JPS61217505A - Production of porous aluminum - Google Patents
Production of porous aluminumInfo
- Publication number
- JPS61217505A JPS61217505A JP60058600A JP5860085A JPS61217505A JP S61217505 A JPS61217505 A JP S61217505A JP 60058600 A JP60058600 A JP 60058600A JP 5860085 A JP5860085 A JP 5860085A JP S61217505 A JPS61217505 A JP S61217505A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- metal
- materials
- porous aluminum
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000956 alloy Substances 0.000 claims abstract description 30
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 239000002002 slurry Substances 0.000 claims abstract description 13
- 229910020220 Pb—Sn Inorganic materials 0.000 claims abstract description 6
- 229910052745 lead Inorganic materials 0.000 claims abstract 3
- 230000004907 flux Effects 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims 4
- 229910052751 metal Inorganic materials 0.000 abstract description 56
- 239000002184 metal Substances 0.000 abstract description 55
- 238000000034 method Methods 0.000 abstract description 19
- 229910000838 Al alloy Inorganic materials 0.000 abstract description 7
- 150000002739 metals Chemical class 0.000 abstract description 6
- 229910018140 Al-Sn Inorganic materials 0.000 abstract description 4
- 229910018564 Al—Sn Inorganic materials 0.000 abstract description 4
- 239000000835 fiber Substances 0.000 abstract description 3
- 238000005452 bending Methods 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 abstract 3
- 238000001035 drying Methods 0.000 abstract 1
- 238000003754 machining Methods 0.000 abstract 1
- 238000002844 melting Methods 0.000 description 19
- 230000008018 melting Effects 0.000 description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000004794 expanded polystyrene Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- SKFYTVYMYJCRET-UHFFFAOYSA-J potassium;tetrafluoroalumanuide Chemical compound [F-].[F-].[F-].[F-].[Al+3].[K+] SKFYTVYMYJCRET-UHFFFAOYSA-J 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910000553 6063 aluminium alloy Inorganic materials 0.000 description 1
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009770 conventional sintering Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多孔質アルミニウムの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing porous aluminum.
多孔質金属の製造法としては、従来より種々の手段が提
案されており、例えば、接触する二つの粉末状金属の界
面において、外部からの熱エネルギーによる金属原子の
拡散現象を利用した焼結法や、他の物質の多孔性を利用
する製造法として、発泡スチロールの表面に電着等の表
面処理法で金属を付着させた後、発泡スチロールを燃焼
させて網目状の多孔質金属を得る焼却法あるいは塩化ナ
トリウムのような水溶性粒子を所定の形状に焼き固め、
その粒子間隙に金属の溶湯を加圧注入して凝固させた後
、この塩化ナトリウムを水で溶解して網目状の多孔質金
属を得る溶出法や、溶湯中にマグネサイトやTi及びz
rの水素化物等のガス発生化合物を添加し、溶湯のガス
含有量を過飽和にして凝固させることにより、金属体内
部に気孔を内在させて多孔質金属を得る発泡法等が知ら
れている。Various methods have been proposed to produce porous metals, including a sintering method that utilizes the diffusion phenomenon of metal atoms caused by external thermal energy at the interface between two contacting powder metals. As a manufacturing method that utilizes the porosity of other materials, there is an incineration method in which metal is attached to the surface of expanded polystyrene using a surface treatment method such as electrodeposition, and then the expanded polystyrene is burned to obtain a mesh-like porous metal. By baking water-soluble particles such as sodium chloride into a predetermined shape,
There is an elution method in which a molten metal is injected under pressure into the gaps between the particles and solidified, and then the sodium chloride is dissolved in water to obtain a network-like porous metal.
A foaming method is known in which a porous metal is obtained by adding a gas generating compound such as a hydride of r to supersaturating the gas content of the molten metal and solidifying the metal to create a porous metal.
