JPS60238431A - Manufacture of porous aluminum - Google Patents

Manufacture of porous aluminum

Info

Publication number
JPS60238431A
JPS60238431A JP58210961A JP21096183A JPS60238431A JP S60238431 A JPS60238431 A JP S60238431A JP 58210961 A JP58210961 A JP 58210961A JP 21096183 A JP21096183 A JP 21096183A JP S60238431 A JPS60238431 A JP S60238431A
Authority
JP
Japan
Prior art keywords
temp
alloy
phase
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58210961A
Other languages
Japanese (ja)
Inventor
Takuo Kusano
草野 拓男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP58210961A priority Critical patent/JPS60238431A/en
Publication of JPS60238431A publication Critical patent/JPS60238431A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the titled porous Al having strong metallic binding force without any foreign materials remaining in the metal by heating a linear, chipped, or fibrous material of an alloy of Al-Si, etc. having large difference between the solid-phase temp. and the liquid-phase temp. in a metallic mold to a specified temp. CONSTITUTION:A slurry of powdery potassium fluoride in water or in a volatile soln. is coated on the surface of a linear, chipped, or fibrous material of an Al-Si, Al-Cu, or Al-Mg alloy having a large temp. difference between the solid and the liquid phase, and dried. The dried material is then charged into a metallic mold for molding, and the mold is placed in a heating furnace contg. a gaseous N2 atmosphere and heated to a temp. ranging from the solid phase temp. to the liquid phase temp. of said alloy metal. In this case, the temp. at which about 60-95% solid phase is obtained in optimum, and the liquid metals which are partially melted out from adjacent metallic materials 1 and 2 melt into each other. Since the solid-phase percentage is high, the skeleton of the metal is strong and is in the same conditions as that before heating. Accordingly, the liquid phase parts 1a and 2a which are melted into each other are solidified by cooling immediately after the heating to said temp., and the materials 1 and 2 are fused together.

Description

【発明の詳細な説明】 本発明は、多孔質アルミニウムの製造方法に関する。従
来、多孔質金属の製造法として種々の手段が提供されて
いる。即ち、焼結法による多孔質金属の製造法は、接触
する二つの粉末状金属の界面において、外部からの熱エ
ネルギーによる金属原子の拡散現象を利用した方法であ
るが、上記金属原子の拡散を行なうには数時間の時間を
要し、しかも接触面に汚れや異物が介在すると拡散速度
が極端に低下し金属間の結合力が弱くなり機械的性負が
悪化する欠点があった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing porous aluminum. Conventionally, various means have been provided as methods for producing porous metals. In other words, the method for producing porous metals by sintering is a method that utilizes the diffusion phenomenon of metal atoms due to external thermal energy at the interface of two contacting powder metals. This process takes several hours, and the presence of dirt or foreign matter on the contact surface dramatically reduces the diffusion rate, weakens the bonding force between metals, and deteriorates mechanical properties.

また、他の物質の多孔性を利用する製造法として、発泡
スチロールの表面に電着環の表面処理法で金属を付着さ
せ、その後発泡スチロールを燃焼させて網目状の多孔質
金属を得る方法(焼却法)或いは塩化ナトリウムのよう
な水溶性粒子を所定の形状に焼き固めて、粒子間隙に金
属の溶湯を加圧注入して、凝固後塩化ナトリウムを水で
溶解し、網目状の多孔質金属を得る方法(溶出法)があ
るが、各λ多孔質金属内部に発泡スチロールの酸化物や
塩化ナトリウムの粒子等が残留する危険があり、しかも
金属体の厚さが薄いので機械的強度が低い等の欠点があ
った。尚、軽量粒子拡散法は、気孔率がtlとんどなく
真の多孔質金属ではない。
In addition, as a manufacturing method that utilizes the porosity of other materials, metal is attached to the surface of expanded polystyrene using an electrodeposited ring surface treatment method, and then the expanded polystyrene is burned to obtain a mesh-like porous metal (incineration method). ) Alternatively, water-soluble particles such as sodium chloride are sintered into a predetermined shape, molten metal is injected under pressure into the gaps between the particles, and after solidification, the sodium chloride is dissolved in water to obtain a mesh-like porous metal. There is a method (elution method), but there is a risk that styrofoam oxides and sodium chloride particles remain inside each λ porous metal, and the metal body is thin, so it has low mechanical strength. was there. Note that the light particle diffusion method has a porosity of tl and is not a true porous metal.

