JPS61217504A - Production of porous aluminum - Google Patents

Production of porous aluminum

Info

Publication number
JPS61217504A
JPS61217504A JP60058599A JP5859985A JPS61217504A JP S61217504 A JPS61217504 A JP S61217504A JP 60058599 A JP60058599 A JP 60058599A JP 5859985 A JP5859985 A JP 5859985A JP S61217504 A JPS61217504 A JP S61217504A
Authority
JP
Japan
Prior art keywords
alloy
metal
cut
core material
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60058599A
Other languages
Japanese (ja)
Inventor
Takuo Kusano
草野 拓男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP60058599A priority Critical patent/JPS61217504A/en
Publication of JPS61217504A publication Critical patent/JPS61217504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a porous metal in which blank materials are securely bonded to each other by cutting the blank material formed by cladding a low- melting Al alloy to the surface layer of an Al core material to a chip shape, etc. and heating the same in a molding tool. CONSTITUTION:The low-melting alloy 2 of Al-Pb, Al-Sn or Al-Pb-Sn is thinly clad on the surface layer of the core material 1 consisting of Al, Al alloy. The clad blank material is cut to a tip, fiber or wire shape. The cut blank materials are packed into the molding tool where the materials are heated to the liquidus line temp. of the low-melting alloy + or -10 deg.C and is molded under the pressure. The molding is then forcibly air cooled. The porous aluminum welded with the cut clank material metal 1 by the low-melting alloy 2 can be molded to a desired shape by the above-mentioned method. The porous aluminum has high mechanical properties and above all, ductility and permits easy bending, machining, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多孔質アルミニウムの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing porous aluminum.

〔従来の技術〕[Conventional technology]

多孔質金属の製造法としては、従来より種々の手段が提
案されており、例えば、接触する二つの粉末状金属の界
面において、外部からの熱エネルギーによる金属原子の
拡散現象を利用した焼結法や、他の物質の多孔性を利用
する製造法として、発泡スチロールの表面に電着等の表
面処理法で金属を付着させた後、発泡スチロールを燃焼
させて網目状の多孔質金属を得る焼却法あるいは塩化ナ
トリウムのような水溶性粒子を所定の形状に焼き固め、
その粒子間隙に金属の溶湯を加圧注入して凝固させた後
、この塩化ナトリウムを水で溶解して網目状の多孔質金
属を得る溶出法や、溶湯中にマグネサイトやTi及びz
rの水素化物等のガス発生化合物を添加し、溶湯のガス
含有量を過飽和にして凝固させることにより、金属体内
部に気孔を内在させて多孔質金属を得る発泡法等が知ら
れている。
Various methods have been proposed to produce porous metals, including a sintering method that utilizes the diffusion phenomenon of metal atoms caused by external thermal energy at the interface between two contacting powder metals. As a manufacturing method that utilizes the porosity of other materials, there is an incineration method in which metal is attached to the surface of expanded polystyrene using a surface treatment method such as electrodeposition, and then the expanded polystyrene is burned to obtain a mesh-like porous metal. By baking water-soluble particles such as sodium chloride into a predetermined shape,
There is an elution method in which a molten metal is injected under pressure into the gaps between the particles and solidified, and then the sodium chloride is dissolved in water to obtain a network-like porous metal.
A foaming method is known in which a porous metal is obtained by adding a gas generating compound such as a hydride of r to supersaturating the gas content of the molten metal and solidifying the metal to create a porous metal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記焼結法においては、金属原子の拡散
を行なうのに数時間という長時間を要し、しかも接触面
に汚れや異物が介在すると拡散速度が極端に低下し金属
間の結合力が弱(なって機械的性質が悪化するという問
題があり、また、他の物質の多孔性を利用して行う焼却
法や溶出法においては、製造された多孔質金属の内部に
発泡スチロールの酸化物や塩化ナトリウムの粒子等が残
留する危険があり、しかも金属体の厚さが薄くなるので
機械的強度が低い等の問題があり、更に、発泡法におい
ては、気孔の発生場所にバラツキがあり、また溶湯の温
度分布、特に炉底付近と溶湯表面付近とでは温度差が大
きく、凝固速度も気孔の大小に左右され、気孔の分布が
不均一になり品質的に不安定であるという問題があった
However, in the above-mentioned sintering method, it takes several hours for the metal atoms to diffuse, and if there is dirt or foreign matter on the contact surface, the diffusion rate is extremely reduced and the bonding force between the metals is weakened. (There is a problem that the mechanical properties deteriorate as a result, and in the incineration method or elution method that uses the porosity of other materials, styrofoam oxides and chloride may be present inside the produced porous metal.) There is a risk that sodium particles, etc. may remain, and there are problems such as low mechanical strength due to the thinness of the metal body.Furthermore, in the foaming method, there are variations in the location of pores, and the molten metal There is a large temperature difference in the temperature distribution, especially near the bottom of the furnace and near the surface of the molten metal, and the solidification rate also depends on the size of the pores, resulting in uneven pore distribution and unstable quality.

