JPS61250126A - Manufacture of porous aluminum - Google Patents

Manufacture of porous aluminum

Info

Publication number
JPS61250126A
JPS61250126A JP9056885A JP9056885A JPS61250126A JP S61250126 A JPS61250126 A JP S61250126A JP 9056885 A JP9056885 A JP 9056885A JP 9056885 A JP9056885 A JP 9056885A JP S61250126 A JPS61250126 A JP S61250126A
Authority
JP
Japan
Prior art keywords
alloy
temperature
solid
porous aluminum
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9056885A
Other languages
Japanese (ja)
Inventor
Takuo Kusano
草野 拓男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP9056885A priority Critical patent/JPS61250126A/en
Publication of JPS61250126A publication Critical patent/JPS61250126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain porous Al having strong binding force, high ductility and free from mixed foreign matter and remaining thereof, by coating slurry such as water of K3AlF6 salt on surface of linear etc. material of Al alloy having large temp. difference between solid and liquid phases, drying the material then put it into compacting mold to heat, weld and bind the materials with each other. CONSTITUTION:Linear, chip or fiber shaped material of alloy systems of Al-Si, Al-Cu, Al-Mg, Al-Si-Cu, Al-Mg-Si, Al-Zn-Mg, Al-Sn and Al-Pb in which difference between solid and liquid phase temps. is large is used. Slurry of water or volatile soln. of powdery K3AlF6 salt flux is coated on surface of the material and dried them, it is put in compacting mold, heated by heating furnace to temp. range of solid and liquid phases of material, to weld and bond metallographically the materials with each other. About 60-90% solid phase ratio is desirable in temp. range of solid and liquid phases of material.

Description

【発明の詳細な説明】 本発明は、多孔質アルミニウムの製造方法に関する。従
来、多孔質金属の製造法として種々の手段が提供されて
いる。即ち、焼結法による多孔質金属の製造法は、接触
する二つの粉末状金属の界面において、外部からの熱エ
ネルギーによる金属原子の拡散現象を利用した方法であ
るが、上記金属原子の拡散を行うには数時間の時間を要
し、しかも接触面に汚れや異物が介在すると拡散速度が
極端に低下し金属間の結合力が弱くなり機械的性質が悪
化する欠点があった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing porous aluminum. Conventionally, various means have been provided as methods for producing porous metals. In other words, the method for producing porous metals by sintering is a method that utilizes the diffusion phenomenon of metal atoms due to external thermal energy at the interface of two contacting powder metals. It takes several hours to carry out the process, and if there is dirt or foreign matter on the contact surface, the diffusion rate is extremely reduced, the bonding force between the metals is weakened, and the mechanical properties are deteriorated.

また、他の物質の多孔性を利用する製造法として、発泡
スチロールの表面に電着等の表面処理法で金属を付着さ
せ、その後発泡スチロールを燃焼させて網目状の多孔質
金属を得る方法(焼却法)或いは塩化ナトリウムのよう
な水溶性粒子を所定の形状に焼き固めて、粒子間隙に金
属の溶湯を加圧注入して、凝固後塩化ナトリウムを水で
溶解し、網目状の多孔質金属を得る方法(溶出法)があ
るが、各々多孔質金属内部に発泡スチロールの酸化物や
塩化ナトリウムの粒子等が残留する危険があり、しかも
金属体の厚さが薄いので機械的強度が低い等の欠点があ
った。尚、軽量粒子拡散法は、気孔率がほとんどなく真
の多孔質金属ではない。
In addition, as a manufacturing method that utilizes the porosity of other materials, metal is attached to the surface of expanded polystyrene using a surface treatment method such as electrodeposition, and then the expanded polystyrene is burned to obtain a mesh-like porous metal (incineration method). ) Alternatively, water-soluble particles such as sodium chloride are sintered into a predetermined shape, molten metal is injected under pressure into the gaps between the particles, and after solidification, the sodium chloride is dissolved in water to obtain a mesh-like porous metal. There is a method (elution method), but each method has disadvantages such as the risk of styrofoam oxides and sodium chloride particles remaining inside the porous metal, and low mechanical strength because the metal body is thin. there were. Note that the lightweight particle diffusion method has almost no porosity and is not a true porous metal.

