JPH0367470B2 - - Google Patents
Info
- Publication number
- JPH0367470B2 JPH0367470B2 JP62255219A JP25521987A JPH0367470B2 JP H0367470 B2 JPH0367470 B2 JP H0367470B2 JP 62255219 A JP62255219 A JP 62255219A JP 25521987 A JP25521987 A JP 25521987A JP H0367470 B2 JPH0367470 B2 JP H0367470B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- alloy
- base material
- bonding
- zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 48
- 239000010959 steel Substances 0.000 claims description 48
- 239000000463 material Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 25
- 229910045601 alloy Inorganic materials 0.000 claims description 18
- 239000000956 alloy Substances 0.000 claims description 18
- 238000007747 plating Methods 0.000 claims description 18
- 239000011701 zinc Substances 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- 238000011282 treatment Methods 0.000 claims description 13
- 229910052725 zinc Inorganic materials 0.000 claims description 13
- 238000004381 surface treatment Methods 0.000 claims description 12
- 238000005304 joining Methods 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 11
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 230000004927 fusion Effects 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 239000000919 ceramic Substances 0.000 description 13
- 229910000640 Fe alloy Inorganic materials 0.000 description 9
- 239000010408 film Substances 0.000 description 8
- 238000005422 blasting Methods 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- 229910001297 Zn alloy Inorganic materials 0.000 description 6
- 238000005219 brazing Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 239000012768 molten material Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 238000007751 thermal spraying Methods 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910007570 Zn-Al Inorganic materials 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- -1 ferrous metals Chemical class 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004781 supercooling Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Ceramic Products (AREA)
- Coating By Spraying Or Casting (AREA)
Description
〔産業上の利用分野〕
本発明は、鋼(合金鋼を含む)からなる基材表
面に合金鋼、非鉄金属やガラス、セラミツクス等
の無機材料を溶融接合する際の下地処理方法に関
する。
〔従来の技術〕
鋼は加工性、強度、経済性に優れ、各種産業分
野で広く利用されている。鋼のこれらの性能は、
非鉄金属やガラス、セラミツクス等の無機材料で
は到底得られないものであるが、その反面、非鉄
金属や無機材料には鋼では得られない様々な性質
がある。例えば、セラミツクスは鋼より優れた耐
熱性、防錆性、耐摩耗性等を有する。このような
ことから、鋼に鋼とは異なる性質の異種材料を接
合し、双方の性質を兼備させたいわゆる複合材料
が近年注目を集めており、接合手段の1つとして
溶融接合が知られている。溶融接合の幾つかを鋼
にセラミツクスを接合する場合を例にとつて次に
説明する。
Γろう付
鋼とセラミツクスとのろう付ではメタライズ
ろう付法が一般に用いられる。これはブラスト
処理や化成処理等の下地処理で表面を活性化し
た鋼に、表面をメタライズ処理したセラミツク
スを銀ろう等で接合する方法である。
これに類似するものとして、表面を活性化し
た鋼と、表面をメタライズ処理したセラミツク
スとの間にAl合金の中間層を介在させ、これ
を溶融させることにより両者を接合する方法も
知られている。
Γ拡散接合
下地処理された鋼表面とメタライズ処理され
たセラミツクスとの間に10〜100μm厚程度の
インサート金属を挟み、加熱加圧により両者を
拡散接合するものである。インサート金属は箔
体、粉体を用いる他、電気メツキ、蒸着、イオ
ンプレーテイング等により鋼基材表面に直接形
成されることもある。
なお、拡散接合には接合過程で液相を伴うも
のと、液相を伴わないものがあるが、液相を伴
わないものは本発明が対象とする溶融接合には
属しない。
Γ溶射
高温、高速のジエツト中にセラミツクスを供
給し、鋼表面に吹きつける方法である。通常、
鋼表面は予めブラスト処理等の下地処理を受け
る。ジエツトとしては水プラズマ、ガスプラズ
マ、、燃焼ガス、アーク等が用いられる。ジエ
ツト中に供給されたセラミツクスは溶融し、そ
の後、冷却されるが、過冷却により液相のまま
鋼表面に到達してセラミツクス接合層を形成す
る。
〔発明が解決しようとする問題点〕
ところで、ろう付、拡散接合、溶射、更には蒸
着といつた溶融接合で鋼に異種材料を接合する場
合、上でも少し述べたが、接合に際して鋼基材表
面に各種下地処理が施される。
下地処理として一般的なのは酸洗、ブラスト処
理、化成処理であるが、これ以外にもろう材、イ
ンサート金属に応じた組成の金属が、鋼基材表面
に電気メツキ、蒸着、イオンブレーテイング等に
より適宜付着される。
ところが、従来のこのような下地処理は、鋼基
材に対する接合強度を十分に高め得ていないこと
が判明した。
本発明は鋼にセラミツクス等の異種材料を溶融
接合するに際し、鋼基材との間に高い接合強度を
付与し得る下地処理方法を提供するものである。
本発明でいう溶融接合とは、鋼基材表面に接合
しようとする異種材料を、溶融状態の中間層を介
して、あるいは異種材料そのものを溶融状態にし
て、鋼基材表面に接触させた後、それらを凝固さ