また、上記以外に、軽量粒子拡散法が知られているが、
この方法で製造された多孔質金属は、気孔率が極めて低
く真の多孔質金属とはいえないものである。
In addition to the above, lightweight particle diffusion methods are also known.
The porous metal produced by this method has an extremely low porosity and cannot be called a true porous metal.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、かかる観点に鑑みて創案されたもので、生産
性や加工性がよく、孔径や気孔率を任意に制御すること
ができ、しかも、金属間結合が強固であって異物残留も
皆無である多孔質アルミニウムの製造方法を提供するも
のである。
The present invention was devised in view of these points of view, and has good productivity and workability, allows for arbitrary control of pore size and porosity, and has strong intermetallic bonds and no residual foreign matter. The present invention provides a method for producing porous aluminum.

すなわち、本発明は、アルミニウム又はアルミニウム合
金を心材とし、該心材の表層にFil<Al−Pb系、
Al−Sn系、又はAj−Pb−Sn系の合金をクラッ
ドし、このクラッドした素材をチップ状、繊維状、線状
等に切断した後、これを成形用金型等に入れ、加熱炉等
において上記合金の液相線温度±10℃まで加熱して上
記切断した素材を上記合金にて融着し、所望形状に成形
する多孔質アルミニウムの製造方法であり、また、アル
ミニウム又はアルミニウム合金を心材とし、該心材の表
層にl<Al−Pb系、Al−Sn系。
That is, the present invention uses aluminum or an aluminum alloy as a core material, and the surface layer of the core material has Fil<Al-Pb system,
After cladding with Al-Sn-based or Aj-Pb-Sn-based alloy and cutting this clad material into chips, fibers, wires, etc., it is placed in a mold for molding, etc., and heated in a heating furnace, etc. This is a method for producing porous aluminum, in which the cut material is heated to the liquidus temperature of the alloy ±10°C and then fused with the alloy and formed into a desired shape. and the surface layer of the core material is l<Al-Pb system, Al-Sn system.

又はAj−Pb−Sn系の合金をクラッドし、このクラ
ッドした素材をチップ状、繊維状、線状等に切断してフ
ラックスを塗布し9これを成形用金型等に入れ、加熱炉
等において上記合金の液相線温度±10℃まで加熱して
上記切断した素材を上記合金にて融着し、所望形状に成
形する多孔質アルミニウムの製造方法である。
Alternatively, clad with an Aj-Pb-Sn alloy, cut this clad material into chips, fibers, wires, etc., apply flux, 9 put it in a mold, etc., and heat it in a heating furnace, etc. This is a method for producing porous aluminum, in which the cut material is heated to the liquidus temperature of the alloy ±10° C., and the cut material is fused with the alloy and formed into a desired shape.

