JPS6089534A - Manufacture of porous aluminum - Google Patents

Manufacture of porous aluminum

Info

Publication number
JPS6089534A
JPS6089534A JP58197504A JP19750483A JPS6089534A JP S6089534 A JPS6089534 A JP S6089534A JP 58197504 A JP58197504 A JP 58197504A JP 19750483 A JP19750483 A JP 19750483A JP S6089534 A JPS6089534 A JP S6089534A
Authority
JP
Japan
Prior art keywords
alloy
aluminum
cut
core material
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58197504A
Other languages
Japanese (ja)
Inventor
Takuo Kusano
草野 拓男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP58197504A priority Critical patent/JPS6089534A/en
Publication of JPS6089534A publication Critical patent/JPS6089534A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture inexpensively porous Al having superior mechanical properties by cladding Al with a thin layer of an Al-Si alloy, cutting the resulting material into chips, putting the cut material in a metallic mold, and heating it in a heating furnace. CONSTITUTION:Al or an Al alloy as a core material is clad with a thin layer of an Al-Si alloy, and the resulting material is cut into chips, fibers or wires. The cut material is degrased and washed with ethanol or coated with a flux, and it is put in a metallic mold of a desired shape. The mold is heated to the liquidus line temp. of the Al-Si alloy + or -10 deg.C in a heating furnace to melt-bond the cut material with the Al-Si alloy. Thus, porous Al having superior mechanical properties such as ductility and contg. no foreign matter is inexpensively obtd. in a short time.

Description

【発明の詳細な説明】 本発明は、多孔質アルミニウムの製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing porous aluminum.

従来、多孔質金島の製造法として種々の手段が提供され
ている。即ち、焼結法による多孔質金属の製造法は、接
触する二つの粉末状金属の界面において、外部からの熱
エネルギーによる金属原子の拡散現象を利用した方法で
あるが、上記金属原子の拡散を行なうには数時間の時間
を要し、しかも接触面に汚れや異物が介在すると拡散速
度が極端に低下し金属間の結合力が弱くなり機械的性質
が悪化する欠点があった。
Conventionally, various means have been provided as methods for producing porous gold islands. In other words, the method for producing porous metals by sintering is a method that utilizes the diffusion phenomenon of metal atoms due to external thermal energy at the interface of two contacting powder metals. It takes several hours to carry out this process, and furthermore, the presence of dirt or foreign matter on the contact surface has the disadvantage that the diffusion rate is extremely reduced, the bonding force between metals is weakened, and the mechanical properties are deteriorated.

また、他の物質の多孔性を利用する製造法として、発泡
スチロールの表面に電着等の表面処理法で金属を付着さ
せ、その後発泡スチロールを燃焼させて網目状の多孔質
金属f:得る方法(焼却法)、或いは塩化す) IJウ
ムのような水溶性粒子を所定の形状に焼き固めて、粒子
間隙に金属の溶湯を加圧注入して、凝固後塩化す) I
Jウムを水で溶解し網:目状の多孔質金属を得る方法(
溶出法)が計るが、各々多孔質金属内部に発泡スチロー
ルの酸化物や塩化す) IJウムの粒子等が残留する危
険があシ、しかも金属体の厚さが薄いので機械的強度が
真の多孔質金属ではない。
In addition, as a manufacturing method that utilizes the porosity of other substances, metal is attached to the surface of expanded polystyrene using a surface treatment method such as electrodeposition, and then the expanded polystyrene is burned to obtain a mesh-like porous metal (incineration). Method), or chlorination) Water-soluble particles such as IJum are baked into a predetermined shape, molten metal is injected under pressure into the gaps between the particles, and after solidification, chlorination) I
Method of obtaining mesh-like porous metal by dissolving Jum in water (
However, there is a risk that styrofoam oxides and chloride (IJium) particles may remain inside the porous metal, and since the thickness of the metal body is thin, the mechanical strength is not that of a true porous metal. It's not quality metal.