しかしながら、上記焼結法においては、金属原子の拡散
を行なうのに数時間という長時間を要し、しかも接触面
に汚れや異物が介在すると拡散速度が極端に低下し金属
間の結合力が弱くなって機械的性質が悪化するという問
題があり、また、他の物質の多孔性を利用して行う焼却
法や溶出法においては、製造された多孔質金属の内部に
発泡スチロールの酸化物や塩化ナトリウムの粒子等が残
留する危険があり、しかも金属体の厚さが薄くなるので
機械的強度が低い等の問題があり、更に、発泡法におい
ては、気孔の発生場所にバラツキがあり、また溶湯の温
度分布、特に炉底付近と溶湯表面付近とでは温度差が大
きく、凝固速度も気孔の大小に左右され、気孔の分布が
不均一になり品質的に不安定であるという問題があった
。However, in the above sintering method, it takes several hours for the metal atoms to diffuse, and if there is dirt or foreign matter on the contact surface, the diffusion rate is extremely reduced and the bonding force between the metals is weakened. In addition, in the incineration method or elution method that utilizes the porosity of other materials, styrofoam oxides and sodium chloride may be deposited inside the porous metal. There is a risk of residual particles, etc., and since the thickness of the metal body becomes thinner, there are problems such as low mechanical strength.Furthermore, in the foaming method, there are variations in the location of pores, and the molten metal There was a problem in that the temperature distribution, especially near the bottom of the furnace and near the surface of the molten metal, had a large temperature difference, and the solidification rate also depended on the size of the pores, resulting in uneven pore distribution and unstable quality.
また、上記以外に、軽量粒子拡散法が知られているが、
この方法で製造された多孔質金属は、気孔率が極めて低
く真の多孔質金属とはいえないものである。In addition to the above, lightweight particle diffusion methods are also known,
The porous metal produced by this method has an extremely low porosity and cannot be called a true porous metal.
本発明は、かかる観点に鑑みて創案されたもので、生産
性や加工性がよく、孔径や気孔率を任意に制御すること
ができ、しかも、金属間結合が強固であって異物残留も
皆無である多孔質アルミニウムの製造方法を提供するも
のである。The present invention was devised in view of these points of view, and has good productivity and workability, allows for arbitrary control of pore size and porosity, and has strong intermetallic bonds and no residual foreign matter. The present invention provides a method for producing porous aluminum.
すなわち本発明は、線材あるいは板材を線状、繊維状、
チップ状等にしたアルミニウム、又はアルミニウム合金
の素材の表面に、Al−Pb系。That is, the present invention provides wire rods or plate materials in the form of wires, fibers,
Al-Pb system on the surface of aluminum or aluminum alloy material made into chips or the like.
Aj−Sn系、又はAl−Pb−Sn系の合金の粉末を
水性スラリー又は揮発性溶液のスラリーにしたものを付
着させて乾燥した後、これを成形用金型等に入れ、加熱
炉等において上記合金の液相線温度±10℃に加熱して
上記素材を上記合金にて互いに融着し、所望形状に成形
する多孔質アルミニウムの製造方法であり、また、線状
、繊維状、チップ状等にしたアルミニウム、又はアルミ
ニウム合金の素材の表面に、AN−Pb系、Aj−Sn
系、又はAl−Pb−Sn系の合金の粉末とフラックス
とを混合させて水性スラリー又は揮発・性溶液のスラリ
ーにしたものを付着させて乾燥した後、これを成形用金
型等に入れ、加熱炉等において上記合金の液相線温度±
10℃に加熱して上記素材を上記合金にて互いに融着し
、所望形状に成形する多孔質アルミニウムの製造方法で
ある。Aqueous slurry or volatile solution slurry of Aj-Sn-based or Al-Pb-Sn-based alloy powder is applied and dried, then placed in a mold, etc., and heated in a heating furnace, etc. This is a method for producing porous aluminum in which the materials are heated to the liquidus temperature of the alloy ±10°C, and the materials are fused to each other with the alloy and formed into a desired shape. AN-Pb series, Aj-Sn
An aqueous slurry or a slurry of a volatile solution made by mixing a powder of an Al-Pb-Sn alloy or an Al-Pb-Sn alloy with a flux is attached and dried, and then placed in a mold, etc. The liquidus temperature of the above alloy in a heating furnace, etc.