〔作用〕[Effect]

本発明方法においては、第1図に示すように、心材(1
)の表層にこの心材(1)よりも低融点の金1(2)を
薄くクラッドしたチップ状、ll1i状、線状等の金属
素材Aを成形用金型に入れた際に、複数のチップあるい
は繊維が互いに絡み合うように機械的に接触し、この状
態で低融点金属(2)を加熱して溶融すると、毛細管現
象により絡み合った接点が横状になっているので、第2
図に示すように、この横状の間隙に溶融した金属が凝集
し、この溶融した低融点金属(2)によりクツラドした
チップ状あるいは繊維状の金属が相互に融着して金属的
な結合がなされる。
In the method of the present invention, as shown in FIG.
) When a chip-shaped, ll1i-shaped, wire-shaped metal material A whose surface layer is thinly clad with gold 1 (2), which has a lower melting point than the core material (1), is placed in a mold, a plurality of chips are formed. Alternatively, if the fibers are in mechanical contact so that they are intertwined with each other and the low melting point metal (2) is heated and melted in this state, the intertwined contact points become horizontal due to capillarity, so the second
As shown in the figure, the molten metal aggregates in this horizontal gap, and the molten low-melting point metal (2) fuses the chip-shaped or fibrous metal to each other, creating a metallic bond. It will be done.

〔実施例〕〔Example〕

以下、実施例に基づいて、本発明の多孔質アルミニウム
の製造方法を具体的に説明する。
Hereinafter, the method for producing porous aluminum of the present invention will be specifically explained based on Examples.

第1図において、A3003アルミニウム合金を心材(
1)として、この心材(1)の片面あるいは両面に心材
(1)より好ましくは150〜250℃融点の低いAj
−Snから構成される金属(2)、例えばAJ1アルミ
ニウム合金を熱間圧延等の熱間塑性加工により圧着せし
め金属的に結合させた一種のクツラド板、あるいは低融
点金属(2)を容射法にて心材(1)の板表面に溶着さ
せた一種のクラツド板をクラツド比〔心材(1)の板厚
/金属(2)の厚さ〕1〜1000、全板厚0.05〜
2Mの範囲で作成する。
In Figure 1, A3003 aluminum alloy is used as the core material (
As 1), one or both sides of the core material (1) is coated with Aj having a melting point lower than that of the core material (1) by preferably 150 to 250°C.
A metal (2) composed of Sn, such as AJ1 aluminum alloy, is crimped and metallically bonded by hot plastic processing such as hot rolling, or a low-melting point metal (2) is made by radiation method. A type of clad plate welded to the surface of the core material (1) at a cladding ratio [thickness of core material (1)/thickness of metal (2)] 1 to 1000, total plate thickness 0.05 to
Create within a 2M range.

ここで、上記A3003アルミニウム合金の組成はMn
:1.3重量%、Cu:0.10重置%、Fe:0.2
重量%、Zn:0.1重量%であり、AJ1アルミニウ
ム合金の組成はSn : 12゜0重量%、Cu:0.
7重量%であった。
Here, the composition of the above A3003 aluminum alloy is Mn
: 1.3% by weight, Cu: 0.10% by weight, Fe: 0.2
% by weight, Zn: 0.1% by weight, and the composition of the AJ1 aluminum alloy is Sn: 12°0% by weight, Cu: 0.
It was 7% by weight.

なお、上記心材(1)としては、純アルミニウム、AI
−M(j系合金、Al−Mn系合金、AI−Va−S 
r系合金、Aj−CLJ系合金、AI−Zn−MQ系合
金等でもよく、また、上記金属(2)としては、Sn成
分4〜50重量%を含むAl−Sn系合金であればよく
、さらには、Pb及び5n−Pbの各成分をそれぞれ4
〜50重11%含むAj−Pb系あるいはAj−Pb−
Sn系合金であってもよく、上記合金を複数併用しても
よい。
In addition, as the core material (1), pure aluminum, AI
-M (j-based alloy, Al-Mn-based alloy, AI-Va-S
r-based alloy, Aj-CLJ-based alloy, AI-Zn-MQ-based alloy, etc., and the metal (2) may be an Al-Sn-based alloy containing 4 to 50% by weight of Sn. Furthermore, each component of Pb and 5n-Pb was
Aj-Pb system containing ~50% by weight or Aj-Pb-
It may be an Sn-based alloy, or a plurality of the above alloys may be used in combination.