更に、溶湯中にガス発生物質を入れて金属体内部に気孔
を点在させる製造法(発泡法)においては、溶湯中にマ
グネサイトやTi及び2「の水素化物等のガス発生化合
物を添加して、溶湯のガス含有量を過飽和にし凝固させ
て気孔を内在させて多孔質金属を得ているが、気孔の発
生場所にバラツキがあり、また溶湯の温度分布、特に炉
底付近と溶湯表面付近とでは温度差が大きく、凝固速度
も気孔の大小に左右され、気孔の存在が不均一になり品
質的に不安定であるという欠点があった。
Furthermore, in the production method (foaming method) in which a gas-generating substance is placed in the molten metal and pores are scattered inside the metal body, gas-generating compounds such as magnesite, Ti, and hydrides of 2' are added to the molten metal. In this process, the gas content of the molten metal is supersaturated and solidified to incorporate pores to obtain a porous metal, but the location of the pores varies, and the temperature distribution of the molten metal, especially near the bottom of the furnace and near the surface of the molten metal, is obtained. There is a large temperature difference between the two, and the solidification rate also depends on the size of the pores, which has the disadvantage that the presence of pores is uneven and the quality is unstable.

更にまた、分離している金属同志の結合をさせる時、金
属同志が固体の状態では、金属を被覆している酸化物を
除去するために、且つ金属原子を拡散させるに必要なエ
ネルギー付加のために高温、高圧の雰囲気にしなければ
ならない。この場合、高温の付加は、金属同志の間隙を
非常に密にしてしまうので金属同志を結合させ、且つ大
きな空隙を必要とする多孔質金属を得るには適切ではな
い。
Furthermore, when bonding separated metals, when the metals are in a solid state, energy is added to remove the oxide coating the metal and to diffuse the metal atoms. must be in a high temperature, high pressure atmosphere. In this case, the application of high temperature makes the gaps between the metals very dense, so it is not suitable for bonding the metals together and obtaining a porous metal that requires large gaps.

また分離している金属同志を結合する方法として金属表
面を被覆しているi化物をフラックスにより化学的に除
去し、加熱して金属原子を拡散させて結合する一種のロ
ー付方法もあるが、機械的な結合力は弱く、曲げ加工性
や耐衝撃性に劣る欠点があった。
Another method of bonding separated metals is a type of brazing method in which the i-oxide coating the metal surface is chemically removed using flux, and then heated to diffuse the metal atoms and bond. The mechanical bonding strength was weak, and the bending workability and impact resistance were poor.

本発明は上述した従来の欠点に鑑みてなされたものであ
り、固相温度と液相温度との差が大きいA I −S 
i系合金、A I −Cu系合金及びAl−Mg系合金
、あるいはA I −S i −Cu系合金、A I 
−M g −S i系合金、A I −Z n −M 
g系合金さらにはA I −S n系合金、Al−P−
b系合金の線状、チップ状或いは繊維状素材の表面にフ
ッ化アルミニウムカリ塩の粉末状フラックスの水性スラ
リー又は揮発性溶液のスラリーを塗布して乾燥させた後
、成形用金型に入れ、加熱炉において上記合金素材の固
相温度と液相温度の温度範囲まで加熱し線状、チップ状
或いは繊維状素材同志を融着して金属結合せしめる方法
により金属的な結合力が強く、金属内部の異物残留が皆
無である多孔質アルミニウムの製造方法を提供するもの
である。
The present invention has been made in view of the above-mentioned drawbacks of the conventional technology.
i-based alloy, AI-Cu-based alloy and Al-Mg-based alloy, or AI-Si-Cu-based alloy, AI
-M g -S i alloy, A I -Z n -M
g-based alloys, AI-S n-based alloys, Al-P-
After applying an aqueous slurry of a powdered flux of potassium aluminum fluoride or a slurry of a volatile solution to the surface of a linear, chip-shaped or fibrous material of B-based alloy and drying it, place it in a mold for forming. The method of heating the above-mentioned alloy materials in a heating furnace to a temperature range between the solidus temperature and the liquidus temperature and fusing the wire, chip, or fibrous materials together to form a metallic bond creates a strong metallic bond, and the metal interior The present invention provides a method for producing porous aluminum in which no foreign matter remains.

