JPH01183854A - Thin-film transistor and manufacture thereof - Google Patents

Thin-film transistor and manufacture thereof

Info

Publication number
JPH01183854A
JPH01183854A JP740388A JP740388A JPH01183854A JP H01183854 A JPH01183854 A JP H01183854A JP 740388 A JP740388 A JP 740388A JP 740388 A JP740388 A JP 740388A JP H01183854 A JPH01183854 A JP H01183854A
Authority
JP
Japan
Prior art keywords
source
drain
gate
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP740388A
Other languages
Japanese (ja)
Other versions
JP2659976B2 (en
Inventor
Masahiko Akiyama
政彦 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63007403A priority Critical patent/JP2659976B2/en
Publication of JPH01183854A publication Critical patent/JPH01183854A/en
Application granted granted Critical
Publication of JP2659976B2 publication Critical patent/JP2659976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To lower the wiring resistance of source-drain sections, and to form a thin- film transistor positively in a large area by forming a reaction layer onto the surface of a semiconductor region in high impurity concentration as a source-drain, connecting an electrode for a wiring to the reaction layer and forming arrangement in which the electrode for the wiring is not superposed on a gate electrode. CONSTITUTION:A reaction layer 8 is shaped onto the surface of a semiconductor region in high impurity concentration as source-drain, electrodes 6 for wirings composed of a metal are connected to the reaction layer 8, and arrangement in which the electrodes 6 for the wirings are not superposed to a gate electrode 2 is formed. Conse quently, alignment accuracy among the gate 2 and the electrodes 6 for the wirings can be brought to gate-electrode width or more. That is, at least one of the source- drain sides is separated spatially among the gate electrode 2 and the electrodes 6 for the wirings connected to the source-drain, but the reaction layer 8 reacting between the surface of the source-drain semiconductor region in high impurity concentration and the metal is shaped together with the source-drain semiconductor region between the gate electrode 2 and the electrodes 6. Accordingly, sheet resistance is lowered, series resistance in the source or the drain can be ignored, and a large area and improvement in performance can be realized.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は液晶デイスプレィ等を駆動するなどに用いら
れる薄膜トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) This invention relates to a thin film transistor used for driving a liquid crystal display or the like.

(従来の技術) アモルファスシリコン(以下a−5Lと略称)薄膜トラ
ンジスタ(TPTと略称)は、液晶デイスプレィのアク
ティブマトリクス素子として広く用いられている。現在
3〜6インチ型の液晶テレビが開発され一部は商品とな
っている。
(Prior Art) Amorphous silicon (hereinafter abbreviated as a-5L) thin film transistors (abbreviated as TPT) are widely used as active matrix elements in liquid crystal displays. Currently, 3- to 6-inch LCD televisions have been developed and some are commercially available.

アモルファスシリコン薄膜トランジスタはいくつかの構
造が考えられているがセルフアライメント型のTFTは
他の構造に見られない次にあげる利点を有している。す
なわち、 ■ ゲートとソース、ドレインの間の重なりによる付加
容量がない、 ■ 合せ精度がゲートとソース、ドレインの間で厳しく
要求されない点で製作しやすい。
Several structures have been considered for amorphous silicon thin film transistors, but self-alignment TFTs have the following advantages not found in other structures. That is, ■ there is no additional capacitance due to overlap between the gate, source, and drain; and ■ it is easy to manufacture because there is no strict requirement for alignment accuracy between the gate, source, and drain.

この結果、アクティブマトリクスとしては、ゲート線1
本当りの容量が小さくできることがあげられる。また、
ゲートとソース間の容量(ゲート−ソース容量 Cgs
)のばらつきが合せ精度によらず一定にでき、大面積で
表示を得る場合、ゲートパルスの画素電極電圧への突抜
けが一定にできることもあげられる。
As a result, as an active matrix, gate line 1
One example is that the actual capacity can be reduced. Also,
Capacitance between gate and source (gate-source capacitance Cgs
) can be made constant regardless of alignment accuracy, and when obtaining a display over a large area, the penetration of the gate pulse to the pixel electrode voltage can also be made constant.

一方、セルフアライメント型TPTの製造方法について
もいくつかの方法が提案されている。この場合、n型a
−5Lおよび、配線電極をゲートに対してセルフアライ
メントで形成する必要がある。
On the other hand, several methods have been proposed for manufacturing self-alignment TPTs. In this case, n-type a
-5L and wiring electrodes must be formed in self-alignment with respect to the gate.