せることで、鋼基材表面に異種材料を接合させる
ことを言い、その溶融状態には、過冷却により融
点以下であつても液相を呈している状態も含むも
のとする。そして、溶融状態の中間層を介した溶
融接合には、ろう付、液相拡散接合等があり、異
種材料そのものが溶隔する溶融接合には、溶射、
蒸着、CIPと焼成との組合、HIP等がある。
〔問題点を解決するための手段〕
本発明の下地処理方法には、鋼に異種材料を溶
融接合するにあたり、鋼基材表面に下地処理とし
て少なくとも外表面が亜鉛、アルミニウム又はそ
れ等の合金からなる粒体を投射するか、もしくは
亜鉛、アルミニウム又はそれ等金属のメツキ層を
形成して後、このメツキ層に少なくとも外表面が
亜鉛、アルミニウム又はそれ等の合金からなる粒
体の投射を行うものである。
ここで、少なくとも外表面が亜鉛、アルミニウ
ム又はそれ等の合金からなる粒体とは、Zn、Al
又はそれ等の合金、もしくは鉄又は鉄合金を核と
してその表面がZn、Al又はそれ等の合金で被覆
されている粉体を意味する。
また、ここで言う合金としては具体的にはZn
−Fe、Zn−Al、Zn−Mn等である。
〔作用〕
鋼基材表面に例えばFe−Zn系合金被覆を有す
る鉄合金粒を投射すると、投射した鉄合金粒と同
じ組成の鉄合金被膜が鋼基材表面に形成される。
この処理として代表的なものがZ−S処理と呼ば
れる乾式メツキ処理におけるZブラスト処理であ
り、このZブラスト処理にて形成される被膜は2
〜10μm程度と薄い上、多孔質であり、更に表面
粗さがRmax5〜20μmの凹凸状態を安定的に示
す。
下地としてこのような被膜を形成した鋼基材表
面に異種材料を溶融接合すると、ろう付にあつて
は溶融状態のろう材が下地によくなじみ、また凝
固したろう材が下地に対してアンカー効果やフア
スナー効果により高強度で接合する。同様に拡散
接合にあつてはインサート金属が、また溶射にあ
つてはセラミツクス等の接合対象材そのものがそ
れぞれ下地に対してよくなじみ、かつアンカー効
果やフアスナー効果を示して強固に接合する。
更に、このような下地処理被膜は被膜自体がイ
ンサート金属になり、この面からも接合強度向上
に寄与する。
ちなみに、従来の下地処理は、ブラスト処理に
あつては単に鋼基材表面に凹凸が形成されるだけ
で多孔質にはならず、本発明方法に比べれば溶融
物とのなじみは大巾に劣る。電気メツキ等による
被膜形成にあつても被膜表面が平坦で、しかも緻
密であり、溶融物との間に本発明方法の如き物理
的接合形態は期待できない。したがつて、いずれ
の下地処理も本発明方法に比べれば鋼基材に対す
る接合強度は大巾に劣るものとなる。
本発明にかかる投射下地被膜は、鋼基材表面の
みならず、鋼基材表面に被覆されたメツキ層の表
面に被覆しても同様の作用を奏する。
〔実施例〕
以下、本発明方法を鋼基材への投射、メツキ層
への投射、具体例の順で詳細する。
Γ鋼基材への投射
鋼基材表面に例えば鉄合金粒を投射する。鉄
合金粒とは例えばZ−S処理に用いる投射粒の
ことであり、代表的なものはFe−Zn合金粒ま
たはFe−Zn合金被覆粒、Fe−Zn−Al合金粒ま
たはFe−Zn−Al合金被覆粒である。Z−S処
理自体は乾式メツキ手段としては周知のものあ
るので、合金の具体的組成、粒径、投射速度等
の諸条件は周知のZ−S処理条件の範囲内から
適宜選択すればよい。ただし、合金組成を選択
する際には、投射形成被膜がインサート金属を
兼ねることもあるので、溶融物に対する組成上
のなじみ等を考慮する必要がある。
本発明方法はこの周知の乾式メツキ手段のブ
ラスト処理に、溶融接合に際して下地処理とし
て優れた適正を見出したものである。丸棒等に
通常使用される投射条件を第1表に整理して示
しておく。
[Industrial Field of Application] The present invention relates to a surface treatment method for melt-bonding an inorganic material such as alloy steel, non-ferrous metal, glass, or ceramics onto the surface of a base material made of steel (including alloy steel). [Prior Art] Steel has excellent workability, strength, and economic efficiency, and is widely used in various industrial fields. These properties of steel are
This is something that cannot be obtained with non-ferrous metals, glass, ceramics, or other inorganic materials, but on the other hand, non-ferrous metals and inorganic materials have various properties that cannot be obtained with steel. For example, ceramics have better heat resistance, rust prevention, wear resistance, etc. than steel. For this reason, so-called composite materials, which combine the properties of steel by joining different materials with properties different from those of steel, have been attracting attention in recent years, and fusion joining is known as one of the joining methods. There is. Some examples of fusion welding will be explained below, taking as an example the case of joining ceramics to steel. Γ Brazing Metallization brazing is generally used for brazing steel and ceramics. This is a method in which ceramics with a metallized surface are joined with silver solder or the like to steel whose surface has been activated by surface treatment such as blasting or chemical conversion treatment. Similar to this, a method is also known in which an intermediate layer of Al alloy is interposed between surface-activated steel and surface-metallized ceramics, and the two are joined by melting the intermediate layer. . Γ Diffusion Bonding An insert metal with a thickness of approximately 10 to 100 μm is sandwiched between a base-treated steel surface and metallized ceramics, and the two are diffusion bonded by heating and pressurizing. In addition to using