JPS61107170A - Electron beam probing apparatus - Google Patents

Electron beam probing apparatus

Info

Publication number
JPS61107170A
JPS61107170A JP59229371A JP22937184A JPS61107170A JP S61107170 A JPS61107170 A JP S61107170A JP 59229371 A JP59229371 A JP 59229371A JP 22937184 A JP22937184 A JP 22937184A JP S61107170 A JPS61107170 A JP S61107170A
Authority
JP
Japan
Prior art keywords
voltage
circuit
time
electron beam
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59229371A
Other languages
Japanese (ja)
Inventor
Yoshiaki Goto
後藤 善朗
Toshihiro Ishizuka
俊弘 石塚
Akio Ito
昭夫 伊藤
Kazuyuki Ozaki
一幸 尾崎
Kazuo Okubo
大窪 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59229371A priority Critical patent/JPS61107170A/en
Publication of JPS61107170A publication Critical patent/JPS61107170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To short a measuring time as a whole, by reading stored data calculated with low time resolving power and binarizing the same to detect the change time of voltage. CONSTITUTION:The electron beam in a stroscopic electron beam apparatus 1 is allowed to irradiate IC14 on an XY stage through a pulse gate 11 and the quantity of the secondary electron from IC14 is detected by an analyser 13 and converted by an A/D converter 3 and added by an addition averaging processing circuit 9 while the average value of secondary electron output at analysis voltage V1 is stored in memory M1 through a switch SW and the average value of secondary electron output at analysis voltage V2 is stored in memory M2 through said switch W. The stored data are operated with respect to the ratio thereof by a ratio operation circuit 15 and collimated with the table in a radio table circuit 16 by a collimation circuit 17 to calculate the voltage of the wiring of IC14 while said voltage is stored in memory 18 and subsequently read to be inputted to a time magnifying detection system 19. In the detection system, measured data calculated with low time resolving power is differentiated and binarized to perform the detection of a time magnifying region and not only rising start time and period but also falling start time and period, both of which show the abrupt change in voltage, are calculated to be sent to a control circuit 6 and accurate measurement is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はrcの配線等の電位測定に使用されるストロボ
電子ビーム装置に係り、特に、電圧測定を高速化した電
子ビームによる電圧測定装置に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a strobe electron beam device used for measuring the potential of RC wiring, etc., and particularly relates to a voltage measuring device using an electron beam that speeds up voltage measurement. It is something.

XCの配線等の電圧波形を測定する方法として、真空中
で試料に電子ビームを照射して、その試料から放出され
る二次電子のエネルギ分布から照射部の電圧を間接的に
測定する方法があるが、測定に長時間要し短時間で測定
可能な装置の開発が要望されている。
One way to measure the voltage waveform of XC wiring, etc. is to irradiate a sample with an electron beam in a vacuum and indirectly measure the voltage at the irradiated part from the energy distribution of secondary electrons emitted from the sample. However, it takes a long time for measurement, and there is a demand for the development of a device that can perform measurement in a short time.

〔従来の技術〕[Conventional technology]

ストロボ電子ビーム装置は被測定ICに動作周期に同期
して、1周期に1回電子ビームを被測定ICに照射し、
その二次電子を検出して照射点の電圧を測定している。
The strobe electron beam device irradiates the IC to be measured with an electron beam once per cycle in synchronization with the operating cycle of the IC to be measured.
The secondary electrons are detected and the voltage at the irradiation point is measured.

二次電子は半球状の形状をした分析器によって検出され
、さらに、A/Dコンバータ等でデジタルに変換され処
理されるが、分析器からの出力は微小であり、複数回測
定して平均を求め検出電圧としている。
Secondary electrons are detected by a hemispherical analyzer, and then converted into digital data and processed by an A/D converter, etc. However, the output from the analyzer is minute, and is measured multiple times and averaged. This is the calculated detection voltage.

検出電圧は被測定点の電圧とは簡単な比例関係ではなく
、測定時に分析器に印加する分析電圧を変化させ、分析
電圧と分析器の検出電圧との関係を求め、予め定められ
ている基準分析カーブと比較し、被測定点の成るタイミ
ングの一点の電圧を求めている。
The detection voltage does not have a simple proportional relationship with the voltage at the point being measured; instead, the relationship between the analysis voltage and the detection voltage of the analyzer is determined by changing the analysis voltage applied to the analyzer during measurement, and is based on a predetermined standard. The voltage at one point at the timing of the measured point is determined by comparing it with the analytical curve.