次に、シャーリングマシーン等の切断機を使用して上記
クラッドした素材を幅1.0履X長さ350JIIIの
m帷状に切断するか、または1.51111X1.5n
m+の正方形のチップ状に切断した後、これらの素材を
エチルアルコールで脱脂・洗浄し、繊維状あるいはチッ
プ状の金属素材Aとする。
Next, use a cutting machine such as a shearing machine to cut the clad material into a strip of width 1.0 mm x length 350 JIII, or 1.51111 x 1.5 nm.
After cutting into m+ square chips, these materials are degreased and washed with ethyl alcohol to obtain metal materials A in the form of fibers or chips.

この繊維状あるいはチップ状の金属素材Aを成形用金型
に充填するが、この実施例においては繊維状金属素材A
の充填に際しては油圧プレス等の加圧装置を使用し、成
形圧力50Kg/cd〜10000に9/ciで加圧成
形した。また、チップ状金属素材Aの場合には自然充填
によって充填した。
This fibrous or chip-like metal material A is filled into a mold, but in this example, the fibrous metal material A
When filling, a pressure device such as a hydraulic press was used, and pressure molding was carried out at a molding pressure of 50 Kg/cd to 10,000 at 9/ci. Further, in the case of chip-shaped metal material A, the filling was performed by natural filling.

成形用金型に金属素材Aを充填した後に、この金型を不
活性ガス雰囲気の加熱炉に入れ、低融点金属(2)の液
相線温度±10℃まで加熱し、金型が前記温度に達して
からこの金型を加熱炉から取出し、強制空冷(この実施
例ではファンを使用)した後に多孔質アルミニウムを金
型から取出す。
After filling the metal material A into the mold, the mold is placed in a heating furnace with an inert gas atmosphere and heated to the liquidus temperature of the low melting point metal (2) ±10°C, and the mold is heated to the above temperature. After reaching , the mold is removed from the furnace and, after forced air cooling (using a fan in this example), the porous aluminum is removed from the mold.

この実施例においては、加熱により低融点金属(2)を
溶融させて心材(1)の融着を行ったが、この低融廃合
jI(2)による融着に際しては、心材(1)に対して
接着効果が得られる状態であればよく、必ずしも低融点
金属(2)を完全溶融状態にする必要はなく、半溶融の
状態で行ってもよい。
In this example, the core material (1) was fused by melting the low melting point metal (2) by heating, but during the fusion by this low melting point metal (2), the core material (1) was melted. The low melting point metal (2) does not necessarily need to be in a completely molten state, but may be in a semi-molten state as long as an adhesive effect can be obtained.

また、上記金属素材Aを金型に投入する前に、弗化アル
ミニウムカリ塩の7ラツクスを1g/100cc程度の
割合でエチルアルコールに混入してスラリーとし、この
スラリーの中に金網かごに入れた素材を浸漬し、スラリ
ーから外部に取出した後、これを乾燥させることにより
、上記金属素材Aの予備洗浄が不要になる。なお上記フ
ラックスとしては、弗化アルミニウムカリ塩以外に従来
公知の他の7ラツクスでもよく、望ましくは腐蝕性のな
いものがよい。
In addition, before putting the metal material A into the mold, 7 lux of potassium aluminum fluoride salt was mixed into ethyl alcohol at a rate of about 1 g/100 cc to make a slurry, and the wire mesh basket was placed in the slurry. By immersing the material, taking it out from the slurry, and then drying it, preliminary cleaning of the metal material A becomes unnecessary. In addition to the potassium aluminum fluoride salt, the above-mentioned flux may be any other conventionally known 7-lux, preferably a non-corrosive flux.

また上記加熱炉は、不活性ガス雰囲気の加熱炉を使用し
たが、通常の加熱炉、真空加熱炉、不活性ガス雰囲気の
加熱炉と真空加熱炉とを組合せた加熱炉のいずれでもよ
い。さらに上記金属素材Aは、切断されてチップ状、1
iisu状に形成されているが、線材としたものを切断
して形成してもよく、また、その長さ、幅、厚さ等は任
意である。
In addition, although the above-mentioned heating furnace uses an inert gas atmosphere heating furnace, it may be any one of a normal heating furnace, a vacuum heating furnace, and a combination of an inert gas atmosphere heating furnace and a vacuum heating furnace. Further, the metal material A is cut into chips, 1
Although it is formed into a wire rod, it may be formed by cutting a wire rod, and its length, width, thickness, etc. are arbitrary.