foil or powder, the insert metal may be formed directly on the surface of the steel base material by electroplating, vapor deposition, ion plating, or the like. Note that diffusion bonding includes those that involve a liquid phase in the bonding process and those that do not involve a liquid phase, but those that do not involve a liquid phase do not belong to the fusion bonding that is the object of the present invention. Γ Thermal spraying is a method in which ceramics are fed into a high-temperature, high-velocity jet and sprayed onto the steel surface. usually,
The steel surface is previously subjected to surface treatment such as blasting. Water plasma, gas plasma, combustion gas, arc, etc. are used as the jet. The ceramics supplied in the jet is melted and then cooled, but due to supercooling, it reaches the steel surface in a liquid phase to form a ceramic bonding layer. [Problems to be solved by the invention] By the way, when joining dissimilar materials to steel by fusion joining such as brazing, diffusion joining, thermal spraying, and even vapor deposition, as mentioned above, it is difficult to join the steel base material during joining. Various surface treatments are applied to the surface. Commonly used surface treatments include pickling, blasting, and chemical conversion treatments, but in addition to these, metals with compositions appropriate for the filler metal and insert metal can be applied to the surface of the steel base material by electroplating, vapor deposition, ion blating, etc. It is attached as appropriate. However, it has been found that such conventional surface treatment does not sufficiently increase the bonding strength to the steel base material. The present invention provides a surface treatment method capable of imparting high bonding strength to a steel base material when melting and bonding dissimilar materials such as ceramics to steel. Melt bonding in the present invention refers to dissimilar materials to be joined to the surface of a steel base material, which are brought into contact with the surface of the steel base material through an intermediate layer in a molten state or by making the dissimilar materials themselves into a molten state. , refers to the joining of dissimilar materials to the surface of a steel base material by solidifying them, and the molten state includes a state in which the material is in a liquid phase even if the temperature is below the melting point due to supercooling. Melt bonding through an intermediate layer in a molten state includes brazing, liquid phase diffusion bonding, etc. Melt bonding in which dissimilar materials themselves are separated by thermal spraying,
There are vapor deposition, a combination of CIP and firing, HIP, etc. [Means for Solving the Problems] In the surface treatment method of the present invention, at least the outer surface of the steel base material is made of zinc, aluminum or an alloy thereof as a surface treatment when dissimilar materials are melt-joined to steel. or after forming a plating layer of zinc, aluminum or other metals, projecting particles whose at least the outer surface is made of zinc, aluminum or an alloy of these metals onto the plating layer. It is. Here, the particles whose at least outer surface is made of zinc, aluminum, or an alloy thereof refer to Zn, Al
or an alloy thereof, or a powder having a core of iron or an iron alloy and whose surface is coated with Zn, Al, or an alloy thereof. In addition, the alloy mentioned here specifically refers to Zn.