被測定点の時間的に変化する電圧波形を求めるためには
、前記方法で被測定ICに動作周期に同期して、前記タ
イミングより僅かに遅延(例えばIC駆動パルス周周期
の1 /32)させて1周期に1回電子ビームを被測定
゛I Cに照射し、その二次電子を検出し前述の方法で
照射点の電圧を測定する。このIT/32ずつの遅延操
作を順次繰り返し32回行うと、ICの電圧波形が得ら
れる。さらに精密な波形を観察したいときは、例えば1
回の遅延時間をIT/256に短くして測定点を256
点に多くすれば良い。
In order to obtain the voltage waveform that changes over time at the point to be measured, use the method described above to synchronize the IC to be measured with the operating cycle and slightly delay the timing (for example, 1/32 of the IC drive pulse period). The IC to be measured is irradiated with an electron beam once per cycle, the secondary electrons are detected, and the voltage at the irradiation point is measured by the method described above. By sequentially repeating this delay operation of IT/32 32 times, the voltage waveform of the IC is obtained. If you want to observe even more precise waveforms, for example,
Shorten the delay time to IT/256 and increase the number of measurement points to 256.
The more points you have, the better.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来のストロボ電子ビーム装置にあっては、成るタ
イミングの一点の電圧を求めるだけでも二次電子の出力
の微小さ、および二次電子のエネルギ分析等に繰り返し
測定を行うために時間がかかる上に、更に、電圧波形を
精密に測定しようとすると測定点が多くなり長時間要す
るという問題があった。
In the above-mentioned conventional strobe electron beam device, the output of the secondary electrons is extremely small and it takes time to repeatedly measure the energy of the secondary electrons just to find the voltage at one point. Furthermore, there is a problem in that when attempting to precisely measure a voltage waveform, the number of measurement points increases and it takes a long time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解消したストロボ電子ビーム装
置を提供するもので、その手段は、低時間分解能で求め
られた電圧波形データを格納する記憶手段と、該格納さ
れたデータを読み出しデジタル微分、二値化を行って該
電圧の立上がりまたは立下がりの開始時間および変化時
間を検出する回路手段を備えたことを特徴とする電子ビ
ームプロービング装置によって解決される。
The present invention provides a strobe electron beam device that solves the above-mentioned problems, and includes a storage means for storing voltage waveform data obtained with low time resolution, and a digital differentiation method for reading out the stored data. The problem is solved by an electron beam probing apparatus characterized by comprising circuit means for performing binarization and detecting the start time and change time of the rise or fall of the voltage.

〔作用〕[Effect]

電圧波形は全測定範囲で必ずしも変化が大きくなく、変
化の少ない部分まで精密に測定する必要はない、上記ス
トロボ電子ビーム装置においては、低時間分解能即ち、
−回の遅延時間を大きくして粗い間隔で電圧波形の測定
を行い、各測定点のデータをメモリに格納する。これを
読み出しデジタル微分(1つ前の値との差)して変化量
を求め、成る一定の基準で;値化することによって、急
峻な電圧の立上がり門たは立下がりの開始時間および変
化時間が求められ、必要に応じてその部分だけ細かい間
隔で再度測定すれば全体の測定時間が短縮できる。
The voltage waveform does not necessarily change greatly over the entire measurement range, and it is not necessary to precisely measure parts with small changes.
- Measure the voltage waveform at coarse intervals by increasing the delay time, and store the data at each measurement point in memory. This is read out and digitally differentiated (difference from the previous value) to determine the amount of change, using a certain standard; The total measurement time can be shortened by remeasuring only that part at finer intervals if necessary.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例のストロボ電子ビーム装置の
構成を示すブロック図、第2図は各部の波形を示す波形
図である。ストロボ電子ビーム装置1内の電子銃(図示
せず)より発射して電子ビームはパルスゲート11を介
して、X軸方向、Y軸方向にそれぞれ移動可能なX−Y
ステージ12上に配置された被測定物すなわちIC14
に照射される。
FIG. 1 is a block diagram showing the configuration of a strobe electron beam device according to an embodiment of the present invention, and FIG. 2 is a waveform diagram showing waveforms of various parts. An electron beam emitted from an electron gun (not shown) in the strobe electron beam device 1 passes through a pulse gate 11 to an X-Y beam that can move in the X-axis direction and the Y-axis direction.
The object to be measured, that is, the IC 14 placed on the stage 12
is irradiated.

