JPS6089535A - Manufacture of porous aluminum - Google Patents

Manufacture of porous aluminum

Info

Publication number
JPS6089535A
JPS6089535A JP58197505A JP19750583A JPS6089535A JP S6089535 A JPS6089535 A JP S6089535A JP 58197505 A JP58197505 A JP 58197505A JP 19750583 A JP19750583 A JP 19750583A JP S6089535 A JPS6089535 A JP S6089535A
Authority
JP
Japan
Prior art keywords
alloy
aluminum
slurry
porous
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58197505A
Other languages
Japanese (ja)
Inventor
Takuo Kusano
草野 拓男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP58197505A priority Critical patent/JPS6089535A/en
Publication of JPS6089535A publication Critical patent/JPS6089535A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture inexpensively porous Al having superior mechanical properties by sticking powder of an Al-Si alloy to the surface of an Al material cut into wires, putting the material in a metallic mold for molding, and heating it to a proper temp. CONSTITUTION:Powder of an Al-Si alloy is stuck to the surface of an Al or Al alloy material formed by cutting a wire rod into wires or a plate into fibers or chips by coating and drying a slurry of the powder mixed optionally with a flux in an aqueous or volatile soln. The material is put in a metallic mold for molding, and it is heated to the liquidus line temp. of the Al-Si alloy + or -10 deg.C to melt-bond the Al-Si alloy at the contact points of the material. Thus, porous Al having superior mechanicsl properties, especially high ductility and contg. no foreign matter is inexpensively obtd. with high productivity in a short time.

Description

【発明の詳細な説明】 本発明は、多孔質アルミニウムの製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing porous aluminum.

従来、多孔質金属の製造法として種々の手段が提供され
ている。即ち、焼結法による多孔質金属の製造法は、接
触する二つの粉末状金属の界面において、外部からの熱
エネルギーによる金へ原子の拡散現象を利用した方法で
あるが、上記金属原子の拡散を行なうには数時間の時間
を要し、しかも接触面に汚れや異物が介在すると拡散速
度が極端に低下し金属間の結合力が弱くな9機械的性質
が悪化する欠点があっ庭。
Conventionally, various means have been provided as methods for producing porous metals. In other words, the method for manufacturing porous metals by sintering is a method that utilizes the phenomenon of diffusion of atoms into gold due to external thermal energy at the interface of two contacting powder metals. It takes several hours to carry out this process, and if there is dirt or foreign matter on the contact surface, the diffusion rate will be extremely reduced, the bonding strength between the metals will be weak, and the mechanical properties will deteriorate.

また、他の物質の多孔性を利用する製造法として、発泡
スチロールの表面に電着等の表面処理法で金属を付着さ
せ、その後発泡スチロール全燃焼させて網目状の多孔質
金属を得る方法(焼却法)、或いは塩化ナトリウムのよ
うな水溶性粒子を所定の形状に焼き固めて、粒子間隙に
金属の溶湯を加圧注入して、凝固後塩化ナトリウムを水
で溶解し、網目状の多孔質金属を得る方法(溶出法)が
あるが1.各々多孔質金属内部に発泡スチロールの酸化
物や塩化す) IJウムの粒子等が残留する危険がちシ
、シかも金属体の厚さが薄いので機械的強度が低い等の
欠点があった。
In addition, as a manufacturing method that utilizes the porosity of other materials, metal is attached to the surface of expanded polystyrene using a surface treatment method such as electrodeposition, and then the expanded polystyrene is completely combusted to obtain a mesh-like porous metal (incineration method). ), or by baking water-soluble particles such as sodium chloride into a predetermined shape, injecting molten metal under pressure into the gaps between the particles, and after solidifying, dissolving the sodium chloride with water to form a network-like porous metal. There is a method to obtain it (elution method), but 1. There is a risk that particles of Styrofoam oxide, chloride, etc. may remain inside the porous metal, and the metal body is thin, so there are drawbacks such as low mechanical strength.

更に、軽量粒子拡散法は、気孔率がほとんどなく真の多
孔質金属ではない。
Additionally, lightweight particle diffusion methods have little porosity and are not truly porous metals.