以下、添付図面に従って本発明の詳細な説明する。第1
図はA I −S i合金の二元状態図であり、第1図
においてアルミニウムを基としたアルミニウム合金の温
度的な性物をみると、固体の状態を保つ温度範囲(上限
温度・・・耐相線温度)、固体と液体とが混在する温度
範囲(上限温度・・・液相aS度)と全て液体の状態に
ある温度(液相線温度以上)の3つの状態が存在する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. 1st
The figure is a binary phase diagram of the A I-S i alloy. Looking at the temperature properties of the aluminum-based aluminum alloy in Figure 1, the temperature range (upper limit temperature... There are three states: a temperature range where solid and liquid coexist (upper limit temperature...liquid phase aS degrees), and a temperature where everything is in a liquid state (above liquidus temperature).

本発明は、上記したアルミニウム合金の温度的な特性に
着目したものであり、金属素材同志の形状的な形態を崩
さずに素材同志を結合させるのに固相と液相とが混在す
る温度範囲において、固相率〔固相の量/(固相十液相
)の量〕が60〜95%になる温度が最も適しているこ
とが判明しな。
The present invention focuses on the above-mentioned temperature characteristics of aluminum alloys, and the temperature range in which the solid phase and liquid phase coexist is required to bond the metal materials together without destroying their shape. It has been found that the temperature at which the solid phase ratio (amount of solid phase/(amount of solid phase + liquid phase)) is 60 to 95% is most suitable.

との固相率においては隣接する金属素材1,2から部分
的に溶出した液相状態の金属同志は、原子が最も拡散し
易い状態にあるため容易に融合し、また固相率が高いの
で金属の骨格が強く加熱する前の状態にある。したがっ
て、上記の固相率まで加熱した後、直ちに冷却すれば融
合しな液相部1m、2aは凝固tて第2図に示すように
隣接している金属素材1,2が結合される。
At the solid phase ratio, the metals in the liquid phase partially eluted from the adjacent metal materials 1 and 2 are in a state where atoms are most easily diffused, so they easily fuse, and since the solid phase ratio is high, The metal skeleton is in a state before it is strongly heated. Therefore, if the metal materials 1m and 2a are cooled immediately after being heated to the above-mentioned solid phase ratio, the unfused liquid phase portions 1m and 2a will solidify and the adjacent metal materials 1 and 2 will be bonded together as shown in FIG.

尚、上記固相率の最適範囲は60〜90%であるが、固
相率が95%以上では溶出する液相が少なく、機械的に
接触している金属同志が接触部3で融合する確率が低下
し、全ての接触部で融合するごとが期待できず、融合不
良の個所が発生するので凝固冷却した後、金属同志は分
離し易くなる。
The optimum range of the above solid phase ratio is 60 to 90%, but when the solid phase ratio is 95% or more, there is little liquid phase to be eluted, and the probability that metals that are in mechanical contact will fuse at the contact part 3 is low. As a result, it cannot be expected that all contact areas will be fused, and some areas will have poor fusion, making it easier for the metals to separate after solidification and cooling.

一方、固相率が60%以下では溶出する液相量が多く、
重力で下部層に流出して絡み合った金属同志の隙間を埋
めてしまうことになり均質な多孔−質金属が得られない
On the other hand, when the solid phase ratio is less than 60%, the amount of liquid phase eluted is large;
It flows out to the lower layer due to gravity and fills the gaps between the intertwined metals, making it impossible to obtain a homogeneous porous metal.

次に、上述の原理に基づいて本発明の実施例を具体的に
説明する。先ず、A I −S i系合金(Al−5%
Si)の連続鋳造ビレット(直径100φ)から旋盤加
工により平均幅1−1平均長さ300閤、平均厚さ0.
31)Illの繊維状素材を得る。
Next, embodiments of the present invention will be specifically described based on the above-mentioned principle. First, AI-Si alloy (Al-5%
Continuously cast billets (diameter 100φ) of Si) are lathe-processed to have an average width of 1-1, an average length of 300 mm, and an average thickness of 0.
31) Obtain Ill fibrous material.