さらにまた、多孔質アルミニウム製品の形状は、金型に
より丸、四角、三角、多角形等所望の形状に成形される
ものである。
Furthermore, the shape of the porous aluminum product is formed into a desired shape such as a circle, square, triangle, polygon, etc. using a mold.

〔発明の効果〕〔Effect of the invention〕

本発明の多孔質アルミニウムの製造方法によれば、 (イ)従来の焼結法に比べて、加熱及び保持時間が短縮
され、その生産性が著しく向上し、価格を低減すること
ができる。
According to the method for producing porous aluminum of the present invention: (a) Compared to conventional sintering methods, heating and holding times are shortened, productivity is significantly improved, and costs can be reduced.

(ロ)従来の焼結金属や発泡金属は脆く、その加工性が
悪いのに対し、本発明で得られる製品は機械的性質、特
に延性(伸び)が極めて高く、曲げ加工や切削加工等が
容易である。
(b) Conventional sintered metals and foamed metals are brittle and have poor workability, whereas the products obtained by the present invention have extremely high mechanical properties, especially ductility (elongation), and are difficult to bend, cut, etc. It's easy.

(ハ)従来法の場合、孔径及び気孔率はその製造方法に
依存し、有効範囲が狭いが、本発明方法によれば素材形
状を変化せしめるのみで孔径及び気孔率を任意に変える
ことができ、その制御範囲が広い。
(c) In the case of the conventional method, the pore size and porosity depend on the manufacturing method and the effective range is narrow, but with the method of the present invention, the pore size and porosity can be changed arbitrarily by simply changing the shape of the material. , its control range is wide.

(ニ)強固な金属結合がなされているので、ヒ−トショ
ックに強く、例えば溶接等も可能である。
(d) Since the metal bond is strong, it is resistant to heat shock and can be welded, for example.

(ホ)異物混入、あるいは異物残留が非常に少ない。(e) There is very little foreign matter contamination or residual foreign matter.

(へ)伝熱面積の大幅な向上により熱伝達率が著しく改
善される。
(f) The heat transfer coefficient is significantly improved due to the significant increase in the heat transfer area.

(ト)電気伝導性があり、集電効果が高い。(g) It has electrical conductivity and has a high current collecting effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明方法において金属素材が互い
に結合する状態を示す説明図である。 A・・・・金属素材 (1)・・・・心材、(2)・・・・低融点金属、特許
出願人  日本軽金属株式会社 代  理  人   弁理士   中  村   智 
 廣(外2名) A; ゴkA鷹1↑λ 第 1   [:);;1             
   1:lζ二’、112:他#I!、烹支属 第2図
FIGS. 1 and 2 are explanatory diagrams showing the state in which metal materials are bonded to each other in the method of the present invention. A...Metal material (1)...Heartwood, (2)...Low melting point metal, Patent applicant Nippon Light Metal Co., Ltd. Agent Patent attorney Satoshi Nakamura
Hiro (2 others) A; GokA Taka1↑λ 1st [:);;1
1: lζ2', 112: other #I! , 烹子图2

Claims (5)