その照射によって、IC14より二次電子が放出され分
析器13でその量が検出される。
By the irradiation, secondary electrons are emitted from the IC 14, and the amount thereof is detected by the analyzer 13.

その出力は検出器2で増幅され二次電子信号としてA/
Dコンバータ3に加わりデジタルデータに変換される。
The output is amplified by detector 2 and converted into a secondary electron signal by A/
It is added to the D converter 3 and converted into digital data.

検出される出力が微小のため、前述した動作は複数周期
繰り返され出力が積算される。なお、この制御は以下に
説明する制御回路6によりなされる。
Since the detected output is minute, the above-described operation is repeated for multiple cycles and the output is integrated. Note that this control is performed by a control circuit 6 described below.

IC14はドライバ4によって駆動され、このドライバ
4より動作周期が求められて繰り返し信号としてディレ
ィ回路5に加わる。動作周期に同期して複数回例えば、
同一分析電圧において32回行うので、このディレィ回
路5は制御回路6より加わるディレィ量に例えば比例し
たディレィパルスを出力する。なお、ここで出力される
ディレィパルスはドライバ4より加わる繰り返し信号に
1対1で対応する。そしてディレィパルスはパルス発生
器7に加わ゛る。
The IC 14 is driven by a driver 4, and the operation period is determined by the driver 4 and applied to the delay circuit 5 as a repetitive signal. For example, multiple times in synchronization with the operating cycle.
Since the analysis is performed 32 times at the same analysis voltage, the delay circuit 5 outputs a delay pulse proportional to the amount of delay applied by the control circuit 6, for example. Note that the delay pulse outputted here corresponds one-to-one to the repetitive signal applied from the driver 4. The delayed pulse is then applied to the pulse generator 7.

パルス発生器7は制御回路6により入力する周波数デー
タ例えば動作周期の1/n周期等(本実施例の第2図の
波形図では動作周期T内に1パルス即ちn=1としてい
るが必要に応じて動作周期T内にn個のパルスを入れる
ことも可能である)を指示するデータよりディレィパル
スからスタートするnクロックをゲート回路8に出力す
る。
The pulse generator 7 receives frequency data input by the control circuit 6, such as 1/n cycle of the operating cycle (in the waveform diagram of FIG. 2 of this embodiment, one pulse is set within the operating cycle T, that is, n=1, Accordingly, n clocks starting from a delay pulse are output to the gate circuit 8 based on data instructing n pulses to be inserted within the operation period T.

第2図(a)は繰り返し信号、第2図(b)はパルス発
生器7の出力を示す。例えば、1周期単位でパルス発生
器7がパルスを発生し、1周期内の波形の32ポイント
(1周期を32分割して)を測定する場合には、前述し
たディレィ回路5には制御回路6から繰り返し動作周期
Tの1/32単位で変化するディレィ量が加わる。なお
、当然ながら、被測定信号の1ポイントを測定するのに
微小出力を加算するために複数回(例えばN回)測定す
る。従って、前述したディレィ量はN周期単位で変化す
る。
FIG. 2(a) shows the repetition signal, and FIG. 2(b) shows the output of the pulse generator 7. For example, when the pulse generator 7 generates pulses in one cycle and measures 32 points of the waveform within one cycle (one cycle is divided into 32), the delay circuit 5 described above is connected to the control circuit 6. A delay amount that changes in units of 1/32 of the repetitive operation period T is added. Note that, of course, in order to measure one point of the signal under test, measurement is performed multiple times (for example, N times) in order to add minute outputs. Therefore, the above-mentioned delay amount changes in units of N cycles.

前述したパルス発生器7の出力はゲート回路8に加わる
。このゲート回路8は加算平均回路9より加わる制御信
号によってパルスゲートドライバエ0にパルス発生器7
より加わったパルスを出力する。このゲート回路8は加
算平均処理等が終了した時等にストロボ電子ビームをI
C14に照射しないようにするための回路である。測定
中であるならば、この入力したパルスはパルスゲートド
ライバ10を介してパルスゲ−)11に加わり、電子ビ
ームを照射するパルスゲート11をオン、オフする。
The output of the pulse generator 7 mentioned above is applied to a gate circuit 8. This gate circuit 8 connects the pulse gate driver 0 to the pulse generator 7 by a control signal applied from the averaging circuit 9.
Outputs more added pulses. This gate circuit 8 inputs the strobe electron beam when the averaging process, etc. is completed.
This is a circuit to prevent C14 from being irradiated. If measurement is in progress, this input pulse is applied to the pulse gate 11 via the pulse gate driver 10 to turn on and off the pulse gate 11 that irradiates the electron beam.