次いで、この繊維状素材をエチルアルコールで脱脂、洗
浄し、乾燥させた後金型に投入する。この金型を窒素ガ
ス雰囲気の加熱炉に入れて、固相率が60〜95%にな
る温度(590℃〜605℃)まで加熱し、金型が前記
温度に達したならば金型を上記加熱炉より取出し、強制
空冷した後に多孔質アルミニウムを金型から取出す。
Next, this fibrous material is degreased with ethyl alcohol, washed, dried, and then put into a mold. This mold is placed in a heating furnace with a nitrogen gas atmosphere and heated to a temperature (590°C to 605°C) at which the solid phase ratio is 60 to 95%. When the mold reaches the above temperature, the mold is The porous aluminum is taken out from the heating furnace, forced air cooled, and then taken out from the mold.

尚、上記A I −S i系合金の加熱温度は、59C
′r′〜605℃であるが、A I −Cu系合金の場
合の加熱温度が570℃〜600℃であり、Al−Mg
系合金の場合の加熱温度が570℃〜590℃である。
In addition, the heating temperature of the above AI-Si alloy is 59C.
'r' to 605°C, but the heating temperature in the case of AI-Cu alloy is 570°C to 600°C, and the heating temperature for Al-Mg
The heating temperature in the case of alloys is 570°C to 590°C.

又、A I −S i −Cu系合金、Al−M g 
−S i系合金、A I −Z n −M g系合金の
場合の加熱温度は490〜550℃であり、Al−3n
系合金、Al−Pb系合金の場合の加熱温度は200〜
300℃である。ここで、Al−CU系合金、Al−M
g系合金を使用した場合には、上記A I −S i系
合金と加熱温度が相違のみで他の条件は同じである。ま
た、上記実施例において不活性ガス雰囲気の加熱炉を使
用したが通常の加熱炉、真空加熱炉、不活性ガス雰囲気
の加熱炉と真空加熱炉とを組み合わせた加熱炉のいずれ
でもよい。また、上記の実施例では、エチルアルコール
で脱脂、洗浄し乾燥させたが、フッ化アルミニウムカリ
塩の粉末状フラックスの水性スラリー又は揮発性溶液の
スラリーであればよい。更に、多孔質アルミニウム製品
の形状は、金型により丸、−四角、三角、多角形等所望
の形状に成形されるものである。
Also, A I -S i -Cu alloy, Al-M g
-Si type alloy, A I -Z n -M g type alloy, the heating temperature is 490 to 550 °C, and Al-3n
The heating temperature for Al-Pb alloys is 200~200℃.
The temperature is 300°C. Here, Al-CU alloy, Al-M
When a g-based alloy is used, the only difference is the heating temperature and the other conditions are the same as the above-mentioned A I-S i-based alloy. Further, although a heating furnace with an inert gas atmosphere was used in the above embodiments, any one of a normal heating furnace, a vacuum heating furnace, and a combination of a heating furnace with an inert gas atmosphere and a vacuum heating furnace may be used. Further, in the above embodiment, the material was degreased with ethyl alcohol, washed, and dried, but any slurry of an aqueous slurry of a powdered flux of potassium aluminum fluoride salt or a slurry of a volatile solution may be used. Further, the shape of the porous aluminum product can be formed into a desired shape such as a circle, a square, a triangle, a polygon, etc. using a mold.

以上詳細に説明したように、本発明が上記の製造方法で
あるので、下記の効果を奏する。
As explained in detail above, since the present invention is the above-mentioned manufacturing method, it has the following effects.

イ 従来の焼結法に比べて加熱、保持時間が短縮され、
生産性が向上し、価格が低減できる。
B Heating and holding times are shorter than conventional sintering methods,
Productivity can be improved and prices can be reduced.