更にまた、溶湯中にガス発生物質を入れて金属体内部に
気孔を点在させる製造法(発泡法)においては、溶湯中
にマグネサイトやTi 及びzrの水素化物等のガス発
生化合物を添加して、溶湯のガス含有量を過飽和にし凝
固させて気孔を内在させて多孔質金属を得ているが、気
孔の発生境面にバラツキがあυ、また溶湯の温度分布、
特に炉底付近と溶湯表面伺近とでは温度差が大きく、凝
固速度も気孔の大小に左右され、気孔の存在が不均一に
なシ品質的に不安定であるという欠点があった。
Furthermore, in the manufacturing method (foaming method) in which a gas-generating substance is placed in the molten metal and pores are scattered inside the metal body, a gas-generating compound such as magnesite or hydrides of Ti and ZR is added to the molten metal. In this method, the gas content of the molten metal is supersaturated and solidified to incorporate pores to obtain a porous metal, but there are variations in the boundary surface where pores occur, and the temperature distribution of the molten metal
In particular, there is a large temperature difference between the vicinity of the bottom of the furnace and the vicinity of the surface of the molten metal, and the solidification rate is also affected by the size of the pores, which has the disadvantage that the presence of pores is uneven and the quality is unstable.

本発明は上述した従来の欠点に鑑みてなされたものであ
シ、線状とした後、適当に切断した線状のものや繊維状
、チップ状等にしたアルミニウム又はアルミニウム合金
の素材の表面に、l?−Si合金の粉末を水性スラリー
又は揮発性溶液のスラリーにしたものを付着して乾燥さ
せた後に成形用金型に入れ、加熱炉において上記AJ−
8i合金の液相線温度±10℃まで加熱して、上記アル
ミニウム又はアルミニウム合金の素材の接触点にてAl
−Si合金を融着する方法、或いは線状、繊維状、チッ
プ状等にしたアルミニウム又はアルミニウム合金の素材
の表面に、ht;−si金合金粉末及びフラックスにて
混合したものを水性スラリー又は揮発性溶液のスラリー
にしたものを付着して乾燥した後に、上述の工程と同工
程によりアルミニウム又はアルミニウム合金の素材の接
触点にてAJ −Si合金を融滝する方法によシ金属的
な結合力が強く、異物残留が皆無である多孔質アルミニ
ウムの製造方法を提供するものである。
The present invention has been made in view of the above-mentioned drawbacks of the conventional art. , l? - Aqueous slurry or volatile solution slurry of Si alloy powder is applied and dried, then placed in a mold and heated in a heating furnace.
Heating the 8i alloy to the liquidus temperature ±10°C, Al
-A method of fusing Si alloy, or applying a mixture of ht;-Si gold alloy powder and flux to the surface of aluminum or aluminum alloy material in the form of lines, fibers, chips, etc., using an aqueous slurry or volatilization. After adhering a slurry of a neutral solution and drying it, the AJ-Si alloy is melted at the contact point of the aluminum or aluminum alloy material using the same process as described above to create a metallic bond. The purpose of the present invention is to provide a method for producing porous aluminum that has strong aluminum and no residual foreign matter.

以下、添付図面に従って本発明の詳細な説明する。称状
、繊維状、チップ状の金属(アルミニウム合金)1の素
材表面を望ましくは苛性ソーダ溶液等でエツチングして
微細な凹凸を設け、この表面に低融点金属2(1−Si
合金)の粉末の水性スラリー又は揮発性溶液■スラリー
ヲ付着すると第1図に示すようになる。次に、低融点金
属2を表面に付着された線状、繊維状、チップ状の金属
lを成形用金型に入れる。この状態では第2図に示すよ
うに線状、チップ状、繊維状の金属1が機械的に絡み合
って、多数の楔状の接触点が形成される。更に、第3図
(イ)、(ロ)に示すように低融点金属2の融点まで加
熱すると、表面に付着していた低融点金属2が溶融して
表面凹凸部に深く入シ込むと同時に低融点金属2の相互
力稀巾着する。これによって、機械的及び金属的に線状
、チップ状、繊維状金属1が結合して多孔質金属が形成
される。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. The surface of the metal (aluminum alloy) 1 in the form of cylindrical, fibrous, or chip shapes is preferably etched with a caustic soda solution or the like to form fine irregularities, and this surface is coated with a low melting point metal 2 (1-Si).
When an aqueous slurry or a volatile solution slurry of the powder of the alloy is deposited, the result is as shown in FIG. Next, a linear, fibrous, or chip-shaped metal 1 having a low melting point metal 2 attached to its surface is placed in a mold. In this state, as shown in FIG. 2, the metals 1 in the form of wires, chips, and fibers are mechanically intertwined to form a large number of wedge-shaped contact points. Furthermore, as shown in Figure 3 (a) and (b), when the low melting point metal 2 is heated to its melting point, the low melting point metal 2 adhering to the surface melts and penetrates deeply into the surface unevenness. The mutual force of the low-melting point metals 2 binds together. As a result, the linear, chip, and fibrous metals 1 are mechanically and metallically bonded to form a porous metal.

