JPS647498B2 - - Google Patents

Info

Publication number
JPS647498B2
JPS647498B2 JP54118996A JP11899679A JPS647498B2 JP S647498 B2 JPS647498 B2 JP S647498B2 JP 54118996 A JP54118996 A JP 54118996A JP 11899679 A JP11899679 A JP 11899679A JP S647498 B2 JPS647498 B2 JP S647498B2
Authority
JP
Japan
Prior art keywords
point
measured
electron beam
pulsed
irradiation position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54118996A
Other languages
Japanese (ja)
Other versions
JPS5643737A (en
Inventor
Kanji Iwase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP11899679A priority Critical patent/JPS5643737A/en
Publication of JPS5643737A publication Critical patent/JPS5643737A/en
Publication of JPS647498B2 publication Critical patent/JPS647498B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は、動作中のICの内部電位を自動測定
する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that automatically measures the internal potential of an IC during operation.

第1図は従来のIC自動測定器の例を示す。図
において、1はパターン発生器、2は電源、3は
供試IC、4は制御用コンピユータ、5は比較器
である。このような従来のIC自動測定器では、
制御コンピユータ4からの信号によりパターン発
生器1は試験パターンを供試IC3に加え、供試
IC3の出力端子に現われる出力信号を予じめ制
御用コンピユータ4にプログラムされた期待値と
比較器5で比較する事によりICの良否を判定し
ている。しかし、ICが不良の場合、入出力での
判断だけでは不良個所を求める事は難かしく、従
つて製造工程での異常及びユーザーでのクレーム
品の調査解析を行う際に、従来は各種測定器と入
手による内部探針等により、故障個所を調査して
いた。しかし、さらに微細化されたLSIのパター
ン上を探針する事は非常に困難であり、コンピユ
ータ等を使つた故障解析でも故障個所をはつきり
と確認する事は出来なくなつている。
FIG. 1 shows an example of a conventional IC automatic measuring device. In the figure, 1 is a pattern generator, 2 is a power supply, 3 is a test IC, 4 is a control computer, and 5 is a comparator. With such conventional IC automatic measuring instruments,
The pattern generator 1 adds a test pattern to the IC under test 3 according to the signal from the control computer 4, and
The quality of the IC is determined by comparing the output signal appearing at the output terminal of the IC 3 with an expected value programmed in advance in the control computer 4 using a comparator 5. However, when an IC is defective, it is difficult to determine the location of the defect just by determining the input/output.Therefore, when investigating and analyzing abnormalities in the manufacturing process and products complained of by users, various measuring instruments have traditionally been used. The location of the failure was investigated using internal probes and other equipment obtained. However, it is extremely difficult to probe the pattern of an even smaller LSI, and it is no longer possible to clearly identify the location of a failure even through failure analysis using a computer or the like.

本発明は、このような従来測定器に代わる新規
な自動測定器を提供することを目的とし、本発明
測定器によると、IC内部の任意の点での電位及
び動作速度を自動的に測定出来る為に、ICの良
否を高精度に判定出来るとともに、電子ビームに
よりLSIパターン上の電位を調べる為にサブミク
ロンの微細パターン上でも調査が可能である。
The purpose of the present invention is to provide a new automatic measuring device to replace such conventional measuring devices.According to the measuring device of the present invention, it is possible to automatically measure the potential and operating speed at any point inside an IC. Therefore, it is possible to judge the quality of the IC with high precision, and it is also possible to investigate even submicron fine patterns by using an electron beam to investigate the potential on the LSI pattern.