口 機械的性質、特に(伸び)が高い。従来の焼結晶や
発泡金属は脆く、加工性が悪いのに対し、本発明で得ら
れる製品は延性があるため曲げ加工、切削加工等が容易
である。
Mouth Mechanical properties, especially (elongation) are high. Conventional baked crystals and foamed metals are brittle and have poor workability, whereas the products obtained by the present invention are ductile and can be easily bent, cut, etc.

ハ 従来法の場合、孔径及び多孔率は製造方法に依存し
、有効範囲は狭いが、本発明によれば素材形状を変化せ
しめるのみで孔径及び多孔率は任意に変えられ制御範囲
は広い。
C. In the case of the conventional method, the pore diameter and porosity depend on the manufacturing method and the effective range is narrow, but according to the present invention, the pore diameter and porosity can be arbitrarily changed by simply changing the shape of the material, and the control range is wide.

二 強固な金属結合がなされているので、ヒートシリツ
クに強く、例えば溶接も可能である。
2. Since it has a strong metal bond, it is resistant to heat sealing and can be welded, for example.

ホ 異物混入、或いは異物残留が非常に少ない。E) There is very little foreign matter contamination or foreign matter remaining.

へ 伝熱面積の大幅な向上による熱伝達率が改善される
The heat transfer coefficient is improved due to a significant increase in the heat transfer area.

ト 電気伝導性があす、集電効果が高い。G. High electrical conductivity and high current collection effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるA j −S i系合
金の二元状態図、第2図は本発明の原理図である。 1.2・・・金属素材、la、2a・・・液相部、3・
・・接触部 特許出願人  日本軽金属株式会社 代理人 弁理士  佐 藤 英 昭 //  弁理士 大橋秀雄
FIG. 1 is a binary phase diagram of an A j -S i alloy that is an embodiment of the present invention, and FIG. 2 is a diagram of the principle of the present invention. 1.2...metal material, la, 2a...liquid phase part, 3.
...Contact section patent applicant: Nippon Light Metal Co., Ltd., agent: Hideaki Sato, patent attorney: Hideo Ohashi, patent attorney

Claims (5)

【特許請求の範囲】[Claims] (1)固相温度と液相温度との差が大きいAl−Si系
合金、Al−Cu系合金、Al−Mg系合金、Al−S
i−Cu系合金、Al−Mg−Si系合金、Al−Zn
−Mg系合金、Al−Sn系合金、およびAl−Pb系
合金の線状、チップ状あるいは繊維状素材の表面にフッ
化アルミニウムカリ塩の粉末状フラックスの水性スラリ
ー又は揮発性溶液のスラリーを塗布して乾燥させた後、
成形用金型に入れ、加熱炉において上記合金素材の固相
温度と液相温度の温度範囲まで加熱し、線状、チップ状
あるいは繊維状素材同志を融着して金属結合せしめたこ
とを特徴とする多孔質アルミニウムの製造方法。
(1) Al-Si alloy, Al-Cu alloy, Al-Mg alloy, Al-S with a large difference between solidus temperature and liquidus temperature
i-Cu alloy, Al-Mg-Si alloy, Al-Zn
- Apply an aqueous slurry of a powdered flux of potassium aluminum fluoride salt or a slurry of a volatile solution to the surface of linear, chip-like or fibrous materials of Mg-based alloys, Al-Sn-based alloys, and Al-Pb-based alloys. After drying,
It is characterized by being placed in a mold and heated in a heating furnace to a temperature range between the solidus temperature and liquidus temperature of the above alloy material, thereby fusing the linear, chip or fibrous materials together to form a metallic bond. A method for producing porous aluminum.
(2)上記合金素材の固相濃度と液相温度の温度範囲に
おいて、固相率が60〜90%である特許請求の範囲第
(1)項記載の多孔質アルミニウムの製造方法。
(2) The method for producing porous aluminum according to claim (1), wherein the solid phase ratio is 60 to 90% in the temperature range of the solid phase concentration and liquidus temperature of the alloy material.
(3)上記加熱炉において、Al−Si系合金の加熱温
度を590℃〜605℃とした特許請求の範囲第(1)
項記載の多孔質アルミニウムの製造方法。
(3) Claim No. (1) in which the heating temperature of the Al-Si alloy in the heating furnace is 590°C to 605°C.
The method for producing porous aluminum as described in Section 1.
(4)上記加熱炉において、Al−Cu系合金の加熱温
度を570℃〜600℃とした特許請求の範囲第(1)
項記載の多孔質アルミニウムの製造方法。
(4) Claim No. 1, wherein the heating temperature of the Al-Cu alloy in the heating furnace is 570°C to 600°C.
The method for producing porous aluminum as described in Section 1.
(5)上記加熱炉において、Al−Mg系合金の加熱温
度を570℃〜590℃とした特許請求の範囲第(1)
項記載の多孔質アルミニウムの製造方法。
(5) Claim (1) in which the heating temperature of the Al-Mg alloy in the heating furnace is 570°C to 590°C.
The method for producing porous aluminum as described in Section 1.
JP9056885A 1985-04-26 1985-04-26 Manufacture of porous aluminum Pending JPS61250126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9056885A JPS61250126A (en) 1985-04-26 1985-04-26 Manufacture of porous aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9056885A JPS61250126A (en) 1985-04-26 1985-04-26 Manufacture of porous aluminum