第7図はその一例であり、背面露光によりゲート上に残
したポジレジストの上にn型a−3i、[52゜配線電
極層62を堆積し、リフトオフによりパターニングする
FIG. 7 shows an example of this, in which an n-type a-3i, 52° wiring electrode layer 62 is deposited on the positive resist left on the gate by back exposure, and patterned by lift-off.

a−Si TPTでソース、ドレインとなるn型a−3
i層52は、抵抗率が102Ω口程度、500人でのシ
ート抵抗は2×107Ω/口とかなり高い。 そこで通
常a−3i TFTではn層はチャネルとの整流性接合
としてのみ利用しており、n層の上に金属を設けて配線
抵抗を下げている。
n-type a-3 which becomes source and drain in a-Si TPT
The i-layer 52 has a resistivity of about 10 2 Ω, and a sheet resistance of 2×10 7 Ω per 500 people, which is quite high. Therefore, in the a-3i TFT, the n-layer is usually used only as a rectifying junction with the channel, and a metal is provided on the n-layer to lower wiring resistance.

セルフアライメント型TPTでは配線用電極層もn層と
同様にセルフアライメントするか、チャネルの上の絶縁
V(第7図に7で示される)に重ねるようにして露光器
によるアライメントで形成する方法がある。しかし、後
者はセルフアライメントの有する前述の第2の特徴を失
うものであり望ましくない。また前者は、前述のように
リフトオフを用いて行なうと、リフトオフが不完全にな
ることがあり歩留りが低下するので望ましくない。
In a self-alignment type TPT, the wiring electrode layer can be self-aligned in the same way as the n-layer, or it can be formed by aligning it with an exposure device so that it overlaps the insulating V (indicated by 7 in Figure 7) above the channel. be. However, the latter is undesirable because it loses the second feature of self-alignment. Further, the former is not desirable because if lift-off is used as described above, the lift-off may be incomplete and the yield will be reduced.

(発明が解決しようとする課題) 本発明はa−5i TFTでみられるソース、ドレイン
領域となるn十層のシート抵抗が高く、配線用としては
用いることができないことから生じるプロセスの複雑化
、困難化を防止しようとするものである。いいかえると
ソース、ドレイン部の配線抵抗を下げてアクティブマト
リクス等大面積に大量のトランジスタを確実に形成する
ことを実現することを目的とするものである。
(Problems to be Solved by the Invention) The present invention solves the problem of complicating the process caused by the fact that the sheet resistance of the n10 layers forming the source and drain regions found in a-5i TFT is high and cannot be used for wiring. The aim is to prevent this from becoming more difficult. In other words, the purpose is to reduce the wiring resistance of the source and drain portions to reliably form a large number of transistors in a large area, such as an active matrix.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明にかかる薄膜トランジスタは、ゲート電極、ゲ
ート絶縁膜、非晶質シリコンからなる活性層を有しソー
ス、ドレインとなる不純物濃度の高い半導体領域と、こ
れらに接続される二つの配線用電極を有する薄膜トラン
ジスタにおいて、前記ソース、ドレインとなる不純物濃
度の高い半導体領域の表面に反応層を有し、この反応層
に金属でなる配線用電極を接続し、かつ配線用電極が前
記ゲート電極と重ならない配置としたことを特徴とする
。そして、反応層形成金属がNo、 Cr、 Tiのい
ずれかであることを特徴とする。
(Means for Solving the Problems) A thin film transistor according to the present invention has a gate electrode, a gate insulating film, an active layer made of amorphous silicon, and a semiconductor region with a high impurity concentration that serves as a source and a drain, and is connected to these. In a thin film transistor having two wiring electrodes, a reaction layer is provided on the surface of the semiconductor region with high impurity concentration, which serves as the source and drain, and a wiring electrode made of metal is connected to this reaction layer. The present invention is characterized in that the electrode is arranged so as not to overlap the gate electrode. The metal for forming the reaction layer is any one of No, Cr, and Ti.

次にIB造方法は、ゲート電極、ゲート絶縁1戻。Next, the IB manufacturing method involves gate electrode and gate insulation.