This is a method for producing porous aluminum, in which the materials are heated to 10° C. and fused together using the alloy, and formed into a desired shape.
(作用)
本発明方法においては、線状、繊維状、チップ状等にし
た上記金属(1)の素材表面、望ましくは苛性ソーダ溶
液等でエツチングして微細な凹凸を形成した上記素材表
面に、この素材より融点の低い例えばAl−Sn系合金
の低融点金属(2)の粉末を付着させると、上記素材表
面は第1図に示すようになっており、これを成形用金型
に入れた状態では、第2図に示すように線状、繊維状、
チップ状等の金属(1)が、機械的に絡み合って多数の
横状の接触点が形成される。(Function) In the method of the present invention, the surface of the metal (1) in the form of lines, fibers, chips, etc., preferably on the surface of the material on which fine irregularities are formed by etching with a caustic soda solution, etc. When a powder of a low melting point metal (2), such as an Al-Sn alloy, whose melting point is lower than that of the material is attached, the surface of the material becomes as shown in Fig. 1, and this is placed in a mold for forming. As shown in Figure 2, linear, fibrous,
Metal chips (1), such as chips, are mechanically intertwined to form a large number of lateral contact points.
そしてこの状態で低融点金属(2)を融点まで加熱する
と、上記素材表面に付着していた低融点金属(2)が溶
融し、第3図(イ) (ロ)に示すように上記素材表面
凹凸部に深く入込むと同時に、低融点金属(2)が相互
に融着するため、この融着した低融点金属(2)により
上記線状、lIH状、チップ状等の金属(1)が相互に
機械的及び金属的に結合して多孔質金属が形成される。When the low melting point metal (2) is heated to its melting point in this state, the low melting point metal (2) attached to the surface of the material melts, and the surface of the material as shown in Figure 3 (a) and (b). As the low melting point metal (2) is fused to each other as it penetrates deeply into the uneven portion, the fused low melting point metal (2) causes the metal (1) in the shape of a wire, IIH, chip, etc. They are mechanically and metallically bonded to each other to form a porous metal.
以下、実施例に基づいて、本発明の多孔質アルミニラム
の製造方法を具体的に説明する。Hereinafter, the method for producing porous aluminum lamb of the present invention will be specifically explained based on Examples.
まずA−6063フルミニウム合金の連続鋳造ビレット
(直径100φ)から旋盤加工により、幅約11wR1
長さ約300sの繊維状素材を得、この素材をエチルア
ルコールで脱脂・洗浄して繊維状の金属(1)とする。First, a continuous casting billet (diameter 100φ) of A-6063 fulminium alloy was machined using a lathe, and the width was approximately 11wR1.
A fibrous material with a length of about 300 seconds is obtained, and this material is degreased and washed with ethyl alcohol to obtain a fibrous metal (1).
一方、上記金属(1)の表面に、この金属(1)より融
点の低い低融点金属(2)、例えばAl−Snから構成
される平均粒径10μmのAJ2アルミニウム合金の粉
末を、エチルアルコールに入れてスラリー化したものを
エアースプレ一方式により付着させ、かつこれを乾燥さ
せた。On the other hand, powder of AJ2 aluminum alloy with an average particle size of 10 μm composed of a low melting point metal (2) having a melting point lower than that of the metal (1), for example Al-Sn, is added to the surface of the metal (1) in ethyl alcohol. The resulting slurry was applied using air spray and dried.
ここで、上記A−6063アルミニウム合金の組成はM
Q:0.6重量%、Si:0.4重量%、Fe:0.1
重量%、であり、一方AJ2アルミニウム合金の組成は
Snニア。0重量%、Cu:2.0重量%であった。Here, the composition of the above A-6063 aluminum alloy is M
Q: 0.6% by weight, Si: 0.4% by weight, Fe: 0.1
% by weight, while the composition of the AJ2 aluminum alloy is Sn-near. Cu: 0% by weight, Cu: 2.0% by weight.