次に、上述○原理に基いて本発明の一実施例を具体的に
説明する。6063合金の連続鋳造ビレット(直径10
0φ)から旋盤加工によシ繊維状素材を得る。上記60
63合金の組成はMg0.6% 、Si 、0.4 %
 t’Fe O,1% (重量%)で6.C1繊維状素
材の寸法は幅約1關、・長さ約300mmとした。その
後、上記繊維状素材をエチルアルコールにて脱脂、洗浄
する。
Next, an embodiment of the present invention will be specifically described based on the above-mentioned principle. 6063 alloy continuous casting billet (diameter 10
0φ) to obtain a fibrous material by lathe processing. 60 above
The composition of 63 alloy is Mg0.6%, Si, 0.4%
t'Fe O, 1% (wt%)6. The dimensions of the C1 fibrous material were approximately 1 mm in width and 300 mm in length. Thereafter, the fibrous material is degreased and washed with ethyl alcohol.

一方、平均粒径10 pのA4045合金の粉末をエチ
ルアルコールに入れてスラリー化する。このスラリーを
エアースプレー方式によシ上記繊維状素4オの表面に付
着、せしめる。ここでA4045合金の組成は5ixo
%、 Fe O,15% 、 Zn0.1チ(重量%)
である。次いで、乾燥させた繊維状m vJを金型に投
入した後に、この金型を室床ガス雰囲気の加熱炉に入れ
て、低融点金属2の液相線温度±10℃1で加itシし
、金型が前記温既に達したならば金型を加熱炉よシ取出
し、強制空冷(ファンを使用して冷却)した後に多孔質
アルミニウムを金型から取出す。
On the other hand, A4045 alloy powder having an average particle size of 10 p is mixed into ethyl alcohol to form a slurry. This slurry is applied to the surface of the fibrous material 4o by air spraying. Here, the composition of A4045 alloy is 5ixo
%, FeO, 15%, Zn0.1% (weight%)
It is. Next, after putting the dried fibrous mvJ into a mold, the mold was placed in a heating furnace with a room floor gas atmosphere and heated at the liquidus temperature of the low melting point metal 2 ± 10°C 1. Once the mold has reached the above-mentioned temperature, the mold is removed from the heating furnace, and after forced air cooling (cooling using a fan), the porous aluminum is removed from the mold.

尚、上述のA4045合金の粉末を、エチルアルコール
に入れてスラリー化して、このスラリーをエアースプレ
ー方式により繊維状、チップ状の金属1の表面に付着さ
せる工程において、ぶつ化2 アルミニウムカリ塩Qフラックスをイ0魚の割合でエチ
ルアルコールに添加して、A4045合金の粉末と混合
してエアスプレー方式にて繊維状、チップ状の金属1に
塗布しても同様の目的全達成し得る。
In addition, in the process of slurrying the above-mentioned A4045 alloy powder in ethyl alcohol and adhering this slurry to the surface of the fibrous or chip-shaped metal 1 by an air spray method, aluminum potassium salt Q flux is added. The same purpose can also be achieved by adding 0.0 parts to ethyl alcohol, mixing with A4045 alloy powder, and applying the mixture to fibrous or chip-like metal 1 using an air spray method.

また、上記繊維状、チップ状の金属は、純アルミニウム
、AJ−Mg系合金、Ae−Mn系合金、AI!−Mg
−3i 系合金、AI!−Cu系合金、Al−Zn−M
g系合金等のアルミニウム又はアルミニウム合金であれ
ばよく、また低融点金属はAI!−3%〜20%Si合
金が望ましい。上記加熱炉は窒素ガス雰囲気の加熱炉を
使用したが通常の加熱炉、不活性ガス雰囲気の加熱炉と
真空加熱炉とを組合せた加熱炉のいずれでもよい。
Moreover, the above-mentioned fibrous and chip-shaped metals include pure aluminum, AJ-Mg alloy, Ae-Mn alloy, AI! -Mg
-3i alloy, AI! -Cu-based alloy, Al-Zn-M
Any aluminum or aluminum alloy such as g-based alloy may be used, and the low melting point metal is AI! -3% to 20% Si alloy is preferred. Although a nitrogen gas atmosphere heating furnace was used as the heating furnace, it may be a normal heating furnace or a heating furnace that combines a heating furnace with an inert gas atmosphere and a vacuum heating furnace.