第2図に本発明による自動測定器の構成例を示
す。1はパターン発生器、2は電源、3は供試
IC、4は制御用コンピユータ、5は比較器、6
1は電子ビーム発生用E−ガン、62はビームチ
ヨツパー、63は偏向器、7は二次電子検出器、
8は増巾器である。この構成側では、制御用コン
ピユータ4からの信号により電源2は電圧を被測
定素子3に印加しパターン発生器1は試験パター
ンを供試IC3に加える。ここまでは従来の自動
測定器と同じであるが、本発明では、電子ビーム
機器6の電子ビーム発生用E−ガン61で発生さ
れた電子ビームはビームチヨツパー62でパルス
ビームになり、コンピユータ4からの偏向器63
に対する制御電圧により、供試IC3上の被測定
点に照射される。すなわち、制御用コンピユータ
4はビームチヨツパー62でのビームをチヨツプ
するタイミングと偏向器63でのビームの偏向量
をプログラムに従つて制御する。電子ビームの照
射により被測定点から、その点の電位に応じた量
で出て来る二次電子は二次電子検出器7によつて
検出され増巾器8により増巾された電気信号は制
御用コンピユータ4の制御のもとに電源2が発生
する期待の基準電圧と比較器5で比較され、その
大小関係が制御用コンピユータ4にプログラムさ
れた通りであれば被測定点は制御用コンピユータ
4により電気的に異常なしと判断される。この
時、制御用コンピユータ4によりビームチヨツパ
ー63でのビームをチヨツプするタイミングを連
続的に変化させながら、くり返し測定をする事に
より被測定点での時間的電位変化を知り、その点
での動作速度を測定する事も出来る。例えば、第
3図に示すようにチヨツプされたビームを時間軸
にそつて連続的に被測定点に照射すると、被測定
点での電位変化に応じて各タイミングで二次電子
検出器7から出力が取り出される。この出力に従
つて、被測定点での波形を測定することができ
る。ビームをチヨツプせずに直流的に被測定点に
照射した場合には、二次電子の平均出力しか得ら
れないので、正しい信号波形を把握することはで
きないが、チヨツプすることによつて第3図のよ
うに被測定点における信号波形を正しく測定する
ことができる。従つて、第4図aのようにある回
路の入力点P1にチヨツプされたビームを照射し
その点P1での波形を検出し、さらに出力点P2
での波形を測定し、チヨツプされたビームの基準
タイミングA1とA2とに基いて各点での波形を
合成すると、その差分が回路における遅れ時間と
なり、回路の入出力間の動作速度を求めることが
できる。又、この時、外部より電位を与え得る電
源配線部及び各入力端子部を前もつて測定する事
によりある設定電位部からの二次電子による信号
レベルを制御用コンピユタ4又はパターン発生器
1に記憶させ、その記憶値とその他の被測定点か
らの二次電子による信号とを比較する事により、
その他の被測定点の電位をより精度よく測定する
事が可能となる。これと同様に外部より任意のタ
イミングで加えられるクロツクパルス入力端子を
被測定点に含み、前もつてくり返し測定する事に
より、この被測定端子での入力電位の時間的変化
による二次電子信号の変化する時間をパターン発
生器1又は制御用コンピユータ4に記憶させ、そ
の記憶された時間とその他任意の被測定点での電
位変化による二次電子信号の変化時間との時間差
を知る事で任意の点での動作速度の測定精度を向
上させる事が出来る。
FIG. 2 shows an example of the configuration of an automatic measuring device according to the present invention. 1 is the pattern generator, 2 is the power supply, 3 is the test object
IC, 4 is a control computer, 5 is a comparator, 6
1 is an E-gun for generating an electron beam, 62 is a beam chopper, 63 is a deflector, 7 is a secondary electron detector,
8 is an amplifier. In this configuration, the power supply 2 applies a voltage to the device under test 3 in response to a signal from the control computer 4, and the pattern generator 1 applies a test pattern to the IC under test 3. Up to this point, it is the same as the conventional automatic measuring instrument, but in the present invention, the electron beam generated by the electron beam generating E-gun 61 of the electron beam device 6 is converted into a pulse beam by the beam chopper 62, and the electron beam is converted into a pulse beam by the computer 4. Deflector 63
The measured point on the IC 3 under test is irradiated by the control voltage. That is, the control computer 4 controls the timing of chopping the beam at the beam chopper 62 and the amount of beam deflection at the deflector 63 according to a program. The secondary electrons that come out from the point to be measured by the electron beam irradiation in an amount corresponding to the potential of that point are detected by the secondary electron detector 7, and the electrical signal amplified by the amplifier 8 is controlled. The comparator 5 compares it with the expected reference voltage generated by the power supply 2 under the control of the control computer 4, and if the magnitude relationship is as programmed in the control computer 4, the measured point is determined by the control computer 4. It is determined that there is no electrical abnormality. At