非晶質シリコンからなる活性層を有しソース、ドレイン
となる不純物濃度の高い半導体領域と、これらに接続さ
れる二つの配線用電極を有する薄膜トランジスタにおけ
るソース、ドレインとなる半導体領域の表面に形成され
る金属との反応層を、非晶質シリコン活性層上にもうけ
られた少なくとも絶縁膜を含む層を除いて半導体層を露
出させたのち、金属層を堆積し、この金属層の少なくと
も配線用電極以外の部分をエツチング除去することを特
徴とする。そして、ソース、ドレインとなる不純物濃度
の高い半導体領域を、ドープする不純物ガスを放電分解
させ電界によりi層アモルファスシリコンに注入し形成
することを特徴とする。
It is formed on the surface of the semiconductor region that becomes the source and drain in a thin film transistor that has an active layer made of amorphous silicon, a semiconductor region with high impurity concentration that becomes the source and drain, and two wiring electrodes connected to these. After exposing the semiconductor layer by removing a layer containing at least an insulating film formed on the amorphous silicon active layer, a metal layer is deposited, and at least a wiring electrode of this metal layer is exposed. It is characterized by etching away the other parts. The method is characterized in that semiconductor regions with high impurity concentration, which become sources and drains, are formed by discharging and decomposing doping impurity gas and injecting it into the i-layer amorphous silicon using an electric field.

(作 用) a−8i TPTでは電界効果移動度が小さく、チャネ
ル長りは1〇−以下と小さくすることが望まれる。
(Function) In a-8i TPT, the field effect mobility is small, and the channel length is desired to be as small as 10- or less.

セルフアライメントにするとゲート電極の幅がチャネル
長と同じになるが1本発明によればソースとドレインと
接続される配線用電極の間隔をゲート電極幅より大きく
することができ、したがってゲートと前記配線用電極の
間のアライメント精度をゲート電極幅以上(1〇−以上
)までとることが可能になる。換言すると、ゲート電極
、すなわちチャネル部の端と前記ソース、ドレインと接
続している配線用電極の間は、ソース、ドレイン側の少
くとも一方が空間的に離れているが、その間は、不純物
濃度の高いソース、ドレイン半導体領域とともに表面に
金属との間で反応した反応層が設けられているので、シ
ート抵抗が下がり、ソース又はドレインでの直列抵抗が
無視できる。
When self-alignment is used, the width of the gate electrode becomes the same as the channel length, but according to the present invention, the distance between the wiring electrodes connected to the source and drain can be made larger than the width of the gate electrode. It becomes possible to achieve alignment accuracy between the gate electrodes to a width greater than or equal to the width of the gate electrode (10- or greater). In other words, between the gate electrode, that is, the end of the channel part, and the wiring electrode connected to the source and drain, at least one of the source and drain sides is spatially separated, but the impurity concentration between them is Since a reaction layer is provided on the surface of the device along with the source and drain semiconductor regions having high resistance to metal, the sheet resistance is reduced and the series resistance at the source or drain can be ignored.

(実施例) 以下、本発明に係る実施例を第1図を参照して説明する
。また、その製造プロセスを第2図に示し、同図に基い
て説明する。
(Example) Hereinafter, an example according to the present invention will be described with reference to FIG. Further, the manufacturing process is shown in FIG. 2, and will be explained based on the same figure.

透明ガラス基板1の上にゲート電極2をパターニングす
る。ゲート電極は不透明な金属(例えばMO,7a、 
Crなど)でできている。この上にゲート絶縁膜3.i
層アモルファスシリコン膜4.チャネル部保護用絶縁膜
7を順次積層する。ゲート絶縁膜は5iOXないしSi
Nx膜で約4000人、i層アモルファスシリコン膜は
200〜500人、保護用絶縁膜は5iOyないしSi
Nつ膜で約2000人厚さとした。
A gate electrode 2 is patterned on a transparent glass substrate 1. The gate electrode is made of an opaque metal (e.g. MO, 7a,
Cr, etc.). On top of this, a gate insulating film 3. i
Layer amorphous silicon film4. Insulating films 7 for protecting the channel portion are sequentially laminated. The gate insulating film is 5iOX or Si.
About 4000 people for Nx film, 200-500 people for i-layer amorphous silicon film, 5iOy or Si for protective insulating film
The thickness was approximately 2,000 N layers.