-Fe, Zn-Al, Zn-Mn, etc. [Operation] When iron alloy grains having, for example, a Fe-Zn alloy coating are projected onto the surface of a steel base material, an iron alloy coating having the same composition as the projected iron alloy grains is formed on the surface of the steel base material.
A typical example of this process is Z-blasting in dry plating called Z-S process, and the film formed by this Z-blasting process has 2
It is thin at ~10 μm, porous, and stably exhibits an uneven state with a surface roughness Rmax of 5 to 20 μm. When dissimilar materials are fused and bonded to the surface of a steel base material on which such a film has been formed as a base, the molten filler metal blends well with the base, and the solidified filler metal has an anchoring effect on the base. Bonds with high strength due to fastener effect. Similarly, in the case of diffusion bonding, the insert metal, and in the case of thermal spraying, the material to be bonded, such as ceramics, adapts well to the base and exhibits an anchor effect or fastener effect, resulting in a strong bond. Furthermore, such a base treatment film itself becomes the insert metal, and this aspect also contributes to improving the bonding strength. By the way, in the case of blasting, conventional surface treatment merely forms irregularities on the surface of the steel base material, but does not make it porous, and compared to the method of the present invention, the compatibility with the molten material is significantly inferior. . Even when a film is formed by electroplating or the like, the surface of the film is flat and dense, and physical bonding with the molten material as in the method of the present invention cannot be expected. Therefore, in any of the surface treatments, the bonding strength to the steel base material is significantly inferior compared to the method of the present invention. The projection base coating according to the present invention exhibits the same effect when coated not only on the surface of a steel base material but also on the surface of a plating layer coated on the surface of a steel base material. [Example] Hereinafter, the method of the present invention will be described in detail in the order of projection onto a steel base material, projection onto a plating layer, and specific examples. Projection onto Γ steel base material For example, iron alloy particles are projected onto the surface of the steel base material. Iron alloy grains are, for example, shot grains used in Z-S processing, and typical examples are Fe-Zn alloy grains, Fe-Zn alloy coated grains, Fe-Zn-Al alloy grains, or Fe-Zn-Al alloy grains. These are alloy coated grains. Since Z-S processing itself is a well-known dry plating method, various conditions such as the specific composition of the alloy, particle size, and projection speed may be appropriately selected from within the range of well-known Z-S processing conditions. However, when selecting the alloy composition, it is necessary to consider compositional compatibility with the molten material, etc., since the projection-formed coating may also serve as the insert metal. The method of the present invention has found excellent suitability for the blasting process of this well-known dry plating method as a base treatment during melt bonding. Table 1 summarizes the projection conditions normally used for round bars and the like.