更に、溶湯中にガス発生物質を入れて金属体内部に気孔
を点在させる製造法(発泡法)においては、溶湯中にマ
グネサイトやTi 及びzrの水素化物等のガス発生化
合物を添加して、溶湯のカス含有量を過飽和にし凝固さ
せて気孔を内在させて多孔質金属を得ているが、気孔の
発生場所にバラツキがあシ、また溶湯の温度分布、特に
炉底付近と溶湯表面付近とでは温度差が大きく、凝固速
度も気孔の大小に左右され、気孔の存在が不均一に更に
また、分離している金属同士を結合させる時、金属同士
が固体の状態では、金属を被覆している酸化物を除去す
るために、且つ金属原子を拡散させるに必要なエネルギ
ー付加のために高温、高圧の雰囲気にしなければならな
い。この場合、高温の付加は、金属同士の間隙を非常に
密にしてしまうので金属同士を結合させ、且つ大きな空
隙全必要とする多孔質金属を得るには適切ではない。
Furthermore, in the manufacturing method (foaming method) in which a gas-generating substance is placed in the molten metal to create pores inside the metal body, gas-generating compounds such as magnesite and hydrides of Ti and ZR are added to the molten metal. Porous metal is obtained by supersaturating the scum content of the molten metal and solidifying it to incorporate pores, but there are variations in the location of pores, and the temperature distribution of the molten metal, especially near the bottom of the furnace and near the surface of the molten metal, is obtained. There is a large temperature difference between the two metals, and the solidification rate also depends on the size of the pores. A high temperature, high pressure atmosphere is required to remove the oxides contained therein and to provide the energy addition necessary to diffuse the metal atoms. In this case, the application of high temperature makes the gaps between the metals very dense, so it is not suitable for bonding the metals together and obtaining a porous metal that requires large gaps.

また分離している金属同士を結合する方法として金属表
面を被覆している酸化物をフラックスにより化学的に除
去し、加熱して金属原子を拡散させて結合する一種のロ
ー付方法もあるが、機械的な結合力は弱く、曲げ加工性
や耐衝撃性に劣る欠点があった。
Another method of bonding separated metals is a type of brazing method in which the oxide coating the metal surface is chemically removed using flux, and the metal atoms are diffused and bonded by heating. The mechanical bonding strength was weak, and the bending workability and impact resistance were poor.

本発明は上述した従来の欠点に鑑みてなされたものであ
シ、固相温度と液相温度との差が大きいhl−8t系合
金、hl−Cu系合金及びhl−Mg系合金の線状、チ
ップ状或いは繊維状素材の表面にフッ化アルミニウムカ
リ塩の粉末状フラックスの水性スラリー又は揮発性溶液
のスラリーを塗布して乾燥させた後、成形用金型に入れ
、加熱炉において上記合金素材の固相温度と液相温度の
温度範囲まで加熱し線状、チップ状或いは繊維状素材同
士を融着して金属結合せしめる方法により金属的な結合
力が強く、金属内部の異物残留が皆無である多孔質アル
ミニウムの製造方法を提供するものである。
The present invention has been made in view of the above-mentioned drawbacks of the conventional art. After applying an aqueous slurry of a powdered flux or a slurry of a volatile solution of potassium aluminum fluoride to the surface of a chip-shaped or fibrous material and drying it, the alloy material is placed in a mold and heated in a heating furnace. The method of heating wire, chip, or fibrous materials to a temperature range between the solidus temperature and the liquidus temperature to form a metallic bond creates a strong metallic bond, and there is no residual foreign matter inside the metal. A method of manufacturing a porous aluminum is provided.

以下、添付図面に従って本発明の詳細な説明する。第1
図はAl −S i合金の二元状態図であり、第1図に
おいてアルミニウムを基としたアルミニウム合金の温度
的な性物をみると、固体の状態を保つ温度範囲(上限温
度・・・固相線温度)、固体と液体とが混在する温度範
囲(上限温度・・・液相線温度)と全て液体の状態にあ
る温度(液相線温度以上)の3つの状態が存在する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. 1st
The figure is a binary phase diagram of the Al-Si alloy. Looking at the temperature properties of aluminum-based aluminum alloys in Figure 1, we can see that the temperature range in which the solid state remains (upper limit temperature... There are three states: a temperature range where solid and liquid are mixed (upper limit temperature...liquidus temperature), and a temperature where everything is in a liquid state (above the liquidus temperature).