なお、上記金属(1)としては、純アルミニウム、Aj
−Mq系合金、AJ−Mn系合金、Al−Ma−8i系
合金、Al−Cu系合金、AlAl−7n−系合金等で
もよく、また、上記低融点金属(2)としては、Sn成
分4〜50重量%を含むAl−Sn系合金であればよく
、さらには、Pb及び5n−Pbの各成分をそれぞれ4
〜50重量%含むAj−Pb系、あるいはAj−Pb−
Sn系合金であってもよ(、上記合金を複数併用しても
よい。Note that the above metal (1) includes pure aluminum, Aj
-Mq based alloy, AJ-Mn based alloy, Al-Ma-8i based alloy, Al-Cu based alloy, AlAl-7n- based alloy, etc. Also, as the low melting point metal (2), Sn component 4 Any Al-Sn alloy containing up to 50% by weight may be sufficient, and furthermore, each component of Pb and 5n-Pb may be added to 4% by weight.
Aj-Pb system containing ~50% by weight, or Aj-Pb-
It may be a Sn-based alloy (or a plurality of the above alloys may be used in combination).
次に、上記低融点金属(2)をその表面に付着させた金
属(1)を、成形用金型に投入して充填した後、この金
型を窒素ガス雰囲気の加熱炉に入れ、低融点金属(2)
の液相線温度±10℃まで加熱した。Next, the metal (1) with the above-mentioned low melting point metal (2) adhered to its surface is put into a mold for filling, and then the mold is placed in a heating furnace in a nitrogen gas atmosphere, and the metal (1) with a low melting point metal (2)
It was heated to the liquidus temperature of ±10°C.
そして上記金型が上記温度に達してから、この金型を加
熱炉から取出し、強制空冷(この実施例ではファンを使
用)した後に多孔質アルミニウムを金型から取出す。After the mold reaches the above temperature, the mold is taken out of the heating furnace, and after forced air cooling (using a fan in this embodiment), the porous aluminum is taken out from the mold.
なおこの実施例においては、加熱により低融点金属(2
)を溶融させて金属(1)の融着を行ったが、この低融
点金属(2)による融着に際しては、金属(1)に対し
て接着効果が得られる状態であればよく、必ずしも低融
点金属(2)を完全溶融状態にする必要はなく、半溶融
の状態で行ってもよい。In this example, the low melting point metal (2
), the metal (1) is fused by melting the low melting point metal (2), but the low melting point metal (2) only needs to be in a state where an adhesion effect can be obtained to the metal (1); It is not necessary to bring the melting point metal (2) into a completely molten state, and the melting point metal (2) may be in a semi-molten state.
また上記実施例においては、スラリー化されたAJ2ア
ルミニウム合金の粉末を、エアースプレ一方式により繊
維状の金属(1)表面に付着形成させているが、弗化ア
ルミニウムカリ塩のフラックスを1g/100Cc程度
の割合いでエチルアルコールに添加し、上記AJ2アル
ミニウム合金と混合させてスラリーとし、このスラリー
をエアースプレ一方式により上記金属(1)表面に塗布
しても同様の目的を達成することができる。なお上記フ
ラックスとしては、弗化アルミニウムカリ塩以外に従来
公知の他のフラックスでもよく、望ましくは腐蝕性のな
いものがよい。Further, in the above example, slurry-formed AJ2 aluminum alloy powder is adhered to the surface of the fibrous metal (1) using an air spray method, but a flux of aluminum fluoride potassium salt is applied to the surface of the fibrous metal (1) at a rate of about 1 g/100 Cc. The same purpose can also be achieved by adding it to ethyl alcohol at a ratio of 1,000 ml, mixing it with the AJ2 aluminum alloy to form a slurry, and applying this slurry to the surface of the metal (1) using an air spray method. In addition to the aluminum potassium fluoride salt, the above-mentioned flux may be any other conventionally known flux, preferably a non-corrosive flux.
また上記加熱炉は、窒素ガス雰囲気の加熱炉を使用した
が、通常の加熱炉、不活性ガス雰囲気の加熱炉と真空加
熱炉とを組合せた加熱炉のいずれでもよい。Furthermore, although a nitrogen gas atmosphere heating furnace is used as the heating furnace, it may be a normal heating furnace or a heating furnace that combines a heating furnace with an inert gas atmosphere and a vacuum heating furnace.