この上にポジレジストを塗布し、ガラス基板側からの裏
面露光を行なう。絶縁膜は露光用光源の波長で透明であ
り、i層a−SLは光吸収はあるがごく薄いため光は透
過し、最上部のレジストはゲートの存在する部分を除き
露光される(第2図a)。
A positive resist is applied on top of this, and backside exposure is performed from the glass substrate side. The insulating film is transparent at the wavelength of the exposure light source, and the i-layer a-SL absorbs light but is very thin so that light passes through it.The uppermost resist is exposed except for the part where the gate is present (second Diagram a).

図における9aは未露光レジスト、 9bは露光レジス
トの部分である。現像後、レジストをマスクに絶縁膜7
をエツチングする。
In the figure, 9a is an unexposed resist portion, and 9b is an exposed resist portion. After development, insulating film 7 is formed using the resist as a mask.
etching.

絶縁膜7はチャネル部の半導体の表面を保護すると同時
に次のれす層形成時のマスクとして働く。
The insulating film 7 protects the surface of the semiconductor in the channel portion and at the same time functions as a mask when forming the next layer.

すなわち、露光したa−5Lにのみ不純物がドープでき
る。 ドーピングは、フォスフイン(PH,)を含むガ
スを高周波放電分解し、基板に印加した電圧で加速し、
リン(P)を注入して行なった。基板温度を200〜3
00℃とすることで活性化し、抵抗率が10’Ωam〜
103Ω■となった。なお、リンは1ra−siが薄い
のでほぼ膜中全体に導入された。
That is, only the exposed a-5L can be doped with impurities. Doping is performed by decomposing a gas containing phosphine (PH,) by high-frequency discharge and accelerating it with a voltage applied to the substrate.
This was done by injecting phosphorus (P). Set the substrate temperature to 200~3
It is activated by heating to 00℃, and the resistivity is 10'Ωam ~
It became 103Ω■. Note that since 1ra-si is thin, phosphorus was introduced into almost the entire film.

(第2図b) 次に全面にNoをスパッタで堆積した。金属膜10は室
温で堆積しただけでa−3iと反応し、反応層8を形成
した。この反応層8はごく薄く、50〜200人程度で
あるが、シート抵抗はn”a−3iに比べ著しく低下し
た。Noの場合、102〜10’Ω/口であった。a−
3i TPTのオン抵抗はシート抵抗で1o“〜107
Ω/口であることから、後述の配線用電極までの反応層
の抵抗はオン抵抗に比べ十分小さくできる。(第2図C
) 次に、a−5iを島状にパターニングし、コンタクトホ
ールをあけた後No、 i#1層膜を堆積し、これをパ
ターニングして配線用電極6を形成する。
(FIG. 2b) Next, No was deposited on the entire surface by sputtering. The metal film 10 was deposited at room temperature and reacted with a-3i to form a reaction layer 8. This reaction layer 8 is very thin, about 50 to 200, but the sheet resistance was significantly lower than n''a-3i. In the case of No, it was 102 to 10'Ω/mouth.a-
The on-resistance of 3i TPT is 1o"~107 in sheet resistance.
Since it is Ω/gate, the resistance of the reaction layer up to the wiring electrode described later can be made sufficiently smaller than the on-resistance. (Figure 2 C
) Next, a-5i is patterned into an island shape, a contact hole is made, a No. i#1 layer film is deposited, and this is patterned to form a wiring electrode 6.

配線用電極6はゲー1−2と重ならないようにソース、
ドレインの間を広くパターニングする。チャネルの端か
ら配線用電極の間のMoはエツチング除去される。(第
2図d) 以上のプロセスから反応層8を形成するための阿0スパ
ッタを除きフォトリソグラフィの回数およびプロセスの
増加はないことがわかる。特にリフトオフを使うことが
なく大面積に大量のトランジスタを作らねばならないア
クティブマトリクスではトランジスタネ良の出る確率が
リフトオフを使った場合に比べ大幅に改善された。
The wiring electrode 6 is connected to the source, so that it does not overlap with the gate 1-2.
Pattern widely between drains. Mo between the end of the channel and the wiring electrode is removed by etching. (FIG. 2d) From the above process, it can be seen that there is no increase in the number of photolithography operations or processes, except for the A0 sputtering for forming the reaction layer 8. In particular, in the active matrix, which does not use lift-off and requires fabrication of a large number of transistors in a large area, the probability of transistor failure is significantly improved compared to when lift-off is used.