【特許請求の範囲】[Claims] (1)アルミニウム又はアルミニウム合金を心材とし、
該心材の表層にAl−Pb系、Al−Sn系、又はAl
−Pb−Sn系の合金をクラッドし、このクラッドした
素材をチップ状、繊維状、線状等に切断した後、これを
上記合金の液相線温度±10℃に加熱して上記切断した
素材を上記合金にて互いに融着し成形することを特徴と
する多孔質アルミニウムの製造方法。
(1) Aluminum or aluminum alloy is used as the core material,
The surface layer of the core material contains Al-Pb system, Al-Sn system, or Al
- Clad a Pb-Sn alloy, cut this clad material into chips, fibers, wires, etc., and then heat it to the liquidus temperature of the alloy ±10°C to produce the cut material. A method for producing porous aluminum, characterized in that the above-mentioned alloys are fused together and formed.
(2)上記各系の合金において、Pb、Sn又はPb−
Snの成分が4〜50重量%である特許請求の範囲第1
項記載の多孔質アルミニウムの製造方法。
(2) In each of the above alloys, Pb, Sn or Pb-
Claim 1, wherein the Sn component is 4 to 50% by weight
The method for producing porous aluminum as described in Section 1.
(3)アルミニウム又はアルミニウム合金を心材とし、
該心材の表層にAl−Pb系、Al−Sn系、又はAl
−Pb−Sn系の合金をクラッドし、このクラッドした
素材をチップ状、繊維状、線状等に切断してフラックス
を塗布し、これを上記合金の液相線温度±10℃に加熱
して上記切断した素材を上記合金にて互いに融着し成形
することを特徴とする多孔質アルミニウムの製造方法。
(3) Aluminum or aluminum alloy is used as the core material,
The surface layer of the core material contains Al-Pb system, Al-Sn system, or Al
- Clad a Pb-Sn alloy, cut this clad material into chips, fibers, wires, etc., apply flux, and heat this to the liquidus temperature of the alloy ± 10 ° C. A method for producing porous aluminum, characterized in that the cut materials are fused together and formed using the alloy.
(4)上記各系の合金において、Pb、Sn又はPb−
Snの成分が4〜50重量%である特許請求の範囲第3
項記載の多孔質アルミニウムの製造方法。
(4) In each of the above alloys, Pb, Sn or Pb-
Claim 3, wherein the Sn component is 4 to 50% by weight
The method for producing porous aluminum as described in Section 1.
(5)上記フッラクスはKF−AlF_3系フラックス
である特許請求の範囲第3項記載の多孔質アルミニウム
の製造方法。
(5) The method for producing porous aluminum according to claim 3, wherein the flux is a KF-AlF_3-based flux.
JP60058599A 1985-03-25 1985-03-25 Production of porous aluminum Pending JPS61217504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60058599A JPS61217504A (en) 1985-03-25 1985-03-25 Production of porous aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60058599A JPS61217504A (en) 1985-03-25 1985-03-25 Production of porous aluminum

Publications (1)

Publication Number Publication Date
JPS61217504A true JPS61217504A (en) 1986-09-27

Family

ID=13088969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60058599A Pending JPS61217504A (en) 1985-03-25 1985-03-25 Production of porous aluminum

Country Status (1)

Country Link
JP (1) JPS61217504A (en)

Similar Documents

Publication Publication Date Title
JPH0418955B2 (en)
JP2000117484A (en) Seamless ring-shaped brazing material and manufacture thereof
US4929511A (en) Low temperature aluminum based brazing alloys
US2445858A (en) Laminated structure
US2831760A (en) Material for welding aluminum and other metals
EP0145933B1 (en) Low temperature aluminum based brazing alloys
US3971657A (en) Sintering of particulate metal
US5033334A (en) Wire drawing die
JP3262268B2 (en) Brazing material and method for producing the same
JPS61217504A (en) Production of porous aluminum
US4838341A (en) Production of low temperature aluminum based brazing alloys
US4078713A (en) Brazing sintered ferrous powder metal articles
US3894678A (en) Method of bonding sintered iron articles
JPH06304740A (en) Cast-in method
JPS6258837B2 (en)
JPS54155158A (en) Manufacture of metallic composite rod
JP2022122462A (en) Carbon-fixed carbon steel powder
JPS61217506A (en) Production of porous aluminum
JP2013111606A (en) Joined body with superior corrosion resistance
JPS61217505A (en) Production of porous aluminum
JPS6340857B2 (en)
JPS61250126A (en) Manufacture of porous aluminum
JPS6089534A (en) Manufacture of porous aluminum
JP6218903B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JPS6092436A (en) Manufacture of porous aluminum