【表】
なお、接合部材の周囲が腐食環境で、接合会
界面より鋼基材の腐食が進行する惧れのある時
は、鉄合金粒の投射により形成された鉄合金被
膜にクロメート処理やリン酸塩処理等の化成処
理を施すのが良い。鉄合金粒の投射による形成
被膜は前述したように多孔質で、化成処理液の
含浸性が高く、鋼基材との接合界面に対して高
い耐食性を付与する。
Γメツキ層への投射処理
鋼基材表面に被覆されたメツキ層の表面に投
射を行う。メツキ層は溶融物に対するなじみ等
を考え、亜鉛、アルミニウムまたは亜鉛−アル
ミニウム合金を選択する。メツキは均一な薄膜
を得る関係から、電気メツキ、溶融メツキ等と
し、メツキ厚は10〜150μmが好ましい。
メツキ層に投射する粒体は、少なくとも外表
面がZn、Al又はそれ等の合金からなる粒体を
用いる。例えば、Fe−Zn合金粒で投射した場
合はメツキ層表面に多孔質で表面が凹凸状態の
Fe−Zn合金層が形成される。この場合、メツ
キ層と投射被膜とは同一金属であつてもよい
し、異種金属であつてもよい。Fe−Zn合金粒
の場合、粒径0.2〜1.5mm程度のものが好まし
い。
この場合も、投射後の化成処理は、鋼基材と
の接合界面からの腐食を抑える上で有効であ
る。
本発明方法における投射および化成処理の好
ましい組合せを第2表()〜()に例示す
る。[Table] When the surroundings of the joint members are in a corrosive environment and there is a risk that corrosion of the steel base material may progress from the joint interface, the iron alloy coating formed by the projection of iron alloy particles should be treated with chromate or phosphorus. It is preferable to perform chemical conversion treatment such as acid treatment. As mentioned above, the film formed by projecting the iron alloy particles is porous, highly impregnable with the chemical conversion treatment solution, and provides high corrosion resistance to the bonding interface with the steel base material. Projection treatment on the Γ plating layer Projection is performed on the surface of the plating layer coated on the surface of the steel base material. For the plating layer, zinc, aluminum, or a zinc-aluminum alloy is selected in consideration of its compatibility with the molten material. In order to obtain a uniform thin film, plating is performed by electroplating, melt plating, etc., and the plating thickness is preferably 10 to 150 μm. The particles to be projected onto the plating layer are particles whose at least outer surface is made of Zn, Al, or an alloy thereof. For example, when projecting with Fe-Zn alloy particles, the surface of the plating layer is porous and has an uneven surface.
A Fe-Zn alloy layer is formed. In this case, the plating layer and the projection coating may be made of the same metal or may be made of different metals. In the case of Fe-Zn alloy grains, the grain size is preferably about 0.2 to 1.5 mm. In this case as well, the chemical conversion treatment after projection is effective in suppressing corrosion from the bonding interface with the steel base material. Preferred combinations of projection and chemical conversion treatment in the method of the present invention are illustrated in Tables 2 () to ().
本発明方法により形成される下地処理被膜は、
ろう付、拡散接合、溶射等の溶融接合を行う際
の、溶融物との間のぬれ性が良好で、溶融物が凝
固した後は下地に凝固物がアンカー効果、フアス
ナー効果で強固に接合し、鋼基材に対して溶融接
合対象材を高強度に接合せしめるものである。
また、本発明方法により形成される下地処理被
膜は溶融接合を行う際のインサート金属となり、
インサート金属を用いない場合は勿論、インサー
ト金属を用いる場合もそのインサート金属と協同
して、接合強度向上に寄与する。
したがつて、本発明方法によれば、鋼に異種材
料を溶融接合した場合の鋼基材との接合界面に優
れた接合強度が付与される。
The base treatment film formed by the method of the present invention is
It has good wettability with the molten material when performing fusion bonding such as brazing, diffusion bonding, thermal spraying, etc., and after the molten material solidifies, the solidified material is firmly bonded to the base with the anchor effect and fastener effect. , which allows a material to be fused to be joined to a steel base material with high strength. In addition, the base treatment film formed by the method of the present invention serves as an insert metal when performing fusion bonding,
Not only when no insert metal is used, but also when an insert metal is used, it cooperates with the insert metal and contributes to improving the bonding strength. Therefore, according to the method of the present invention, excellent bonding strength is imparted to the bonding interface with the steel base material when dissimilar materials are melt-bonded to steel.