更にまた、溶湯中にガス発生物質を入れて金属体内部に
気孔を点在させる製造法(発泡法)においては、溶湯中
にマクネサイトやTi 及びZrの水素化物等のガス発
生化合物を添加して、溶湯のガス含有量を過飽和にし凝
固させて気孔を内在させて多孔少金属を得ているが、気
孔の発生場所にバラツキがあり、また溶湯の温度分布、
特に炉底付近と溶湯表面付近とでは温度差が太きく、凝
固速度も気孔の大小に左右され、気孔の存在が不均一に
々シ品質的に不安定であるという欠点がおった。
Furthermore, in a manufacturing method (foaming method) in which a gas-generating substance is placed in the molten metal and pores are scattered inside the metal body, a gas-generating compound such as manesite or hydrides of Ti and Zr is added to the molten metal. , the gas content of the molten metal is supersaturated and solidified to incorporate pores to obtain a porous metal, but there are variations in the location of the pores, and the temperature distribution of the molten metal
In particular, there was a large temperature difference between the bottom of the furnace and the surface of the molten metal, and the solidification rate also depended on the size of the pores, resulting in unstable quality due to the non-uniform presence of pores.

本発明は上述した従来の欠点に鑑みてなされたものであ
り、アルミニウム又はアルミニウム合金を心材とし、該
心材の表層に薄<Al−Si合金をクラッドし、このク
ラッドした素材を線材とした後、適当に切断した粉状の
ものやチップ状、繊維状等に切断した後、所望形状の成
形用金型に入れ、加熱炉において上記AA−8i合金の
液相線温度士iot:まで加熱して上記切断した素材を
AJ−Si合金にて融着する方法、或いはアルミニウム
又はアルミニウム合金を心材とし、該心材の表層に薄<
kl−Si合金をクラッドし、このクラッドした素材を
チップ状、繊維状、線状等に切断してフシックスを塗布
した後、上述の工程と同工程により切断した素材kAl
−8t合金にて融着する方法により金属的な結合力が強
く、異物残留が皆無である多孔質アルミニウムの製造方
法を提供するものである。
The present invention has been made in view of the above-mentioned conventional drawbacks, and uses aluminum or an aluminum alloy as a core material, clads the surface layer of the core material with a thin Al-Si alloy, and uses this clad material as a wire rod. After cutting into powder, chips, fibers, etc., it is placed in a mold of the desired shape and heated in a heating furnace to the liquidus temperature of the AA-8i alloy. A method of fusing the cut materials described above with AJ-Si alloy, or using aluminum or an aluminum alloy as a core material and applying a thin layer to the surface layer of the core material.
After cladding the kl-Si alloy and cutting the clad material into chips, fibers, lines, etc. and applying Fusix, the material kAl was cut using the same process as described above.
The present invention provides a method for producing porous aluminum that has strong metallic bonding strength and no residual foreign matter by a method of fusing with -8t alloy.

以下、添付図面に従って本発明の詳細な説明する。先ず
、本発明の原理は第1図に示すように心材10表層に低
融点金属2を薄くクラッドしたチップ状、繊維状、線状
の金属素材A′f:成形用金型に入れた状態において、
2個以上のチップ或いは2本以上の繊維が絡み合うよう
に機砿的に接触させて、低融点金斌2を溶融すると、毛
細管現象によシ絡み合った接点は楔状になっているので
、この楔状の隙間に溶けた金属が第2図に示すように凝
集し、クラッドしたチップ状或いは繊維状金属が相互に
表層の低融点金属2の融着によシ金属的な結合がなされ
る。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. First of all, the principle of the present invention is as shown in FIG. ,
When two or more chips or two or more fibers are mechanically brought into contact so as to be intertwined and the low melting point Kinbin 2 is melted, the intertwined contact points are wedge-shaped due to capillary action, so this wedge-shaped As shown in FIG. 2, the melted metal in the gap aggregates, and the clad metal chips or fibers are bonded together in a metallic manner by the fusion of the low melting point metal 2 on the surface layer.