また、ここで用いた反応層8はシート抵抗は低いが厚さ
が薄く、大電流(数mA以上)を流そうとすると融断す
ることがわかった。したがってゲート絶縁膜にピンホー
ル等があり、ゲートとa−3Lが接触している場合、ゲ
ートとソース、ドレインの間で上記電流が流れると反応
層だけの領域で融断し、ゲートと配線用電極の間でのシ
ョートが自己回復的に防ぐことができる。アクティブマ
トリクスでは線欠陥という重大欠陥を防ぐことができる
It was also found that the reaction layer 8 used here had a low sheet resistance but was thin, and would melt when a large current (several mA or more) was applied to it. Therefore, if there is a pinhole or the like in the gate insulating film and the gate is in contact with a-3L, when the above current flows between the gate, source, and drain, it will melt in the area where only the reaction layer exists, and the gate and wiring Short circuits between electrodes can be prevented in a self-healing manner. Active matrix can prevent serious defects called line defects.

ゲートと配線用電極の間の間隔は配線用電極の基板との
合せ余裕となっており、大きくとれるほど、露光機の合
せ精度をゆるくすることができ、より簡便な露光機でよ
いことになる。また、基板となるガラスも、表示面積が
大きくなるに従い熱工程に伴うそ性変形が問題となり1
合せ精度がゆるいほど大面積が扱えうろことからさらに
、ソーダライムガラスといった低融点で安価であるが変
形しやすいガラスを用いることができ、全体のコスト低
下をもたらす。
The distance between the gate and the wiring electrode is the allowance for alignment of the wiring electrode with the substrate, and the larger it is, the looser the alignment accuracy of the exposure machine can be, which means that a simpler exposure machine can be used. . In addition, as the display area of the glass substrate increases, warp deformation due to thermal processing becomes a problem.
Since the looser the alignment precision is, the larger the area can be handled, it is also possible to use glass such as soda lime glass, which has a low melting point and is inexpensive but easily deformed, resulting in a reduction in overall costs.

本実施例では反応層シート抵抗はオン時のチャネルシー
ト抵抗の10−”〜10−4倍であるから、チャネル幅
と同じ幅で配線用電極を設ければゲート配線用電極との
間隔はチャネル長の10〜103倍が許容される。チャ
ネル長を5〜IO/ffiとして最小で50μmまで離
すことが可能であり、対角40インチデイスプレィでも
十分な合せ余裕をとることができるといえろ。
In this example, the reaction layer sheet resistance is 10-" to 10-4 times the channel sheet resistance when on, so if the wiring electrode is provided with the same width as the channel width, the distance between the gate wiring electrode and the channel If the channel length is 5 to IO/ffi, it is possible to have a minimum separation of 50 μm, and it can be said that sufficient alignment margin can be obtained even for a 40-inch diagonal display.

なお本実施例では、i層a−5iへの不純物注入をプラ
ズマドーピングで行なったが、イオン注入でもよい。ま
た反応層を形成する金属として阿0を使用したが、Cr
、 Tiでも同様な効果があることを確認している。
In this embodiment, impurities were implanted into the i-layer a-5i by plasma doping, but ion implantation may also be used. In addition, A0 was used as the metal forming the reaction layer, but Cr
It has been confirmed that Ti has a similar effect.

次に別の実施例を第3図に示す。この場合、絶縁膜7を
第2図すに示すように裏面露光でパターニングした後、
n中層を200人程度堆精する。この後、ネガレジスト
を塗布して再び裏面露光でレジストを露光し、ゲートの
上だけ除去し、エツチングでn中層を除去する。
Next, another embodiment is shown in FIG. In this case, after patterning the insulating film 7 by backside exposure as shown in FIG.
Approximately 200 people will deposit the n middle layer. Thereafter, a negative resist is applied, and the resist is exposed again by backside exposure to remove only the top of the gate, and the n-middle layer is removed by etching.

n+層層形後後前述と同様のプロセスでTPTが完成す
る。
After forming the n+ layer, the TPT is completed using the same process as described above.

この方法では、ドーピングを行なわないためにn+層の
膜質が高くi層との接合特性が良いことが利点となって
いる。
This method has the advantage that the n+ layer has high film quality and good bonding characteristics with the i layer because doping is not performed.

次に、さらに別の実施例を第4図に示す。以上では配線
用電極が半導体を挟んでゲートと反対に設けられている
が、同じ側に設けてもよい。n中層はドーピングで形成
した。
Next, yet another embodiment is shown in FIG. Although the wiring electrode is provided on the opposite side of the gate across the semiconductor in the above example, it may be provided on the same side. The n middle layer was formed by doping.