これによって第2図(C)に示すようなストロボ電子ビ
ームが被測定物に照射される。
As a result, the object to be measured is irradiated with a strobe electron beam as shown in FIG. 2(C).

一方、パルスゲートドライバ10からはパルスゲートド
ライバ10に加わるストロボパルスに1対1で対応して
サンプリング信号がA/Dコンバータ3に出力される。
On the other hand, sampling signals are outputted from the pulse gate driver 10 to the A/D converter 3 in one-to-one correspondence to the strobe pulses applied to the pulse gate driver 10.

A/Dコンバータ3はこの(1によってサンプリングを
開始し、検出器2より出力される第2図(d)に示す二
次電子信号をデジタルデータに変換する。
The A/D converter 3 starts sampling with this (1) and converts the secondary electronic signal shown in FIG. 2(d) output from the detector 2 into digital data.

加算平均処理回路9はA/Dコンバータ3から加わるデ
ジタル信号を動作周期内のパルスに対応して加算処理す
る回路であり、それら加算結果を記憶するレジスタを有
する。加算平均処理回路9は制W1回路6からのスター
ト信号によって、レジスタの内容をクリアするとともに
加算処理を開始し、さらに、制御回路6より加わる平均
回数の加算処理を行うと終了信号を制御回路6に出力す
るとともにスイッチSWを介してメモリM、に平均結果
を出力する。第2図1d)の場合はa、+a、+a、・
・・、b、+b!+b、  ・・・1等の加算である。
The averaging processing circuit 9 is a circuit that performs addition processing on the digital signals applied from the A/D converter 3 in correspondence with pulses within the operating cycle, and has a register that stores the addition results. The averaging processing circuit 9 clears the contents of the register and starts addition processing in response to the start signal from the control W1 circuit 6. Furthermore, when the addition processing of the number of averages added by the control circuit 6 is performed, an end signal is sent to the control circuit 6. At the same time, the average result is output to the memory M via the switch SW. In the case of Fig. 2 1d), a, +a, +a, ・
..., b, +b! +b, . . . is an addition of 1 grade.

メモリM、は分析電圧V、の時の二次電子出力の平均値
すなわち検出電圧を記憶し、メモリM2は分析電圧v2
の時の二次電子出力の平均値すなわち検出電圧を記憶す
る。なお、スイッチSWは制御回路6より加わる分析電
圧(V+ 、Vt )が変化した時に切り替わるデジタ
ルスイッチである。
The memory M stores the average value of the secondary electron output at the analysis voltage V, that is, the detection voltage, and the memory M2 stores the average value of the secondary electron output at the analysis voltage V2.
The average value of the secondary electron output at the time, that is, the detected voltage is memorized. Note that the switch SW is a digital switch that is switched when the analysis voltage (V+, Vt) applied from the control circuit 6 changes.

前述の動作のディレィの変化によつてメモリMI。Memory MI by changing the delay of the operation described above.

M2には第3図に示すような各データが格納される。Each data as shown in FIG. 3 is stored in M2.

この分析電圧V、、VtのときのメモリMl。The memory Ml at this analysis voltage V,,Vt.

M2のデータは比演算回路15に入力されて分析電圧V
、、V、における分析器出力S+ 、StO比を求め、
さらに、配線電圧と分析−出力比(S。
The data of M2 is input to the ratio calculation circuit 15 and analyzed voltage V
Find the analyzer output S+ and StO ratio at , ,V,
Furthermore, the wiring voltage and analysis-output ratio (S.

/S+ )との関係が与えられたテーブルを有する。/S+).