this time, the timing of chopping the beam at the beam chopper 63 is continuously changed by the control computer 4, and by repeatedly measuring, the temporal potential change at the measured point is known, and the operating speed at that point is determined. It can also be measured. For example, when a chopped beam is continuously irradiated onto a measurement point along the time axis as shown in Fig. 3, the secondary electron detector 7 outputs an output at each timing according to potential changes at the measurement point. is taken out. According to this output, the waveform at the measured point can be measured. If the measured point is irradiated with direct current without chopping the beam, only the average output of secondary electrons will be obtained, so it will not be possible to grasp the correct signal waveform. As shown in the figure, the signal waveform at the measured point can be accurately measured. Therefore, as shown in Fig. 4a, the input point P1 of a certain circuit is irradiated with a chopped beam, the waveform at that point P1 is detected, and the waveform at the output point P2 is detected.
When the waveforms at each point are measured and the waveforms at each point are combined based on the reference timings A1 and A2 of the chopped beam, the difference becomes the delay time in the circuit, and the operating speed between the input and output of the circuit can be determined. I can do it. Also, at this time, by measuring in advance the power supply wiring section and each input terminal section to which a potential can be applied from the outside, the signal level due to secondary electrons from a certain set potential section is sent to the control computer 4 or pattern generator 1. By storing the memorized value and comparing the signal generated by secondary electrons from other measured points,
It becomes possible to measure the potentials of other measured points with higher accuracy. Similarly, by including a clock pulse input terminal externally applied at arbitrary timing in the measured point and repeatedly measuring the clock pulse input terminal, the change in the secondary electron signal due to the temporal change in the input potential at this measured terminal By storing the time in the pattern generator 1 or the control computer 4, and knowing the time difference between the stored time and the change time of the secondary electron signal due to the potential change at any other point to be measured, The accuracy of measuring the operating speed can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の自動測定器の構成を示すブロツ
ク図、第2図は本発明による自動測定器の構成を
示すブロツク図第3図は被測定点での波形測定の
タイミング図、第4図aは被測定回路図、第4図
bはその測定タイミング図である。 1……パターン発生器、3……供試IC、4…
…コンピユータ、5……比較器、6……電子ビー
ム機器、7……二次電子検出装置。
Fig. 1 is a block diagram showing the configuration of a conventional automatic measuring device, Fig. 2 is a block diagram showing the configuration of an automatic measuring device according to the present invention, Fig. 3 is a timing diagram of waveform measurement at the measured point, and Fig. 4 4a is a circuit diagram to be measured, and FIG. 4b is a measurement timing diagram thereof. 1... Pattern generator, 3... Test IC, 4...
...Computer, 5...Comparator, 6...Electron beam equipment, 7...Secondary electron detection device.