さらに、この発明の別の実施例として第5図にプレーナ
型のものを示す。これは、i層a−5L。
Further, as another embodiment of the present invention, a planar type is shown in FIG. This is I-layer A-5L.

ゲート絶縁膜、ゲート11をこの順に積層し、ゲート1
1のパターニングと同時にゲート絶縁膜31もパターニ
ングし、露出したi層部をドーピングし、反応層形成の
金属を堆積しエツチングする。配線用電極はゲートから
離れて形成することができる。
The gate insulating film and the gate 11 are laminated in this order, and the gate 1
Simultaneously with the patterning of step 1, the gate insulating film 31 is also patterned, the exposed i-layer portion is doped, and metal for forming a reaction layer is deposited and etched. The wiring electrode can be formed apart from the gate.

この場合裏面露光が不要という特徴を有している。In this case, a feature is that backside exposure is unnecessary.

また、配線用電極をあらかじめ形成してから、第5図と
同じプロセスでTPTを作ることができ、これを第6図
に示す。
Furthermore, after forming the wiring electrodes in advance, the TPT can be manufactured using the same process as shown in FIG. 5, and this is shown in FIG.

以上第4図から第6図まで、TPTの構造をかえた実施
例を示したがいずれも配線用電極の形成法をいろいろに
とることができ、アクティブマトリクスにおける配線部
分の材料、レイアウト等で選択を広げるものである。
Above, from FIG. 4 to FIG. 6, examples with different TPT structures have been shown, but in each case, the wiring electrode can be formed in various ways, and the selection can be made depending on the material, layout, etc. of the wiring part in the active matrix. It expands the

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ソース、ドレインと接続される配線用
電極とゲートないし半導体層との合せ精度を著しく緩和
することができる。
According to the present invention, it is possible to significantly reduce the accuracy of alignment between the wiring electrode connected to the source and drain and the gate or semiconductor layer.