次に、上述の原理に基づいて本発明の一実施例を具体的
に説明する。A3003アルミニウム合金を上相1とし
2て、この心材1の片面或いは両面に心材1より50℃
〜150℃融点の低い金属2、例えばA4343アルミ
ニウム合金を熱間圧延等の熱間塑性加工により圧着せし
め金属的に結合させた一棟のクラツド板、或いは低融点
金属2を溶射法にて心材1の板表面に溶着させた一釉の
クラツド板をクラッド比=心材1の板厚/金属2の厚さ
=1〜1000、全板厚0.05v+yn−2mmの範
囲で作成する。ここで上記A3003アルミニウム合金
の組成はMn1.3%、cu o、 i o%、Fe 
O,2%、Zn0.1%(重量%)であり、A4343
アルミニウム合金の組成はSi7.5%、FeO,15
%、Zn 0.1%(重量%)である。
Next, one embodiment of the present invention will be specifically described based on the above-mentioned principle. A3003 aluminum alloy is used as the upper phase 1 and 2, and one or both sides of the core material 1 are heated at 50°C from the core material 1.
~150°C A metal 2 with a low melting point, such as A4343 aluminum alloy, is crimped and metallically bonded by hot plastic processing such as hot rolling, or a core material 1 is formed by thermal spraying the low melting point metal 2. A clad plate with one glaze welded to the surface of the plate is prepared with a cladding ratio=thickness of core material 1/thickness of metal 2=1 to 1000, and a total plate thickness of 0.05v+yn-2 mm. Here, the composition of the above A3003 aluminum alloy is Mn 1.3%, cuo, io%, Fe
O, 2%, Zn 0.1% (wt%), A4343
The composition of the aluminum alloy is Si7.5%, FeO,15
%, Zn 0.1% (wt%).

上記心材1は純アルミニウム、Al−Mg系合金、hl
−Mn系合金、kl −Mg = S i系合金、At
−Cu系合金、Al−Zn−Mg系合金等でもよく、ま
た金属2のSt 成分は3%〜20%(重量%)であれ
ばよい。
The core material 1 is pure aluminum, Al-Mg alloy, hl
-Mn-based alloy, kl -Mg = Si-based alloy, At
-Cu alloy, Al-Zn-Mg alloy, etc. may be used, and the St component of metal 2 may be 3% to 20% (wt%).

次に、クラッドした素材をシャーリングマシーン等の切
断機にて幅1.0mm X長さ350間の繊維状に切断
するか、または1.5 mmX 1.5 mmの正方形
のチップ状に切断した後、これらの素側ヲエチルアルコ
ールで脱脂Φ洗浄する。
Next, the clad material is cut into fibers with a width of 1.0 mm x length of 350 mm using a cutting machine such as a shearing machine, or into square chips of 1.5 mm x 1.5 mm. , Degrease and clean these bare sides with ethyl alcohol.

更に、上記の繊維状素材或いはチップ状素拐を成形用金
型に充填するが、繊維状索胴の充填においては油圧プレ
ス等の加圧装置を使用し成形圧力501〜10.OOO
”mで加圧成形する。一方、チップ状素材の場合は、自
然充填する。
Furthermore, the above-mentioned fibrous material or chip-like particles are filled into a mold, and when filling the fibrous cable trunk, a pressure device such as a hydraulic press is used to apply a molding pressure of 501 to 10. OOO
Pressure molding is performed using "m".On the other hand, in the case of chip-shaped materials, natural filling is performed.

成形用金型に素材を充填した後に、この金型を不活性ガ
ス雰囲気の加熱炉に入れて、低融点金属2の液相線温度
±100まで加熱し、金型が前記温度に達したならば金
型を加熱炉より取出し、強制空冷(ファンを使用して冷
却)した後に多孔質アルミニウムを金型から取出す。
After filling the material into the molding mold, put the mold into a heating furnace with an inert gas atmosphere and heat it to the liquidus temperature of the low melting point metal 2 ±100, and when the mold reaches the above temperature. After removing the mold from the heating furnace and cooling with forced air (cooling using a fan), the porous aluminum is taken out from the mold.

尚、上記素材を金型に投入する前に、ぶつ化アルミニウ
ムカリ塩の7ラツクスt11/100011゜の割合で
エチルアルコールに混入してスラリーとし、このスラリ
ーの中に金銅かとに入れた素材を浸漬し、スラリーから
外部に取出しt後、乾燥させれば上記の素材の予備洗浄
は不要となる。
Before putting the above material into the mold, it was mixed with ethyl alcohol at a ratio of 7 lux t11/100011° of aluminum potassium salt to form a slurry, and the material placed in a gilt copper cup was immersed in this slurry. However, if the material is taken out from the slurry and then dried, the above-mentioned preliminary cleaning of the material becomes unnecessary.