更に、上記スラリーの付着方法としてエアースプレーを
使用して塗布したが、浸漬して付着させる方法、或いは
単に塗ってもよい。
Furthermore, although air spraying was used as the method for applying the slurry, it may be applied by dipping or simply painting.

更にまた、多孔質アルミニウム製品の形状は、金型によ
り丸、四角、三角、多角形等の所望の形状に成形される
ものである。
Furthermore, the shape of the porous aluminum product is formed into a desired shape such as a circle, square, triangle, polygon, etc. using a mold.

以上詳細に説明したように、本発明が上記の製造方法で
あるので下記の効果を奏する。
As explained in detail above, since the present invention is the above-mentioned manufacturing method, it has the following effects.

(イ)従来の焼結法に比べて加熱、保持時間が短縮され
、生産性が向上し、価格が低減できる。
(b) Heating and holding times are shorter than conventional sintering methods, improving productivity and reducing costs.

(ロ)機械的性質、特に延性(伸び)が高い。従来の焼
結晶や発泡金属は脆く、加工性が悪いのに対し、本発明
で得られる製品は延性があるため曲げ加工、切削加工等
が容易である。
(b) High mechanical properties, especially ductility (elongation). Conventional baked crystals and foamed metals are brittle and have poor workability, whereas the products obtained by the present invention are ductile and can be easily bent, cut, etc.

(ハ)従来法の場合、孔径及び多孔率は製造方法に依存
し、有効範囲は狭いが、本発明によれば素材形状を変化
せしめるのみで孔径及び多孔率は任意に変えられ制御範
囲は広い。
(c) In the case of the conventional method, the pore size and porosity depend on the manufacturing method and the effective range is narrow, but according to the present invention, the pore size and porosity can be changed arbitrarily by simply changing the shape of the material, and the control range is wide. .

に)強固な金属結合がなされるので、ヒートショックに
強く、例えば溶接も可能である。
(2) Strong metal bonding is achieved, making it resistant to heat shock, and can also be welded, for example.

(ホ)異物混入、或いは異物残留が非常に少ない。(e) There is very little foreign matter contamination or foreign matter remaining.

(へ)伝熱面積の大幅な向上による熱伝達率が改善され
る。
(f) The heat transfer coefficient is improved due to a significant increase in the heat transfer area.