本発明は、上記したアルミニウム合金の温度的な特性に
着目したものであり、金属素材同士の形□状的な形態を
崩さずに素材同士を結合させるのにロー4O1−続4G
xl−」デS1〜−−1.フコW−It、■IZEII
r、シー1−−yGllaJa率〔固相の量/(固相+
液相)の量〕が60〜95チになる温度が最も適してい
ることが判明しに0この固相率においては隣接する金属
素材1.2から部分的に溶出した液相状態の金属同士は
、原子が最も拡散し易い状態にあるため容易に融合し、
また固相率が高いので金属の骨格が強く加熱する前の状
態にある。したがって、上記の固相率まで加熱した後、
直ちに冷却すれば融合し大液相部1a。
The present invention focuses on the above-mentioned temperature characteristics of aluminum alloys, and uses low 4O1-4G to bond metal materials together without destroying their shapes.
xl-” de S1~--1. Fuco W-It, ■IZEII
r, sea 1--yGllaJa rate [amount of solid phase/(solid phase +
It has been found that the temperature at which the amount of liquid phase) is 60 to 95 degrees is most suitable.At this solid phase ratio, the metals in the liquid phase partially eluted from the adjacent metal materials 1.2 The atoms are in the state where they are most easily diffused, so they fuse easily,
Also, since the solid phase ratio is high, the metal skeleton is in a state before being strongly heated. Therefore, after heating to the above solid phase ratio,
If it is cooled immediately, it will fuse and form the large liquid phase part 1a.

・2aは凝固して第2図に示すように隣接している金属
素材1,2が結合される。
- 2a solidifies and the adjacent metal materials 1 and 2 are bonded together as shown in FIG.

尚、上記固相率の最適範囲は60〜90チであるが、固
相率が95チ以上では溶出する液相が少なく、機械的圧
接触している金属同士が接触部3で融合する確率が低下
し、全ての接触部で融合することが期待できず、融合不
良の個所が発生するので凝固冷却した後、金属同士は分
離し易くなる。
The optimal range of the above solid phase ratio is 60 to 90 inches, but when the solid phase rate is 95 inches or more, there is less liquid phase to be eluted, and the probability that metals in mechanical pressure contact will fuse at the contact part 3 is low. As a result, it cannot be expected that all contact areas will be fused, and some areas will have poor fusion, making it easier for the metals to separate after solidification and cooling.

一方、同相率が60チ以下では溶出する液相量が多く、
重力で下部層に流出して絡み合った金属同士の隙間を埋
めてしまうことにな勺均質な多孔質金属が得られない7 次に、土述の原理に基づいて本発明の実施例を具体的に
説明する。先ず、AJ−8a系合金(AI!−5% S
t)の連続鋳造ビレット(直径100φ)から旋盤加工
により平均幅1關、平均長さ3001111平均厚さ0
.3關の繊維状素材を得る。次いで、この繊維状素材を
エチルアルコールで脱脂、洗浄し、乾燥させた後金型に
投入する。この金型を窒素ガス雰囲気の加熱炉に入れて
、同相率が60〜95%になる温度(590℃〜605
℃)まで加熱し、金型が前記温度に達したならば金型を
上記加熱炉より取出し強制空冷した後に多孔質アルミニ
ウムを金型から取出す。
On the other hand, when the in-phase ratio is less than 60 cm, the amount of liquid phase eluted is large;
A homogeneous porous metal cannot be obtained because the metal flows to the lower layer due to gravity and fills the gaps between the intertwined metals. Explain. First, AJ-8a alloy (AI!-5% S
T) Continuously cast billet (diameter 100φ) is lathe-processed to produce an average width of 1 inch, average length of 3001111, and average thickness of 0.
.. Three types of fibrous material are obtained. Next, this fibrous material is degreased with ethyl alcohol, washed, dried, and then put into a mold. This mold is placed in a heating furnace in a nitrogen gas atmosphere at a temperature (590°C to 605°C) at which the in-phase ratio becomes 60 to 95%.
℃), and when the mold reaches the above temperature, the mold is taken out from the heating furnace, forced air cooled, and then the porous aluminum is taken out from the mold.