Claims (1)
表面に下地処理として少なくとも外表面が亜鉛、
アルミニウム又はそれ等の合金からなる粒体を投
射して、前記亜 鉛、アルミニウム又はそれら等
の合金からなる表面が凹凸状態の被膜を形成する
ことを特徴とする異種材料溶融接合における下地
処理方法。 2 亜鉛、アルミニウム又はそれ等の合金を主成
分とするメツキを施した鋼に異種材料を溶融接合
するに際し、そのメツキ層表面に下地処置として
少なくとも外表面が亜鉛、アルミニウムまたはそ
れ等の合金からなる粒体を投射して、前記メツキ
層表面に亜鉛、アルミニウム又はそれ等の合金か
らなる表面が凹凸状態の被膜を形成することを特
徴とする異種材料溶融接合における下地処理方
法。[Claims] 1. When melt-joining dissimilar materials to steel, at least the outer surface of the steel base material is treated with zinc,
A surface treatment method for fusion bonding of dissimilar materials, characterized by forming a film made of zinc, aluminum or an alloy thereof with an uneven surface by projecting particles made of aluminum or an alloy thereof. 2. When melt-joining dissimilar materials to steel plated with zinc, aluminum, or an alloy thereof as a main component, at least the outer surface is made of zinc, aluminum, or an alloy thereof as a base treatment on the surface of the plating layer. A base treatment method for fusion bonding of dissimilar materials, characterized in that a coating of zinc, aluminum, or an alloy thereof with an uneven surface is formed on the surface of the plating layer by projecting particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25521987A JPH0199775A (en) | 1987-10-09 | 1987-10-09 | Base treatment method in melt joining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25521987A JPH0199775A (en) | 1987-10-09 | 1987-10-09 | Base treatment method in melt joining |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0199775A JPH0199775A (en) | 1989-04-18 |
JPH0367470B2 true JPH0367470B2 (en) | 1991-10-23 |
Family
ID=17275679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25521987A Granted JPH0199775A (en) | 1987-10-09 | 1987-10-09 | Base treatment method in melt joining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0199775A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03268867A (en) * | 1990-03-15 | 1991-11-29 | Furukawa Alum Co Ltd | Aluminum or aluminum alloy plate for brazing |
US6635993B1 (en) | 1998-08-26 | 2003-10-21 | Ngk Insulators, Ltd. | Joined bodies, high-pressure discharge lamps and a method for manufacturing the same |
US6642654B2 (en) | 2000-07-03 | 2003-11-04 | Ngk Insulators, Ltd. | Joined body and a high pressure discharge lamp |
US6703136B1 (en) | 2000-07-03 | 2004-03-09 | Ngk Insulators, Ltd. | Joined body and high-pressure discharge lamp |
US6812642B1 (en) | 2000-07-03 | 2004-11-02 | Ngk Insulators, Ltd. | Joined body and a high-pressure discharge lamp |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5195941A (en) * | 1975-02-21 | 1976-08-23 | Handatsukeseino suguretayojuaenmetsukikohan oyobi seizoho | |
JPS5223531A (en) * | 1975-08-18 | 1977-02-22 | Nissan Motor | Abrasionnresistant sliding member and its production method |
-
1987
- 1987-10-09 JP JP25521987A patent/JPH0199775A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5195941A (en) * | 1975-02-21 | 1976-08-23 | Handatsukeseino suguretayojuaenmetsukikohan oyobi seizoho | |
JPS5223531A (en) * | 1975-08-18 | 1977-02-22 | Nissan Motor | Abrasionnresistant sliding member and its production method |
Also Published As
Publication number | Publication date |
---|---|
JPH0199775A (en) | 1989-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6344237B1 (en) | Method of depositing flux or flux and metal onto a metal brazing substrate | |
US5723187A (en) | Method of bonding thermally sprayed coating to non-roughened aluminum surfaces | |
JP4339690B2 (en) | Alloy compositions and methods for low temperature fluxless brazing | |
US5340015A (en) | Method for applying brazing filler metals | |
US7451906B2 (en) | Products for use in low temperature fluxless brazing | |
US3466737A (en) | Brazing of titanium | |
US2927043A (en) | Aluminum coating processes and compositions | |
US6317913B1 (en) | Method of depositing flux or flux and metal onto a metal brazing substrate | |
EP1916318A2 (en) | Braze pre-placement using cold spray deposition | |
US3675310A (en) | Soldering method | |
CZ329095A3 (en) | Brazing process | |
US5496391A (en) | Material and a method for forming a protective coating on a substrate of a copper-based alloy | |
TWI762588B (en) | Resistance welding of unweldable metals with thermal sprayed interlayers | |
KR101319165B1 (en) | Method for coating a cylinder sleeve | |
US6187388B1 (en) | Method of simultaneous cleaning and fluxing of aluminum cylinder block bore surfaces for thermal spray coating adhesion | |
JPH0367470B2 (en) | ||
JPS58188585A (en) | Joining method of al material and dissimilar metallic material | |
KR100555910B1 (en) | A method of junction for different matal | |
JPH04295069A (en) | Method for metallizing ceramics and production of ceramics-metal combined body by utilizing this method | |
US3607152A (en) | Silver brazed titanium composite | |
Wielage et al. | Thermally sprayed solder/braze filler alloys for the joining of light metals | |
JPH01179768A (en) | Method for bonding ceramic material and metallic material | |
JPS5812117B2 (en) | metal wax | |
Wojdat et al. | A new approach to flux deposition for brazing aluminium by low pressure cold spraying | |
Wielage et al. | Cold gas sprayed filler coatings for brazing of light alloys |