テーブル回路16と照合回路17で照合されてIC14
の配線の電圧が求められる。(この求め方については本
発明者等が特願昭59−198818号に詳細に記述し
ているのでここでは省略する) 照合回路17で照合されて求められたIC14の配線の
電圧はメモリ18に格納される。このデータは前述のご
とく、基準の駆動パルスに対して少しずつ遅延させた(
ここでは動作周期Tの1 /32)パルスによって得ら
れたものであり、メモリ18にはIC14の電圧波形の
32点の電圧値が順に格納されており、読み出されて次
の時間拡大検出系19に入力される。
It is compared by the table circuit 16 and the matching circuit 17, and the IC 14
The voltage of the wiring is found. (The method of obtaining this is described in detail in Japanese Patent Application No. 198818/1982 by the present inventors, so it is omitted here.) The voltage of the wiring of the IC 14, which is obtained by being verified by the verification circuit 17, is stored in the memory 18. Stored. As mentioned above, this data was delayed little by little with respect to the reference drive pulse (
Here, the voltage values are obtained by a pulse (1/32) of the operating period T, and the voltage values of 32 points of the voltage waveform of the IC 14 are sequentially stored in the memory 18, and are read out and used in the next time expansion detection system. 19 is input.

第4図は時間拡大検出系の機能を説明するためのブロッ
ク図、第5図は各回路の出力電圧図で、メモリ18に格
納されているデータは読み出されてデジタル微分回路2
0.二硫化回路21および時間拡大領域検出回路22で
構成された時間拡大検出系19に入力される。低時間分
解能(例えば1パルスの遅延時間を動作周期Tの1/3
2として32点測定)で測定されメモリ18に格納され
た第5図(alのデータはデジタル微分回路20に入力
されて、前の値との差がとられ第5図(b)のデジタル
微分値が得られる。
FIG. 4 is a block diagram for explaining the function of the time expansion detection system, and FIG. 5 is an output voltage diagram of each circuit.
0. The signal is input to a time expansion detection system 19 composed of a disulfide circuit 21 and a time expansion area detection circuit 22. Low time resolution (for example, the delay time of one pulse is 1/3 of the operating period T)
The data in FIG. 5 (al) measured at 32 points (measured at 32 points as 2) and stored in the memory 18 is input to the digital differentiation circuit 20, and the difference with the previous value is taken, and the data is converted into the digital differentiation shown in FIG. 5(b). value is obtained.

このデジタル微分値は次の二値化回路21で一定の基準
値に基づいて第5図(C)のように二値化される。但し
、デジタル微分値の絶対値をとるものとする。この二値
化回路21の出力は時間拡大領域検出回路22に入力さ
れ電圧の急峻な変化を示す立上りの開始時間t、および
期間Δtl+立下りの開始時間1tおよび期間Δttが
求められ制御回路6に入力される。
This digital differential value is then binarized by a binarization circuit 21 based on a constant reference value as shown in FIG. 5(C). However, the absolute value of the digital differential value shall be taken. The output of the binarization circuit 21 is input to the time expansion area detection circuit 22, and the start time t of the rise indicating a steep change in voltage, the period Δtl+the start time 1t of the fall, and the period Δtt are determined and sent to the control circuit 6. is input.