尚、上記AJ−8t系合金の加熱温度は、590℃〜6
05℃であるが、A/−Cu系合金の場合の加熱温度が
570℃〜600℃であυ、hl−Mg系合金の場合の
加熱温度が570℃〜590℃である。hl−Cu系合
金、AJ−Mg系合金を使用した場合には、上記AI!
−8L合金と加熱温度が相違のみで他の条件は同じであ
る。また、上記実施例において不活性ガス雰囲気の加熱
炉を使用したが加熱炉と真空加熱炉とを組合せた加熱炉
のいずれでもよい。また、上記の実施例では、エチルア
ルコール、で脱脂、洗浄し乾燥させたが、フッ化アルミ
ニウムカリ塩の粉末状フラックスの水性スラリー又は揮
発性溶液のスラリーであればよい。更に1多孔質アルミ
ニウム製品の形状は、金型により丸、四角、三角、多角
形等所望の形状に成形されるものである。
The heating temperature of the above AJ-8t alloy is 590°C to 6°C.
05°C, the heating temperature in the case of A/-Cu alloy is 570°C to 600°C, and the heating temperature in the case of hl-Mg alloy is 570°C to 590°C. When using hl-Cu alloy or AJ-Mg alloy, the above AI!
The only difference is the heating temperature from the -8L alloy, and the other conditions are the same. Furthermore, although a heating furnace in an inert gas atmosphere was used in the above embodiments, any heating furnace that is a combination of a heating furnace and a vacuum heating furnace may be used. Further, in the above embodiment, the material was degreased with ethyl alcohol, washed, and dried, but any aqueous slurry of a powdered flux of potassium aluminum fluoride salt or a slurry of a volatile solution may be used. Further, the shape of the porous aluminum product can be formed into a desired shape such as a circle, square, triangle, polygon, etc. using a mold.

以上詳細に説明したように、本発明が上記の製造方法で
あるので、下記の効果を奏する。
As explained in detail above, since the present invention is the above-mentioned manufacturing method, it has the following effects.

←)従来の焼結法に比べて加熱、保持時間が短縮され、
生産性が向上し、価格が低減できる。
←) Heating and holding time are shorter than conventional sintering methods,
Productivity can be improved and prices can be reduced.

(ロ)機械的性質、特に(伸び)が高い。従来の焼結晶
や発泡金属は脆く、加工性が悪いのに対し、本発明で得
られる製品は延性があるため曲げ加工、切削加工等が容
易である。
(b) Mechanical properties, especially (elongation), are high. Conventional baked crystals and foamed metals are brittle and have poor workability, whereas the products obtained by the present invention are ductile and can be easily bent, cut, etc.

(ハ)従来法の場合、孔径及び多孔率は製造方法に依存
し、有効範囲は狭いが、本発明によれば素材形状を変化
せ1−めるのみで孔径及び多孔率は任意に変光られ制御
範囲は広い。
(c) In the case of the conventional method, the pore diameter and porosity depend on the manufacturing method and the effective range is narrow, but according to the present invention, the pore diameter and porosity can be changed arbitrarily by simply changing the shape of the material. The control range is wide.

−強固な金属結合がなされているので、ヒートショック
に強く、例えば溶接もツ能である。
- Since it has a strong metal bond, it is resistant to heat shock and can be welded, for example.

(ホ)異物混入、或いは異物残留が非常に少ない。(e) There is very little foreign matter contamination or foreign matter remaining.

(へ)伝熱面積の大幅な向上による熱伝達率が改善され
る。
(f) The heat transfer coefficient is improved due to a significant increase in the heat transfer area.

(ト)電気伝導性がち9、集電効果が高い。(g) Good electrical conductivity9, high current collection effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるAI!−8a合金の二
元状態図、第2図は本発明の原理図である。 1.2・・・金属素材、la、2a・・・液相部、3・
・・接触部 特許出願人 日本軽金属株式会社 代理人 弁理士 佐 藤英 昭 らモ萄口 寸21図
FIG. 1 shows AI! which is an embodiment of the present invention. The binary phase diagram of -8a alloy, FIG. 2, is a principle diagram of the present invention. 1.2...metal material, la, 2a...liquid phase part, 3.
...Contact part patent applicant Nippon Light Metal Co., Ltd. Agent Patent attorney Hide Sato Akiramo Mouth size 21 Diagram

Claims (1)