また、上記加熱炉は、不活性ガス雰囲気の加熱炉を使用
したが、通常の加熱炉、真空加熱炉、不活性ガス雰囲気
の加熱炉と真空加熱炉とを組合せた加熱炉のいずれでも
よい。更に、上記フラックスはぶつ化アルミニウムカリ
塩の7ラツクスを使用したが、公知の7ラツクスでもよ
いが望ましく腐蝕性のないもの例よい。上記素材は、チ
ップ状、繊維状に切断したが線材としたものを切断して
もよく、長さ、幅、厚さ等は任意である。
Furthermore, although the above-mentioned heating furnace uses an inert gas atmosphere heating furnace, it may be any one of a normal heating furnace, a vacuum heating furnace, and a combination of an inert gas atmosphere heating furnace and a vacuum heating furnace. Further, as the above-mentioned flux, 7 lux of aluminum potassium salt was used, but any known 7 lux may be used, but it is preferable to use a non-corrosive flux. Although the above-mentioned material was cut into chips or fibers, it may be cut into wires, and the length, width, thickness, etc. may be arbitrary.

更にまた、多孔質アルミニウム製品の形状は、金型によ
り丸、四角、三角、多角形等前望の形状に成形されるも
のである。
Furthermore, the shape of the porous aluminum product is molded into a desired shape such as a circle, square, triangle, or polygon using a mold.

以上詳細に説明したように、本発明が上記の慇造方法で
あるので、下記の効果を奏する。
As explained in detail above, since the present invention is the above-mentioned manufacturing method, it has the following effects.

(イ)従来の焼結法に比べて加熱、保持時間が短縮され
、生産性が向上し、価格が低減できる。
(b) Heating and holding times are shorter than conventional sintering methods, improving productivity and reducing costs.

(ロ)椋械的性質、特に延性(伸び)が高い一従来の焼
結晶や発泡金属は脆く、加工性が悪いのに対し、本発明
で得られる製品は延性があるため曲げ加工、切削加工等
が容易である。
(b) Mechanical properties, especially high ductility (elongation) - Conventional sintered crystals and foamed metals are brittle and have poor workability, whereas the products obtained by the present invention are ductile and can be processed by bending and cutting. etc. is easy.

(ハ)従来法の場合、孔径及び多孔率は製造方法に依存
し、有効範囲は狭いが、本発明によれば素材形状を変化
せしめるのみで孔径及び多孔率は任意に変えられ制御範
囲は広い。
(c) In the case of the conventional method, the pore size and porosity depend on the manufacturing method and the effective range is narrow, but according to the present invention, the pore size and porosity can be changed arbitrarily by simply changing the shape of the material, and the control range is wide. .

に)強固な金属結合がなされているので、ヒートショッ
クに強く、例えば溶接も可能である。
) Since it has a strong metal bond, it is resistant to heat shock and can be welded, for example.

(ホ)異物混入、或いは異物残留が非常に少ない。(E) There is very little foreign matter contamination or foreign matter remaining.

(へ)伝熱面積の大幅な向上による熱伝達率が改善され
る。
(f) The heat transfer coefficient is improved due to a significant increase in the heat transfer area.

