en) 1985-02-07 1985-02-07 Manufacture of thin-film field-effect transistor

Country Status (1)

Country Link
JP (1) JPS61181164A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251098A (en) * 1987-04-07 1988-10-18 Kanegafuchi Chem Ind Co Ltd Production of (r)-3-halogeno-1,2-propanediol
JPH02143462A (en) * 1988-11-24 1990-06-01 Sony Corp Thin film transistor
EP3675169A4 (en) * 2017-08-21 2021-04-21 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method for manufacturing flexible display panel, and flexible display panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251098A (en) * 1987-04-07 1988-10-18 Kanegafuchi Chem Ind Co Ltd Production of (r)-3-halogeno-1,2-propanediol
JPH0475760B2 (en) * 1987-04-07 1992-12-01 Kanegafuchi Chemical Ind
JPH02143462A (en) * 1988-11-24 1990-06-01 Sony Corp Thin film transistor
EP3675169A4 (en) * 2017-08-21 2021-04-21 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method for manufacturing flexible display panel, and flexible display panel

Similar Documents

Publication Publication Date Title
KR100270467B1 (en) Active matrix substrate of lcd and its fabrication method
JP2776083B2 (en) Liquid crystal display device and manufacturing method thereof
US5696387A (en) Thin film transistor in a liquid crystal display having a microcrystalline and amorphous active layers with an intrinsic semiconductor layer attached to same
JP3352191B2 (en) Method for manufacturing thin film transistor
US5546207A (en) Liquid crystal display device and method for fabricating the same
US5652158A (en) Method for making thin film transistors for a liquid crystal display
JP2002111004A (en) Method for manufacturing array substrate
JPH0824185B2 (en) Thin film transistor device and manufacturing method thereof
JPS61187272A (en) Thin-film field-effect transistor and manufacture thereof
JPS61181164A (en) Manufacture of thin-film field-effect transistor
JPH06102528A (en) Production of thin-film transistor matrix
JPS6178166A (en) Thin-film transistor array and manufacture thereof
JP2711003B2 (en) Matrix type display device
US6462793B1 (en) Liquid crystal display device and method of fabricating the same
KR100190035B1 (en) Fabrication method of liquid crystal display device
JPS5922361A (en) Semiconductor device
JPH1187721A (en) Thin-film transistor and liquid crystal display device comprising the same, and manufacture of tft array substrate
JPS628569A (en) Manufacture of thin film transistor
KR0151275B1 (en) Method of manufacturing tft panel for lcd
JPH01227127A (en) Thin-film transistor array
JPH0570825B2 (en)
KR100476055B1 (en) a method for manufacturing of reflexible TFT LCD panel
JPH07110496A (en) Production of active matrix panel
KR910002194B1 (en) Active matrix lcd
JP2002057343A (en) Manufacturing for thin-film transistor