さらに、上記スラリーの付着方法としてエアー□スプレ
ーを使用して塗布したが、浸漬して付着させる方法、あ
るいは単に塗ってもよく、その付着方法は任意である。Furthermore, although the above slurry was applied using an air spray, it may be applied by dipping, or simply painted, and the method of application is arbitrary.
ざらにまた、多孔質アルミニウム製品の形状は、金型に
より丸、四角、三角、多角形等所望の形状に成形される
ものである。Moreover, the shape of the porous aluminum product is formed into a desired shape such as a circle, square, triangle, or polygon using a mold.
本発明の多孔質アルミニウムの製造方法によれば、
(イ)従来の焼結法に比べて、加熱及び保持時間が短縮
され、その生産性が著しく向上し、価格を低減すること
ができる。According to the method for producing porous aluminum of the present invention: (a) Compared to conventional sintering methods, heating and holding times are shortened, productivity is significantly improved, and costs can be reduced.
(ロ)従来の焼結金属や発泡金属は脆く、その加工性が
悪いのに対し、本発明で得られる製品は機械的性質、特
に延性(伸び)が極めて^く、曲げ加工や切削加工等が
容易である。(b) Conventional sintered metals and foamed metals are brittle and have poor workability, whereas the products obtained by the present invention have extremely high mechanical properties, especially ductility (elongation), and can be easily processed by bending, cutting, etc. is easy.
(ハ)従来法の場合、孔径及び気孔率はその製造方法に
依存し、有効範囲が狭いが、本発明方法によれば素材形
状を変化せしめるのみで孔径及び気孔率を任意に変える
ことができ、その制御範囲が広い。(c) In the case of the conventional method, the pore size and porosity depend on the manufacturing method and the effective range is narrow, but with the method of the present invention, the pore size and porosity can be changed arbitrarily by simply changing the shape of the material. , its control range is wide.
(ニ)強固な金属結合がなされているので、ヒートショ
ックに強く、例えば溶接等も可能である。(d) Since the metal bond is strong, it is resistant to heat shock and can be welded, for example.
(ホ)異物混入、あるいは異物残留が非常に少ない。(E) There is very little foreign matter contamination or residual foreign matter.
(へ)伝熱面積の大幅な向上により熱伝達率が著しく改
善される。(f) The heat transfer coefficient is significantly improved due to the significant increase in the heat transfer area.
(ト)電気伝導性があり、集電効果が高い。(g) It has electrical conductivity and has a high current collecting effect.
第1図〜第3図は本発明方法において金属素材が互いに
結合する状態を示す説明図である。
符号説明
(1)・・・・金属、(2)・・・・低融点金属、特許
出願人 日本軽金属株式会社
代 理 人 弁理士 中 村 智
廣(外2名)
第1図
第3
(イ)
第2図
図
(ロ)
2:低紹、九金恩1 to 3 are explanatory diagrams showing the state in which metal materials are bonded to each other in the method of the present invention. Symbol explanation (1)...Metal, (2)...Low melting point metal, Patent applicant: Nippon Light Metal Co., Ltd. Representative Patent attorney: Satoshi Nakamura
Hiroshi (2 others) Figure 1, Figure 3 (A) Figure 2, (B) 2: Low Shao, Jiu Kinen
Claims (5)
はアルミニウム合金の素材の表面に、Al−Pb系、A
l−Sn系、又はAl−Pb−Sn系の合金の粉末を水
性スラリー又は揮発性溶液のスラリーにしたものを付着
させて乾燥した後、これを上記合金の液相線温度±10
℃に加熱して上記素材を上記合金にて互いに融着し成形
することを特徴とする多孔質アルミニウムの製造方法。(1) Al-Pb based, A
An aqueous slurry or a volatile solution slurry of l-Sn or Al-Pb-Sn alloy powder is deposited and dried, and then the liquidus temperature of the alloy is adjusted to ±10
1. A method for producing porous aluminum, which comprises heating the above materials to a temperature of 0.degree. C. to fuse and shape the materials with the alloy.