仕)電気伝導性があり、集′用、効果が高い。Function) It has electrical conductivity, is highly concentrated and effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の原理図である。 1・・・・・・上相、2・・・・・・低融点金属、A・
・・・・金属素材特許出願人 日本軽・金属株式会社 代理人 弁理士 佐 藤 英 昭 手続補正書(帥) 昭和 6GIE、1月24日 特許庁長官 志 賀 学 殴 1、事件の表示 昭和58年特許願第197504号 2、発明の名称 多孔質アルミニウムの製造方法 3、補正をする者 事件との関係 特許出願人 住所 名称 (474)日本軽金属株式会社 4、代 理 人 自発補正 6、補正の対象 明細書 、11.′、1シ、−0−1,7、補正の内容
 r)Q、 IL 2”” 7゜別紙の通り 〔補正の内容〕 (1)明細書の特許請求の範囲の欄を別紙の通り補正す
る。 (2)明細書の「発明の詳細な説明」の欄を下表の通り
補正する。 (3)明細書第7頁第8行目の1取出す。」の下に以下
の文章を挿入する。 「この加熱により、低融点金属のA I −S i系が
溶融して心材の融着がなされるが、乙のAl−3i系合
金が溶融する状態は心材1に対して接着効果が得られる
状態であればよく、完全溶融状態でなくとも半溶融状態
であってもよい。」特許請求の範囲 (1) アルミニウム又はアルミニウム合金を心材とし
・、該心材の表層に薄(A l −S i系合金をクラ
ッドし、このクラッドした素材をチップ状、繊維状、綿
状等に切断した後、所望形状の成形用金型に入れ、加熱
炉において上記A I−8i系合金の液相線温度±10
℃まで加熱して上記切断した素材をA I−3i系合金
にて融着したことを特徴とする多孔質アルミニウムの製
造方法。 (2) アルミニウム又はアルミニウム合金を心材とし
、該心材の表層にf”l (A I−3i系合金をクラ
ッドし、このクラッドした素材をチップ状、繊維状、線
状等に切断してブラックスを塗布し、これを所望形状の
成形用金型に入れ、加熱炉において上記A l−3i系
合金の液相線温度±10℃まで加熱して上記切断した素
材をA e −S i系合金にて融着したことを特徴と
する多孔質アルミニウムの製造方法。 (3)上記A l! −S i系合金のslが3〜20
重量パーセントである特許請求の範囲第(1)項記載又
は第(2)項のいずれか−に記載の多孔質アルミニウム
の製造方法。 (4) 上記フラックスはKF−AIF系フラックスで
ある特許請求の範囲第(2)項記載の多孔質アルミニウ
ムの製造方法。
FIGS. 1 and 2 are diagrams of the principle of the present invention. 1... Upper phase, 2... Low melting point metal, A.
...Metal material patent applicant Nippon Light & Metal Co., Ltd. agent Patent attorney Hide Sato Showa procedural amendment (master) Showa 6 GIE, January 24 Commissioner of the Japan Patent Office Manabu Shiga 1, case display 1982 Patent Application No. 197504 2, Name of the invention Process for producing porous aluminum 3, Relationship with the case of the person making the amendment Patent applicant's address and name (474) Nippon Light Metal Co., Ltd. 4, Agent Voluntary amendment 6, Amendment Target specification, 11. ′, 1shi, -0-1, 7, Contents of the amendment r) Q, IL 2”” 7゜As attached [Contents of amendment] (1) Amend the scope of claims column of the specification as shown in the attached sheet do. (2) The "Detailed Description of the Invention" column of the specification shall be amended as shown in the table below. (3) Extract 1 from page 7, line 8 of the specification. ” Insert the following text below. "Due to this heating, the low melting point metal A I-S i is melted and the core material is fused, but when the Al-3i alloy (B) is melted, it has an adhesion effect on the core material 1. Claims (1) A core material made of aluminum or an aluminum alloy, and a thin (A l -S i ) on the surface layer of the core material. After cladding the cladding material with the A I-8i alloy and cutting the clad material into chips, fibers, cotton, etc., it is placed in a mold of a desired shape, and heated to the liquidus temperature of the A I-8i alloy in a heating furnace. ±10
A method for producing porous aluminum, characterized in that the cut material is heated to a temperature of 0.degree. C. and fused with an AI-3i alloy. (2) Aluminum or aluminum alloy is used as the core material, the surface layer of the core material is clad with f"l (A I-3i alloy), and this clad material is cut into chips, fibers, wires, etc. to produce black The material is coated with Ae-Si alloy, put into a mold of a desired shape, and heated in a heating furnace to the liquidus temperature of the Al-3i alloy ±10°C to form the cut material into an Ae-Si alloy. A method for producing porous aluminum, characterized in that the sl of the Al!-S i-based alloy is 3 to 20.
The method for producing porous aluminum according to claim 1 or claim 2, wherein the percentage is by weight. (4) The method for producing porous aluminum according to claim (2), wherein the flux is a KF-AIF-based flux.

Claims (1)