Publications (1)

Publication Number Publication Date
JPS61250126A true JPS61250126A (en) 1986-11-07

Family

ID=14002031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9056885A Pending JPS61250126A (en) 1985-04-26 1985-04-26 Manufacture of porous aluminum

Country Status (1)

Country Link
JP (1) JPS61250126A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509584A (en) * 1999-09-14 2003-03-11 ストラテック メディカル アクチエンゲゼルシャフト Mixture of two fine-grained phases used in the production of green compacts that can be fired at high temperatures
JP2011214111A (en) * 2010-04-01 2011-10-27 Hitachi Ltd Aluminum porous body and fabrication method of the same
KR20210009877A (en) * 2019-07-18 2021-01-27 서울시립대학교 산학협력단 Manufacturing method for fragrance emission porous metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509584A (en) * 1999-09-14 2003-03-11 ストラテック メディカル アクチエンゲゼルシャフト Mixture of two fine-grained phases used in the production of green compacts that can be fired at high temperatures
JP2011214111A (en) * 2010-04-01 2011-10-27 Hitachi Ltd Aluminum porous body and fabrication method of the same
KR20210009877A (en) * 2019-07-18 2021-01-27 서울시립대학교 산학협력단 Manufacturing method for fragrance emission porous metal

Similar Documents

Publication Publication Date Title
US4725509A (en) Titanium-copper-nickel braze filler metal and method of brazing
EP0174984B1 (en) Liquid phase bonded amorphous materials and process for preparation thereof
JP3330609B2 (en) Brazing method
JP2003053523A (en) Heat exchanger and its manufacturing method
AU675673B2 (en) Corrosion-resistant and brazeable aluminum material and a method of producing same
JPS5817817B2 (en) Method for manufacturing large surface area metal bodies
JPS597763B2 (en) Method for forming porous aluminum layer
EP0145933B1 (en) Low temperature aluminum based brazing alloys
US3899306A (en) Exothermic brazing of aluminum
US3971657A (en) Sintering of particulate metal
JPS61250126A (en) Manufacture of porous aluminum
US4849163A (en) Production of flat products from particulate material
JPS6047322B2 (en) Manufacturing method of porous sintered body
JPH06304740A (en) Cast-in method
JPS60238431A (en) Manufacture of porous aluminum
JPS61231144A (en) Manufacture of porous aluminum
JP3078411B2 (en) Method for manufacturing composite aluminum member
JPS6092436A (en) Manufacture of porous aluminum
JP2007083271A (en) Method for brazing aluminum alloy casting, and brazed member for liquid-cooling
JPS6340857B2 (en)
JPH0674193B2 (en) Method for metallizing graphite and member using this method
JPS6089535A (en) Manufacture of porous aluminum
JPS61217506A (en) Production of porous aluminum
JP3626553B2 (en) Manufacturing method of clad material of copper alloy and steel
JP2796861B2 (en) Method of providing brazing material on the surface of aluminum or aluminum alloy material