Snの成分が4〜50重量%である特許請求の範囲第1
項記載の多孔質アルミニウムの製造方法。(2) In each of the above alloys, Pb, Sn or Pb-
Claim 1, wherein the Sn component is 4 to 50% by weight
The method for producing porous aluminum as described in Section 1.
はアルミニウム合金の素材の表面に、Al−Pb系、A
l−Sn系、又はAl−Pb−Sn系の合金の粉末とフ
ラックスとを混合させて水性スラリー又は揮発性溶液の
スラリーにしたものを付着させて乾燥した後、これを上
記合金の液相線温度±10℃に加熱して上記素材を上記
合金にて互いに融着し成形することを特徴とする多孔質
アルミニウムの製造方法。(3) Al-Pb series, A
An aqueous slurry or a volatile solution slurry made by mixing l-Sn or Al-Pb-Sn alloy powder and flux is deposited and dried, and then the liquidus line of the alloy is A method for producing porous aluminum, which comprises heating to a temperature of ±10° C. to fuse and shape the above-mentioned materials with the above-mentioned alloy.
Snの成分が4〜50重量%である特許請求の範囲第3
項記載の多孔質アルミニウムの製造方法。(4) In each of the above alloys, Pb, Sn or Pb-
Claim 3, wherein the Sn component is 4 to 50% by weight
The method for producing porous aluminum as described in Section 1.
である特許請求の範囲第3項記載の多孔質アルミニウム
の製造方法。(5) The method for producing porous aluminum according to claim 3, wherein the flux is a KF-AlF_3-based flux.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60058600A JPS61217505A (en) | 1985-03-25 | 1985-03-25 | Production of porous aluminum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60058600A JPS61217505A (en) | 1985-03-25 | 1985-03-25 | Production of porous aluminum |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61217505A true JPS61217505A (en) | 1986-09-27 |
Family
ID=13088999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60058600A Pending JPS61217505A (en) | 1985-03-25 | 1985-03-25 | Production of porous aluminum |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61217505A (en) |
-
1985
- 1985-03-25 JP JP60058600A patent/JPS61217505A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5965193A (en) | Process for preparing a ceramic electronic circuit board and process for preparing aluminum or aluminum alloy bonded ceramic material | |
US4448853A (en) | Layered active brazing material and method for producing it | |
JP2918191B2 (en) | Manufacturing method of metal-ceramic composite member | |
US2100258A (en) | Composite body of copper and aluminum or copper and magnesium, and method of making same | |
JPS62192296A (en) | Solder material | |
JP2000117484A (en) | Seamless ring-shaped brazing material and manufacture thereof | |
US4678720A (en) | Silver-copper-titanium brazing alloy | |
US4412643A (en) | Method for bonding of a porous body and a fusion-made body | |
US4168182A (en) | Method of producing shaped metallic parts | |
US2100257A (en) | Composite body of magnesium and aluminum, and method of making same | |
US5033334A (en) | Wire drawing die | |
JPS61217505A (en) | Production of porous aluminum | |
CA1075413A (en) | Brazing sintered ferrous powder metal articles | |
JPS61217504A (en) | Production of porous aluminum | |
EP0128356B1 (en) | Homogeneous low melting point copper based alloys | |
JPS61217506A (en) | Production of porous aluminum | |
US3669179A (en) | Process of bonding molten metal to preform without interfacial alloy formation | |
JPS61231144A (en) | Manufacture of porous aluminum | |
JP3078411B2 (en) | Method for manufacturing composite aluminum member | |
JPS60238431A (en) | Manufacture of porous aluminum | |
JPS61250126A (en) | Manufacture of porous aluminum | |
JPS6089535A (en) | Manufacture of porous aluminum | |
JPS6092436A (en) | Manufacture of porous aluminum | |
JPH0857681A (en) | Low melting brazing filler metal and its production | |
JP2642661B2 (en) | Manufacturing method of high thermal conductive composite mold |