(ト)電気伝導性がちシ、集電効果が高い。(g) High electrical conductivity and high current collecting effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第2図は本発明の原理図、第3図(イ)。 (ロ)は第2図A部の詳細図である。 1・・・繊維状、チップ状の金属、2・・・低融点金属 特許出願人 日本軽金属株式会社 代理人 弁理土佐 藤 英 昭 傍/(ハ づtう虐 (′0) 手続ネ10正書(自発) 昭和6(資) 1月24日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和58年特 許 願第197505号2、発明の名称 多孔質アルミニウムの製造方法 3、補正をする者 事件との関係 特許出願人 住所 名称 (474)日本軽金属株式会社 4、代 理 人 6、補正の対象 明細書 〔補正の内容〕 (1)明細書の「特許請求の範囲」の欄を別紙の通り補
正する。 (2)明細書の1−発明の詳細な説明」の欄を下表の通
り補正する。 特許請求の範囲 (1)線状、繊維状、チップ状等にしたアルミニウム又
はアルミニウム合金の素材の表面に、A/二l上五豆金
の粉末を水性スラリー又は揮発性溶液のスラリーにした
ものを付着して乾燥させた後に成形用金型に入れ、加熱
炉において上記Al−3i−系イL金−の11々相線温
度±10℃まで加熱して、上記アルミニウム又はアルミ
ニウム合金の素材の接触点にてA I!−8i ・八 
を融着した乙とを特撮とする多孔質アルζニウムの製造
方法。 (2)線状、繊維状、チップ状等にしたアルミニウム又
はアルミニウム合金の素材の表面にA4−8i□系玉主
の粉末及びフラックスにて混合したものを水性スラリー
又は揮発性溶液のスラリーにしたものを付着して乾燥さ
せた後に成形用金型に入れ、加熱炉において上記人工二
五土五立主の液相線高度±10℃まで加熱して、上記ア
ルミニウム又はアルミニウム合金の素材の接触点にてA
l 一旦ユlイL釦を融着したことを特撮とする多孔質
アルミニウムの製造方法。 (3)上記A I−3i Z”’−血のSiが3〜20
重景パーセノ)・である特許請求の範囲第(1)項又は
第(2)項いスレカーに記載の多孔質アルミニウムの製
造方法。 (4) 上記フラツクスはKF−AjF系フラックスで
ある特許請求の範囲第(2)項記載の多孔質アルミニウ
ムの製造方法。
1 and 2 are principle diagrams of the present invention, and FIG. 3 (A). (b) is a detailed view of section A in FIG. 1...Fiber-like, chip-like metals, 2...Low melting point metals Patent applicant Nippon Light Metal Co., Ltd. Agent Patent attorney Tosa Hideaki Tosa (Voluntary) January 24, 1931 Manabu Shiga, Commissioner of the Patent Office1, Indication of the case: Patent Application No. 197505 of 19822, Name of the invention: Process for manufacturing porous aluminum3, Person making the amendment Relationship to the case Name of address of patent applicant (474) Nippon Light Metal Co., Ltd. 4, Agent 6, Specification subject to amendment [Contents of amendment] (1) Submit the “Scope of Claims” column of the specification on a separate sheet. (2) The section 1-Detailed Description of the Invention" in the specification is amended as shown in the table below. Claims (1) Aluminum or aluminum alloy in the form of lines, fibers, chips, etc. An aqueous slurry or a volatile solution slurry of A/2l powder of Al-3i is adhered to the surface of the material, dried, placed in a mold, and heated in a heating furnace to form the Al-3i powder. - System A L gold - is heated to 11 phase line temperature ± 10°C, and A I!-8i ・8 is heated at the contact point of the above aluminum or aluminum alloy material.
A method for producing porous aluminum ζnium in which a special effect is produced by fusion-bonding the two. (2) Aqueous slurry or volatile solution slurry was prepared by mixing A4-8i□ series Tamamushi powder and flux on the surface of aluminum or aluminum alloy material in the form of wires, fibers, chips, etc. After adhering the material and drying it, place it in a mold and heat it in a heating furnace to the liquidus line altitude of the artificial 25-earth material ±10°C to form a contact point of the aluminum or aluminum alloy material. At A
l A method for manufacturing porous aluminum in which the special effect is once the Y L button is fused. (3) Above A I-3i Z'''-Blood Si is 3 to 20
A method for producing porous aluminum according to claim (1) or (2). (4) The method for producing porous aluminum according to claim (2), wherein the flux is a KF-AjF-based flux.

Claims (4)

【特許請求の範囲】[Claims] (1)線状、繊維状、チップ状等にしたアルミニウム又
はアルミニウム合金の素材の表面に、AI!−8i合金
の粉末を水性スラリー又は揮発性溶液のスラリーにした
ものを付着して乾燥させた後に成形用金型に入れ、加熱
炉において上記AJ−8冶金の液相線温度±10tまで
加熱して、上記アルミニウム又はアルミニウム合金の素
材の接触点にてAl−8i 合金を融着したことを特徴
とする多孔質アルミニウムの製造方法。
(1) AI! -8i alloy powder made into an aqueous slurry or a slurry of a volatile solution is adhered and dried, then placed in a mold and heated in a heating furnace to the liquidus temperature of the AJ-8 metallurgy mentioned above ±10t. A method for producing porous aluminum, characterized in that Al-8i alloy is fused at the contact point of the aluminum or aluminum alloy material.
(2)線状、繊維状、チップ状等にしたアルミニウム又
はアルミニウム合金の素材の表面にAl−8i合金の粉
末及びスラックスにて混合したものを水性スラリー又は
揮発性溶液のスラリーにしたものを付着して乾燥させた
後(r(成形用金型に入れ、加熱炉において上記Al−
8i 合金の液相線温度±10℃まで加熱して、上記ア
ルミニウム又はアルミニウム合金の素材の接触点にてh
I!−si 合金を融着したことを特徴とする多孔質ア
ルミニウムの製造方法。
(2) Aqueous slurry or volatile solution slurry of Al-8i alloy powder and slack mixed on the surface of aluminum or aluminum alloy material in the form of wires, fibers, chips, etc. is attached. After drying (r), the above Al-
8i Heating to the liquidus temperature of the alloy ±10°C, and then heating the aluminum or aluminum alloy material at the contact point
I! A method for producing porous aluminum, characterized in that -si alloy is fused.
(3)上記kl−8t 合金のSiが3〜20重景パ重
上パーセント特許請求の範囲第(1)項又は第(2)項
いずれか−に記載の多孔質アルミニウムの製造方法。
(3) The method for producing porous aluminum according to claim 1 or 2, wherein the kl-8t alloy contains 3 to 20 percent Si.
(4)上記フラックスはKF−AJF、系フラックスで
ある特許請求の範囲第(2)項記載の多孔質アルミニウ
ムの製造方法。
(4) The method for producing porous aluminum according to claim (2), wherein the flux is a KF-AJF type flux.
JP58197505A 1983-10-24 1983-10-24 Manufacture of porous aluminum Pending JPS6089535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58197505A JPS6089535A (en) 1983-10-24 1983-10-24 Manufacture of porous aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58197505A JPS6089535A (en) 1983-10-24 1983-10-24 Manufacture of porous aluminum