【特許請求の範囲】 flJ アルミニウム又はアルミニウム合金を心材とし
、該心材の表層に薄<Al!−Si合金をクラッドし、
このクラッドした素材をチック状、繊維状、線状等に切
断した後、所望形状の成形用金型に入れ、加熱炉におい
て上記Al−8t合金の液相線温度±10℃まで加熱し
て上記切断した素材をAl−Si合金にて融着したこと
を特徴とする多孔質アルミニウムの製造方法。 (2) アルミニウム又はアルミニウム合金を心材とし
、該心材の表層に薄<AJ−Si合金をクラッドし、こ
のクラッドした素材をチック状、繊維状、線状等に切断
してフラックスを塗布し、これを所望形状の成形用金型
に入れ、刃口熱炉において上記AJ−8t合金の液相紛
温度±1ocまで加熱して上記切断した素材をAl−S
i合金にて融着したことを特徴とする多孔質アルミニウ
ムの製造方法。 (3)上記Ae−8i合金のSiが3〜20重量パーセ
ントである特許請求の範囲第111項又は第(2)項の
いずれか−に記載の多孔性、アルミニウムの製造方法。 (4)上記フラックスはKF AlF3系フラックスで
ある特許請求の範囲第(21項記載の多孔質アルミニウ
ムの製造方法。
[Claims] flJ The core material is aluminum or an aluminum alloy, and the surface layer of the core material is thin <Al! -clad with Si alloy;
After cutting this clad material into ticks, fibers, lines, etc., it is placed in a mold of a desired shape and heated in a heating furnace to the liquidus temperature of the Al-8t alloy ±10°C. A method for producing porous aluminum, characterized in that cut materials are fused with an Al-Si alloy. (2) Aluminum or aluminum alloy is used as the core material, the surface layer of the core material is clad with a thin AJ-Si alloy, this clad material is cut into ticks, fibers, lines, etc., and flux is applied to it. was put into a mold of a desired shape and heated in a cutting edge heat furnace to the liquid phase powder temperature of the AJ-8t alloy ±1 oc to form the cut material into Al-S.
A method for producing porous aluminum, characterized in that it is fused with an i-alloy. (3) The porous aluminum manufacturing method according to claim 111 or (2), wherein the Ae-8i alloy contains 3 to 20 weight percent of Si. (4) The method for producing porous aluminum according to claim 21, wherein the flux is a KF AlF3-based flux.
JP58197504A 1983-10-24 1983-10-24 Manufacture of porous aluminum Pending JPS6089534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58197504A JPS6089534A (en) 1983-10-24 1983-10-24 Manufacture of porous aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58197504A JPS6089534A (en) 1983-10-24 1983-10-24 Manufacture of porous aluminum

Publications (1)

Publication Number Publication Date
JPS6089534A true JPS6089534A (en) 1985-05-20

Family

ID=16375570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58197504A Pending JPS6089534A (en) 1983-10-24 1983-10-24 Manufacture of porous aluminum

Country Status (1)

Country Link
JP (1) JPS6089534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018403A1 (en) * 2005-08-11 2007-02-15 Rin-Soon Park Porous steel and manufacturing method thereof
CN108907199A (en) * 2018-08-31 2018-11-30 湖南惠同新材料股份有限公司 A kind of electric welding porous metals wlding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018403A1 (en) * 2005-08-11 2007-02-15 Rin-Soon Park Porous steel and manufacturing method thereof
CN108907199A (en) * 2018-08-31 2018-11-30 湖南惠同新材料股份有限公司 A kind of electric welding porous metals wlding

Similar Documents

Publication Publication Date Title
US4239502A (en) Diamond and cubic boron nitride grinding wheels with improved silver alloy bonds
US4710235A (en) Process for preparation of liquid phase bonded amorphous materials
JP2000117484A (en) Seamless ring-shaped brazing material and manufacture thereof
US4929511A (en) Low temperature aluminum based brazing alloys
US3235943A (en) Method of making a flux free bonded article
EP0145933B1 (en) Low temperature aluminum based brazing alloys
EP0397515B1 (en) Wire drawing die
JPS6089534A (en) Manufacture of porous aluminum
US4849163A (en) Production of flat products from particulate material
US4891182A (en) Process for making porous masses of iron, nickel, titanium, and other metals
US2876097A (en) Aluminum filters and method of production
JPH06304740A (en) Cast-in method
US3693243A (en) Method and apparatus for cladding metals
JPS6089535A (en) Manufacture of porous aluminum
JPS5844635B2 (en) Method of brazing metal and ultra-hard artificial material and brazing agent therefor
US2874429A (en) Process for casting-in of sintered metal bodies
JPS62188707A (en) Hard facing method for integrally forming sintered hard layer on surface of ferrous metallic sheet
JPS61217504A (en) Production of porous aluminum
JPS6092436A (en) Manufacture of porous aluminum
JPS61250126A (en) Manufacture of porous aluminum
JPS60238431A (en) Manufacture of porous aluminum
JPS61217506A (en) Production of porous aluminum
JPH01279720A (en) Manufacture of metal-based composite material
JPH06134569A (en) Brazing method for particle dispersed copper
JPS61217505A (en) Production of porous aluminum