このようにして求めた立上りの開始時間t、及び期間Δ
tI+立下りの開始時間Lffi+及び期間Δt2につ
いて、その部分のみ高時間分解能(例えばパルスの遅延
時間を動作周期Tの1/256として256点測定)で
再度測定すれば短時間で変化の大きい部分が精密に測定
できる。
The rise start time t and period Δ determined in this way
Regarding tI+ falling start time Lffi+ and period Δt2, if you measure only those parts again with high time resolution (for example, measure the pulse delay time at 1/256 of the operating period T at 256 points), you will be able to see the parts that have large changes in a short time. Can be measured precisely.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電圧波形の変化の
少ない部分は低時間分解能で早く測定でき、同時に変化
の大きい部分の区間を検出され、その部分だけ再度高時
間分解能で精密に測定するやで全体の測定時間が短縮で
きるといった効果がある。
As explained above, according to the present invention, parts of the voltage waveform with little change can be measured quickly with low time resolution, and at the same time, sections with large changes can be detected, and only that part can be precisely measured again with high time resolution. This has the effect of shortening the overall measurement time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のストロボ電子ビーム装置の
構成を示すブロック図、 第2図は各部の波形を示す波形図、 第3図にメモリM+ 、Mzに格納された各データを示
す図、 第4図は時間拡大検出系の機能を説明するためのブロッ
ク図、 第5図は各回路の出力電圧図、 図において、 4はドライバ、     5はディレィ回路、6は制御
回路、    7はパルス発生器、8はゲート回路、 
  9は加算平均処理回路、10はゲートパルスドライ
バ、 11はパルスゲート、  12はX−Yステージ、13
は分析器、     14はIC115は比演算回路、
   16は比テーブル回路、17は照合回路、   
 18はメモリ19は時間拡大検出系、 20はデジタ
ル微分回路、21は二値化回路、 22は時間拡大領域検出回路、 をそれぞれ示す。
Fig. 1 is a block diagram showing the configuration of a strobe electron beam device according to an embodiment of the present invention, Fig. 2 is a waveform diagram showing waveforms of each part, and Fig. 3 shows each data stored in memories M+ and Mz. 4 is a block diagram for explaining the function of the time expansion detection system, and FIG. 5 is an output voltage diagram of each circuit. In the figure, 4 is a driver, 5 is a delay circuit, 6 is a control circuit, and 7 is a control circuit. Pulse generator, 8 is a gate circuit,
9 is an averaging processing circuit, 10 is a gate pulse driver, 11 is a pulse gate, 12 is an X-Y stage, 13
is an analyzer, 14 is an IC115 is a ratio calculation circuit,
16 is a ratio table circuit, 17 is a collation circuit,
Reference numeral 18 indicates a memory 19, a time expansion detection system, 20, a digital differentiation circuit, 21, a binarization circuit, and 22, a time expansion area detection circuit.

Claims (1)

【特許請求の範囲】[Claims]  エネルギ分析器を備えたストロボ電子ビーム装置にお
いて、低時間分解能で求められた被測定部の電圧波形デ
ータを格納する記憶手段と、該格納されたデータを読み
出してデジタル微分する回路およびそれを二値化する回
路が設けられて、前記電圧波形の立上がりまたは立下が
りの開始時間および変化時間を検出することを特徴とす
る電子ビームプロービング装置。
In a strobe electron beam device equipped with an energy analyzer, a storage means for storing voltage waveform data of a part to be measured determined with low time resolution, a circuit for reading out the stored data and digitally differentiating it, and a circuit for digitally differentiating it by reading out the stored data and converting it into binary values. 1. An electron beam probing apparatus, comprising: a circuit for detecting a start time and a change time of a rise or fall of the voltage waveform.
JP59229371A 1984-10-30 1984-10-30 Electron beam probing apparatus Pending JPS61107170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59229371A JPS61107170A (en) 1984-10-30 1984-10-30 Electron beam probing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59229371A JPS61107170A (en) 1984-10-30 1984-10-30 Electron beam probing apparatus

Publications (1)

Publication Number Publication Date
JPS61107170A true JPS61107170A (en) 1986-05-26

Family

ID=16891120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59229371A Pending JPS61107170A (en) 1984-10-30 1984-10-30 Electron beam probing apparatus

Country Status (1)

Country Link
JP (1) JPS61107170A (en)

Similar Documents

Publication Publication Date Title
US6459282B1 (en) Charged particle beam test system for extracting test result at specified timing
US6163159A (en) Charged particle beam test system
JPS61107170A (en) Electron beam probing apparatus
JPS6142817B2 (en)
JPH03229179A (en) Charged beam device
JPH09312569A (en) D/a converter test device and semiconductor test device using the test device
JPS6176963A (en) Voltage measuring device by electron beam
JPS63209099A (en) Peak value detection circuit
JPH02297855A (en) Signal processing method for electron beam tester device
JPS6385445A (en) Ultrasonic measuring instrument
JPS61250564A (en) Method for measuring minute voltage and current
JP2944307B2 (en) A / D converter non-linearity inspection method
JPS61201173A (en) Instrument for measuring characteristics of magnetic disk
JPS6267831A (en) Electron beam device
JPS61124046A (en) Strobe electron beam apparatus
JPH0576772B2 (en)
JPH11242071A (en) Charged particle beam test device
JPS62128422A (en) Electron beam device
JPH0310177A (en) Strobo electron beam apparatus
JPH0723290U (en) EB test equipment
JPS647498B2 (en)
JPH0425663B2 (en)
JPH01311553A (en) Charged particle ray device
JPH1145677A (en) Electron beam landing error correcting method and electron beam tester
JPH02295046A (en) Logic analysis electron beam tester device