Publications (1)

Publication Number Publication Date
JPS6089535A true JPS6089535A (en) 1985-05-20

Family

ID=16375586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58197505A Pending JPS6089535A (en) 1983-10-24 1983-10-24 Manufacture of porous aluminum

Country Status (1)

Country Link
JP (1) JPS6089535A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161405A (en) * 1974-11-26 1976-05-28 Toyoda Chuo Kenkyusho Kk
JPS5440209A (en) * 1977-09-07 1979-03-29 Nippon Dia Clevite Co Method of producing porous body of aluminum and alloys thereof
JPS5454916A (en) * 1977-09-21 1979-05-01 Union Carbide Corp Oxidation resistant porous abrading seal element used under high temperature
JPS5457412A (en) * 1977-10-18 1979-05-09 Nippon Dia Clevite Co Production of porous body of aluminium or aluminium alloy
JPS55138007A (en) * 1979-04-10 1980-10-28 Katsuragi Sangyo Kk Porous sintered laminar body of metal and its preparation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161405A (en) * 1974-11-26 1976-05-28 Toyoda Chuo Kenkyusho Kk
JPS5440209A (en) * 1977-09-07 1979-03-29 Nippon Dia Clevite Co Method of producing porous body of aluminum and alloys thereof
JPS5454916A (en) * 1977-09-21 1979-05-01 Union Carbide Corp Oxidation resistant porous abrading seal element used under high temperature
JPS5457412A (en) * 1977-10-18 1979-05-09 Nippon Dia Clevite Co Production of porous body of aluminium or aluminium alloy
JPS55138007A (en) * 1979-04-10 1980-10-28 Katsuragi Sangyo Kk Porous sintered laminar body of metal and its preparation

Similar Documents

Publication Publication Date Title
JP2002538006A (en) Method of depositing flux or flux and metal on metal brazing substrate
JPS62192296A (en) Solder material
JP2000117484A (en) Seamless ring-shaped brazing material and manufacture thereof
US4929511A (en) Low temperature aluminum based brazing alloys
JPS597763B2 (en) Method for forming porous aluminum layer
JPH09108885A (en) Metal structural member, its manufacture and metal structure
US2445858A (en) Laminated structure
US3971657A (en) Sintering of particulate metal
US4849163A (en) Production of flat products from particulate material
EP0397515B1 (en) Wire drawing die
JP3262268B2 (en) Brazing material and method for producing the same
JPS6089535A (en) Manufacture of porous aluminum
US3005258A (en) Method of brazing with metal powders below the melting point of either metal powder
JPS6092436A (en) Manufacture of porous aluminum
US4891182A (en) Process for making porous masses of iron, nickel, titanium, and other metals
US5750202A (en) Preparation of gold-coated molybdenum articles and articles prepared thereby
JPS61250126A (en) Manufacture of porous aluminum
JPS6089534A (en) Manufacture of porous aluminum
JPS5844635B2 (en) Method of brazing metal and ultra-hard artificial material and brazing agent therefor
JPS60238431A (en) Manufacture of porous aluminum
JPS61217504A (en) Production of porous aluminum
JPS61217505A (en) Production of porous aluminum
JPS61217506A (en) Production of porous aluminum
JPH0367470B2 (en)
JP2796861B2 (en) Method of providing brazing material on the surface of aluminum or aluminum alloy material