特にセルフアライメントでソース、ドレインのn+ (
又はp÷)a−5iを形成することと組合せて、大面積
で露光ズレにともなうTPT特性のバラツキを抑えなが
ら合せ精度の余裕の拡大が得られ、アクティブマトリク
スの大面積、高性能化を実現する。合せ精度の余裕は露
光機の性能に余裕を与え、安価な露光機でよくなり、ト
ータルコストやスループットの改善をもたらす。またガ
ラスのそ性変形への余裕を与え、ソーダライムガラス等
の安価なガラスが使用できるようになり、コストの低下
をもたらす。
In particular, with self-alignment, source and drain n+ (
In combination with forming p÷)a-5i, it is possible to expand the margin of alignment accuracy while suppressing variations in TPT characteristics due to exposure deviation over a large area, realizing a large area and high performance of the active matrix. do. A margin in alignment accuracy gives a margin in the performance of the exposure machine, making it possible to use an inexpensive exposure machine, resulting in improvements in total cost and throughput. Furthermore, it gives room for the glass to undergo warp deformation, making it possible to use inexpensive glass such as soda lime glass, resulting in a reduction in costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一実施例のTPTの断面図、第2
図a ” dはTPTの製造工程を工程順に示すいずれ
も断面図、第3図ないし第6図はいずれも夫々が別の実
施例を示す断面図、第7図は従来のセルフアライメント
によって作られたTPTの断面図である。 1 ・・・ガラス基板 2.21・・・ゲート電極 3.31・・・ゲート絶縁膜 4 ・・・ i層アモルファスシリコン5 ・・・n+
層アモルファスシリコン(i層へのドーピングによる) 51、52・・・n十層アモルファスシリコン(成膜時
のドーピングによる) 6.61.62・・・配線用電極 7・・・チャネル部保護用絶縁膜 8・・・反応層 代理人 弁理士  井 上 −男 / : がラスλ(1反        2: プート
/を渠に1: →1ンネルa保「敷1v色【要 用  1  図 ゾα: 十麟1尤t*2F      プD:′霧党し
シスト第  2  11!Q   (%4f)? lo:金属膜 乙:ゑ6繍廚霞オ五 第  2  区  (イ02) h/ : n’4 a −5L !3   図 61:冶l故用電」糸 第4図 第  5  図 第6図 q:l−ジストル先 第  7  図
FIG. 1 is a sectional view of a TPT according to an embodiment of the present invention, and FIG.
Figures a and d are cross-sectional views showing the manufacturing process of TPT in order of process, Figures 3 to 6 are cross-sectional views each showing different embodiments, and Figure 7 is a cross-sectional view showing the TPT manufacturing process in order of process. 1...Glass substrate 2.21...Gate electrode 3.31...Gate insulating film 4...I-layer amorphous silicon 5...N+
Layer amorphous silicon (by doping to the i layer) 51, 52...n ten-layer amorphous silicon (by doping during film formation) 6.61.62... Wiring electrode 7... Insulation for protecting the channel part Membrane 8...Reaction layer agent Patent attorney Inoue -M/: Garas λ (1 anti 2: Puto/ in the ditch 1: → 1 nel aho "lay 1 v color [required 1 figure zo α: 10麟1尤t*2F puD:'Mist Party Shist No. 2 11!Q (%4f)?lo:Metal film Otsu:E6Shiroka Kao 5th Ward 2 (I02) h/: n'4 a -5L !3 Figure 61: Electrical thread Figure 4 Figure 5 Figure 6 q: l-gister end Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)ゲート電極、ゲート絶縁膜、非晶質シリコンから
なる活性層を有しソース、ドレインとなる不純物濃度の
高い半導体領域と、これらに接続される二つの配線用電
極を有する薄膜トランジスタにおいて、前記ソース、ド
レインとなる不純物濃度の高い半導体領域の表面に反応
層を有し、この反応層に配線用電極を接続し、かつ配線
用電極が前記ゲート電極と重ならない配置としたことを
特徴とする薄膜トランジスタ。
(1) In a thin film transistor having a gate electrode, a gate insulating film, an active layer made of amorphous silicon, a semiconductor region with a high impurity concentration serving as a source and a drain, and two wiring electrodes connected to these, A reaction layer is provided on the surface of a semiconductor region with a high impurity concentration that serves as a source and a drain, and a wiring electrode is connected to this reaction layer, and the wiring electrode is arranged so as not to overlap the gate electrode. Thin film transistor.
(2)ゲート電極、ゲート絶縁膜、非晶質シリコンから
なる活性層を有しソース、ドレインとなる不純物濃度の
高い半導体領域と、これらに接続される二つの配線用電
極を有する薄膜トランジスタにおけるソース、ドレイン
となる半導体領域の表面に形成される金属との反応層は
、非晶質シリコン活性層上にもうけられた少なくとも絶
縁膜を含む層を除いて半導体層を露出させたのち、金属
層を堆積し、この金属層の少なくとも配線用電極以外の
部分をエッチング除去することで形成することを特徴と
する薄膜トランジスタの製造方法。
(2) A source in a thin film transistor having a gate electrode, a gate insulating film, an active layer made of amorphous silicon, a semiconductor region with a high impurity concentration serving as a source and a drain, and two wiring electrodes connected to these, The reaction layer with the metal formed on the surface of the semiconductor region that will become the drain is formed by exposing the semiconductor layer by removing at least the layer containing the insulating film formed on the amorphous silicon active layer, and then depositing the metal layer. A method for manufacturing a thin film transistor, characterized in that the metal layer is formed by etching away at least a portion of the metal layer other than the wiring electrode.
JP63007403A 1988-01-19 1988-01-19 Thin film transistor and method of manufacturing the same Expired - Fee Related JP2659976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63007403A JP2659976B2 (en) 1988-01-19 1988-01-19 Thin film transistor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63007403A JP2659976B2 (en) 1988-01-19 1988-01-19 Thin film transistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH01183854A true JPH01183854A (en) 1989-07-21
JP2659976B2 JP2659976B2 (en) 1997-09-30