【特許請求の範囲】 fil 固相温度と液相温度との差が大きいAJ −8
i系合金、AJ−Cu系合金及びAl−Mg系合金の線
状、チップ状或いは繊維状素材の表面にフッ化アルミニ
ウムカリ塩の粉末状フシックスの水性スラリー又は揮発
性溶液のスラリーを塗布して乾燥させた後、成形用金型
に入れ、加熱炉において着して金属結合せしめたことを
特徴とする多孔質アルミニウムの製造方法。 (2) 上記合金素材の固相温度と液相温度の温度範囲
において、固相率が60〜90%である特許請求の範囲
第(1)項に記載の多孔質アルミニウムの製造方法。 (3)上記加熱炉において、Al−8i系合金の加熱温
度を590℃〜605℃とした特許請求の範囲第(1)
項記載の多孔質アルミニウムの製造方法。 (4) 上記加熱炉において、Al−C,u系合金の加
熱温度を570℃〜600℃とした特許請求の範囲第(
1)項記載の多孔質アルミニウムの製造方法。 (5) 上記加熱炉において、Al−Mg系合金の加熱
温度を570℃〜590℃とした特許請求の範囲第(1
)項記載の多孔質アルミニウムの製造方法。
[Claims] fil AJ-8 with a large difference between solidus temperature and liquidus temperature
Applying an aqueous slurry or a slurry of a volatile solution of powdered fusix of aluminum fluoride potassium salt to the surface of linear, chip-like or fibrous materials of i-based alloys, AJ-Cu-based alloys, and Al-Mg-based alloys. 1. A method for producing porous aluminum, which comprises drying it, placing it in a mold, and placing it in a heating furnace for metallurgical bonding. (2) The method for producing porous aluminum according to claim (1), wherein the solid phase ratio is 60 to 90% in the temperature range between the solidus temperature and the liquidus temperature of the alloy material. (3) Claim (1) in which the heating temperature of the Al-8i alloy in the heating furnace is 590°C to 605°C.
The method for producing porous aluminum as described in Section 1. (4) In the heating furnace, the heating temperature of the Al-C, u-based alloy is 570°C to 600°C.
1) The method for producing porous aluminum as described in section 1). (5) In the heating furnace, the heating temperature of the Al-Mg alloy is 570°C to 590°C.
) The method for producing porous aluminum according to item 1.
JP58210961A 1983-11-11 1983-11-11 Manufacture of porous aluminum Pending JPS60238431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58210961A JPS60238431A (en) 1983-11-11 1983-11-11 Manufacture of porous aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58210961A JPS60238431A (en) 1983-11-11 1983-11-11 Manufacture of porous aluminum

Publications (1)

Publication Number Publication Date
JPS60238431A true JPS60238431A (en) 1985-11-27

Family

ID=16597973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58210961A Pending JPS60238431A (en) 1983-11-11 1983-11-11 Manufacture of porous aluminum

Country Status (1)

Country Link
JP (1) JPS60238431A (en)

Similar Documents

Publication Publication Date Title
US4725509A (en) Titanium-copper-nickel braze filler metal and method of brazing
EP0174984B1 (en) Liquid phase bonded amorphous materials and process for preparation thereof
JP3330609B2 (en) Brazing method
JPS597763B2 (en) Method for forming porous aluminum layer
US3971657A (en) Sintering of particulate metal
EP0145933B1 (en) Low temperature aluminum based brazing alloys
US4168182A (en) Method of producing shaped metallic parts
US5033334A (en) Wire drawing die
US4849163A (en) Production of flat products from particulate material
JPS60238431A (en) Manufacture of porous aluminum
JPS61250126A (en) Manufacture of porous aluminum
JPH06304740A (en) Cast-in method
JPS6047322B2 (en) Manufacturing method of porous sintered body
JPS61231144A (en) Manufacture of porous aluminum
US2874429A (en) Process for casting-in of sintered metal bodies
JPS6092436A (en) Manufacture of porous aluminum
JPS61217506A (en) Production of porous aluminum
US4246218A (en) Process for the manufacture of a piece comprising at least one porous abradable material
GB2075554A (en) Production of powdered metal articles
JPS61217505A (en) Production of porous aluminum
JPS6089535A (en) Manufacture of porous aluminum
JPS61217504A (en) Production of porous aluminum
JPS6340857B2 (en)
JPS6089534A (en) Manufacture of porous aluminum
JP3626553B2 (en) Manufacturing method of clad material of copper alloy and steel