Claims (1)

【特許請求の範囲】[Claims] 1 供試ICに照射する電子ビームを発生する電
子ビーム機器と、発生された電子ビームをパルス
ビームに変換するビームチヨツパーと該パルスビ
ームの供試ICに対する照射位置を予じめ定めら
れたプログラムに従つて移動させる照射位置制御
装置と、前記ビームチヨツパーでのビームをチヨ
ツプするタイミングを連続的に変化せしめる手段
と、前記パルスビームの照射により発生した二次
電子を検出する検出装置と、この検出装置の出力
と前記照射位置に対応する期待値とを比較する装
置とを備えチヨツプタイミングを連続的に変化し
たパルスビームを前記供試ICの被測定点に照射
することによつて当該被測定点をくり返し測定し
てその時間的電位変化を測定することを特徴とす
るIC内部電位自動測定装置。
1 An electron beam device that generates an electron beam to irradiate the IC under test, a beam chopper that converts the generated electron beam into a pulsed beam, and an irradiation position of the pulsed beam on the IC under test according to a predetermined program. an irradiation position control device for moving the pulsed beam, a means for continuously changing the timing of chopping the beam at the beam chopper, a detection device for detecting secondary electrons generated by irradiation with the pulsed beam, and an output of the detection device. and a device for comparing the expected value corresponding to the irradiation position, and irradiates the measured point of the test IC with a pulse beam whose tip timing is continuously changed. An automatic IC internal potential measuring device characterized by repeatedly measuring the potential change over time.
JP11899679A 1979-09-17 1979-09-17 Automatic potential measurement device within ic Granted JPS5643737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11899679A JPS5643737A (en) 1979-09-17 1979-09-17 Automatic potential measurement device within ic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11899679A JPS5643737A (en) 1979-09-17 1979-09-17 Automatic potential measurement device within ic

Publications (2)

Publication Number Publication Date
JPS5643737A JPS5643737A (en) 1981-04-22
JPS647498B2 true JPS647498B2 (en) 1989-02-09

Family

ID=14750413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11899679A Granted JPS5643737A (en) 1979-09-17 1979-09-17 Automatic potential measurement device within ic

Country Status (1)

Country Link
JP (1) JPS5643737A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3428965A1 (en) * 1984-08-06 1986-02-06 Siemens AG, 1000 Berlin und 8000 München METHOD AND DEVICE FOR DETECTING AND IMAGING MEASURING POINTS THAT HAVE A SPECIFIC SIGNAL PROCESS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108580A (en) * 1975-03-19 1976-09-25 Fujitsu Ltd
JPS5390876A (en) * 1977-01-21 1978-08-10 Nippon Telegr & Teleph Corp <Ntt> Inspecting method for integrated semiconductor circuit device

Also Published As

Publication number Publication date
JPS5643737A (en) 1981-04-22

Similar Documents

Publication Publication Date Title
EP0196804B1 (en) Method and apparatus for testing integrated electronic device
JP2000074986A (en) Device testing device
US20020070738A1 (en) Semiconductor device inspecting apparatus
US6459282B1 (en) Charged particle beam test system for extracting test result at specified timing
JPS647498B2 (en)
JPS61225751A (en) Indirect measurement for intensity distribution of particle beam pulse
JPH03101041A (en) Voltage measuring device by use of electron beam
US4634972A (en) Method for measuring low-frequency signal progressions with an electron probe inside integrated circuits
JPS6254183A (en) Method and device for monitoring function of integrated circuit during operation
JPH0774218A (en) Test method of ic and its probe card
JPS6114352B2 (en)
JP3169006B2 (en) Integrated circuit failure inspection apparatus, inspection method therefor, and recording medium recording control program therefor
CN112534358B (en) Apparatus and method for detecting measurement values based on electroholography
JPS6142817B2 (en)
JPH0224585A (en) Electron beam tester
JP2770483B2 (en) Electron beam resistance measuring device
JPH02297855A (en) Signal processing method for electron beam tester device
SU572845A1 (en) Method of measuring fluctuation of moving electrostatic record carrier
Todokoro et al. Electron beam tester for logic LSIs
JPH02195271A (en) System for measuring voltage waveform
JPS606876A (en) Potential measuring device
JPH04355358A (en) Isothermal capacitance transient spectral analysis
JPH1183768A (en) Method for identifying object, apparatus for evaluating fine processing and apparatus for fine processing
JPS61107170A (en) Electron beam probing apparatus
JPS61250508A (en) Apparatus for measuring film thickness