Family

ID=11664911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63007403A Expired - Fee Related JP2659976B2 (en) 1988-01-19 1988-01-19 Thin film transistor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2659976B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235384A (en) * 1988-03-16 1989-09-20 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
US5610737A (en) * 1994-03-07 1997-03-11 Kabushiki Kaisha Toshiba Thin film transistor with source and drain regions having two semiconductor layers, one being fine crystalline silicon
US5614728A (en) * 1992-11-27 1997-03-25 Kabushiki Kaisha Toshiba Thin film transistor and fabrication method thereof
US6323069B1 (en) 1992-03-25 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor using light irradiation to form impurity regions
US6787887B2 (en) 1995-12-14 2004-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6800875B1 (en) * 1995-11-17 2004-10-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix electro-luminescent display device with an organic leveling layer
JP2011100997A (en) * 2009-10-08 2011-05-19 Semiconductor Energy Lab Co Ltd Semiconductor device, display device, and electronic appliance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189670A (en) * 1984-10-08 1986-05-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS62259471A (en) * 1986-05-02 1987-11-11 Fuji Xerox Co Ltd Manufacture of thin film transistor
JPS6411368A (en) * 1987-07-03 1989-01-13 Nec Corp Manufacture of thin film transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189670A (en) * 1984-10-08 1986-05-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS62259471A (en) * 1986-05-02 1987-11-11 Fuji Xerox Co Ltd Manufacture of thin film transistor
JPS6411368A (en) * 1987-07-03 1989-01-13 Nec Corp Manufacture of thin film transistor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235384A (en) * 1988-03-16 1989-09-20 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
US6323069B1 (en) 1992-03-25 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor using light irradiation to form impurity regions
US6569724B2 (en) 1992-03-25 2003-05-27 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect transistor and method for forming the same
US6887746B2 (en) 1992-03-25 2005-05-03 Semiconductor Energy Lab Insulated gate field effect transistor and method for forming the same
US5614728A (en) * 1992-11-27 1997-03-25 Kabushiki Kaisha Toshiba Thin film transistor and fabrication method thereof
US5610737A (en) * 1994-03-07 1997-03-11 Kabushiki Kaisha Toshiba Thin film transistor with source and drain regions having two semiconductor layers, one being fine crystalline silicon
US6800875B1 (en) * 1995-11-17 2004-10-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix electro-luminescent display device with an organic leveling layer
US6867434B2 (en) * 1995-11-17 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Active matrix electro-luminescent display with an organic leveling layer
US6787887B2 (en) 1995-12-14 2004-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7034381B2 (en) 1995-12-14 2006-04-25 Semiconductor Energey Laboratory Co., Ltd. Semiconductor device
US7202551B2 (en) 1995-12-14 2007-04-10 Semiconductor Energy Laboratory Co., Ltd. Display device having underlying insulating film and insulating films
JP2011100997A (en) * 2009-10-08 2011-05-19 Semiconductor Energy Lab Co Ltd Semiconductor device, display device, and electronic appliance
US9406808B2 (en) 2009-10-08 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic appliance
US10115831B2 (en) 2009-10-08 2018-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor layer comprising a nanocrystal

Also Published As

Publication number Publication date
JP2659976B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US5032531A (en) Method of manufacturing active matrix panel
JP4420462B2 (en) Liquid crystal display device and manufacturing method thereof
KR100234892B1 (en) Structure and manufacturing method of liquid crystal display device
KR0156178B1 (en) Method for producing lcd device
KR20070021436A (en) Method for fabricating thin film transistor plate and thin film transistor plate fabricated by the same
US5994717A (en) Thin-film transistor and method for fabricating same and liquid crystal display device
US5429962A (en) Method for fabricating a liquid crystal display
US20070254415A1 (en) Thin film transistor substrate, method of manufacturing the same and method of manufacturing liquid crystal display panel including the same
KR0173692B1 (en) Manufacturing method of thin film transistor
KR100356113B1 (en) Method of manufacturing a liquid crystal display
JPH03283539A (en) Manufacture of thin film semiconductor device
JP3352191B2 (en) Method for manufacturing thin film transistor
JPH01183854A (en) Thin-film transistor and manufacture thereof
JPH0613405A (en) Thin film transistor and manufacture thereof
JPS61191072A (en) Thin film transistor and manufacture thereof
JP2663500B2 (en) Method for manufacturing thin film transistor
JP2000206560A (en) Active matrix type liquid crystal display device
JPH1187721A (en) Thin-film transistor and liquid crystal display device comprising the same, and manufacture of tft array substrate
KR100267995B1 (en) Lcd and its fabrication method
KR100226857B1 (en) Manufacturing method of liquid crystal display device
JP2574808B2 (en) Method for manufacturing thin film transistor
JPH05206166A (en) Thin film transistor
JPH0323429A (en) Thin-film transistor
KR0156180B1 (en) Method for producing lcd device
JPH04233512A (en) Production of active matrix substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees