JP3898803B2 - Method for producing metal composite member - Google Patents

Method for producing metal composite member Download PDF

Info

Publication number
JP3898803B2
JP3898803B2 JP20697297A JP20697297A JP3898803B2 JP 3898803 B2 JP3898803 B2 JP 3898803B2 JP 20697297 A JP20697297 A JP 20697297A JP 20697297 A JP20697297 A JP 20697297A JP 3898803 B2 JP3898803 B2 JP 3898803B2
Authority
JP
Japan
Prior art keywords
metal
base material
composite member
melting point
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20697297A
Other languages
Japanese (ja)
Other versions
JPH1150264A (en
Inventor
隆憲 黒木
靖 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroki Kogyosho Co Ltd
Original Assignee
Kuroki Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroki Kogyosho Co Ltd filed Critical Kuroki Kogyosho Co Ltd
Priority to JP20697297A priority Critical patent/JP3898803B2/en
Publication of JPH1150264A publication Critical patent/JPH1150264A/en
Application granted granted Critical
Publication of JP3898803B2 publication Critical patent/JP3898803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、摺動部材および軸受部材に適した金属材料と異種金属材料を機械的に接合した金属複合部材製造方法に関する。
【0002】
【従来の技術】
従来から、かかる複合部材の製造法として、金属母材上に粉末状の結合用の金属材料を散布して焼結する方法、帯状の母材に連続して結合用の金属材料を鋳造する連帯鋳造法、回転する母材を含む容器中に金属材料を鋳造する遠心鋳造法が知られている。
【0003】
ところが、何れの製造法も、焼結層または鋳造層および母材となる鋼等の厚さおよび面積に制限があり、寸法的な自由度に乏しく、厚物および大型品には不適である。
【0004】
とくに、潤滑性、耐焼付き性および耐腐食性に優れた金属材料として錫または鉛合金であるホワイトメタル、錫等を含むアルミ合金、銅合金などを接合材とし、運搬機械、産業機械などの摺動部材および軸受部材としての複合材の製造に適用する場合には、接合材と母材との接合界面における機械的強度が乏しいという問題がある。
【0005】
このため、接合材と母材との間の接合強度を高めるために、接合面に事前にメッキ等の予備処理を施すことも考えられるが、これによっても充分な接合強度は望めず、工程数の増加による製造コストの増大につながるという問題がある。
【0006】
【発明が解決しようとする課題】
この発明が解決しようとする課題は、潤滑性、耐焼付き性、さらには、耐腐食性などの機能を向上させる金属材料をより多くの種類で、且つ寸法制限の少ない適用が可能で、その上、充分な接合強度を有する金属複合材を安価に得ることにある。
【0007】
【課題を解決するための手段】
本発明は、金属母材上に低融点の金属材料を介在させるとともに等間隔および一定形状の目開きをもつ金網を配置し、この金網上に金属粒あるいは金属塊を整列することによって隣同志が接触しない間隔を持つ金属粒あるいは金属塊の単層または数層に配列された表面層を形成し、この表面層の上に押圧材を配置し、この表面層を少なくとも低融点の金属材料の一部に液相が発生する温度以上で、且つ、母材と金属粒または金属塊の融点以下の温度に加熱しつつ押圧材を押圧し、単層または数層に配列された金属粒あるいは金属塊の間の空隙内に低融点の金属材料を圧入充填して摺動部材または軸受部材として用いられる金属複合部材の製造方法である。
【0008】
これによって、鋼等の母材と充分な接合強度をもつ寸法制限の少ない複合部材を安価に得ることができる。
【0010】
【発明の実施の形態】
本発明の実施の形態を、添付各図に示す。図1は本発明により板状の摺動部材又は軸受部材を製造する場合の、粒状または塊状の材料の配置の一例を示すもので、粒状または塊状の材料1としてのボールが、鋼板等からなる母材4、母材4より低融点の銅板3、整列のための金網2の全面に整列した状態を示す。
【0011】
図2および図3は、それぞれ本発明により製造された、規則的な形状と大きさをもち、且つ、整列した空隙を有する表面層が母材となる鋼等に接合された複合体の断面拡大図の例を示す。図2の場合は、母材である軟鋼板4a上の金網2にバレル玉1aが全面整列し、銅ロウ3aによって一体化接合された複合板を示す。また、図3の場合は、ステンレス製ボール1bがニッケルろう3bによって一体化接合された複合板を示す。
【0012】
図4は粒状または塊状の材料1として、線材を直径程度の長さに切断したカットワイヤー1cを使用した場合であり、直径程度の長さに切断した円柱形状となるが、切断長さが直径の3倍以上になると形成される空隙の形状および大きさが不均一となりやすいので、線材の直径にほぼ等しい長さで切断して等軸形状としたほうが好適である。
【0013】
金属母材4(4a)としては、炭素鋼、ステンレス鋼および合金鋼の組成をもつ、いわゆる鉄鋼材料であれば良い。
【0014】
従来、多孔質化のために用いられる粉末の粒度は32メッシュ以下がほとんどであるが、本発明において原料として用いる粒状または塊状の材料は粒度が32メッシュ超過で、むしろ施工時の配置作業においては大きい粒あるいは塊のほうが取扱が簡便である。
【0015】
また、粒状または塊状の材料は等軸形状で平滑な表面をもつ材料が好適であるが、製造履歴および製造方法には制限がなく、粒度の小さい粉末を適当な方法で固化成形して造粒した塊状の異形体でも、それ自身が形状保持できる程度の構造強度をもっていれば使用可能である。
【0016】
そして、本発明における「空隙を有する表面層」は粒状または塊状の材料を、隣同志で接触しない間隔で単層あるいはせいぜい数層配置することで得られるが、単層とした方が、前記粒状または塊状の材料と母材となる鋼等との界面で接合が行われて、規則的な形状と大きさの空隙をもつ表面層を形成できることから、ホワイトメタル等の金属材料を空隙に圧入充填するのに都合がよい。
【0017】
粒状または塊状の材料は、母材となる鋼等の表面に不規則的に配置するより整列させて配置するほうが施工後に形成される空隙の形状および大きさが均一となり、施工前において形成される空隙の形状および大きさを制御することが可能となる。
【0018】
つまり、不規則な配置を行うと空隙の形状および大きさが乱雑になり、さらに空隙の分布および表面層の厚さも不均一となるため、摺動部材および軸受部材としての充分な機能を付与することができない。
【0019】
したがって、粒状または塊状の材料を母材となる鋼等の表面に整列させて配置するため、例えば図1に示す例においては金網2を用いて配列を行うことができる。金網は等間隔および一定形状の目開きをもった網であれば良く、その製造方法には制限がない。
【0020】
金網の材質は母材となる鋼等の主成分である鉄を含有する合金、例えば炭素鋼、ステンレス鋼および合金鋼等の組成をもつ材料が入手しやすい。整列配置のために用いた金網は施工後も表面層内に残留し、金網自体も表面層内に空隙を形成し、ホワイトメタル等の金属材料を表面層に固着する機能をもつ。
また、金網の材質を母材となる鋼等より融点の低い材料、例えば銅または銅合金とすることにより施工後においても金網を残留させることなく、施工前および施工中において整列配置させるだけではなく、母材となる鋼等とのろう付けによる接合を行う場合に、銅製の金網にろう材としての機能をもたせることも可能である。
【0021】
粒状あるいは塊状の材料を整列させるために用いる金網等の整列材を、処理後残留させないようにする手段としては、この融点の低い金網を用いる以外にも、図1に示す母材4または重し5として、図5、図6および図7に示す断面形状に母材となる鋼等を加工したものを使用することも可能である。
【0022】
つまり、図5に示す角溝31、図6に示す三角溝32、または図7に示す丸溝33の断面形状に母材となる鋼等を加工すれば、これに沿って粒状または塊状の材料を配置することで、該粒状または塊状の材料の規則的に整列した状態を得ることは容易であるから、異種材料からなる整列材を用いた場合に比べて、施工後においても前記異種材料が残留することはない。
【0023】
一方、母材ではなく、図1に示す重し5に、前記粒状あるいは塊状の材料の整列のための、上記断面形状を有する溝を加工する場合、該溝に沿って前記粒状あるいは塊状の材料を配置した上で、固定して上下を逆転すれば良い。重し5に整列のための断面形状の溝加工を行えば、重し5は整列のために繰返して用いることが可能なため、製造コストの低減につながる。
【0024】
また、図1に示す押圧材としての重し5の表面に適当な穴形状および寸法をもったエキスパンドメタルを配置し、その穴に粒状または塊状の材料を配置する方法であれば、重しへの断面形状加工が不要となり、繰返し利用も可能であるためより経済的である。
【0025】
何れにしろ、上記断面形状は空隙を形成する粒状または塊状の材料の形状に対応してより密着する形状を選択すれば良く、施工前においてできるだけ密着させることにより施工作業が簡便となり、接合強度を高くすることができる。
【0026】
そして、鋼等の母材と表面層を構成する粒状または塊状の材料を一体化接合するために、鋼等の母材及び粒状または塊状の材料の間に両者より融点が低い金属材料を介在させて、その一部に液相が発生する温度以上に加熱することにより、液相となった前記金属材料は溶解流動して、前記鋼等の母材及び粒状または塊状の材料を冶金的に接合する。
【0027】
この接合方法に類するものとして通常のろう付けもその範躊にあるが、本発明のおける接合方法はろう付けによる方法よりも広い意昧をもつ。つまり通常のろう付けでは本来接合のため介在する金属材料は施工中においては液相のみとなる温度に加熱するのに対し、本発明においてはその一部に液相が発生する温度以上に加熱するため広い温度域での施工が可能となる。
【0028】
したがって施工のための装置設備としては通常のろう付け炉が適用でき、図1に示す銅板3の他に、通常のろう材として用いられている銀ろう、リン銅ろう、黄銅ろう及びニッケルろう等の材質に対しても前記通常のろう付け炉が適用できる。
【0029】
図1に示す場合においては、母材4となる鋼等と粒状または塊状の材料1の間に、これらより融点の低い金属材料を介在させて、その一部に液相が発生する温度以上に加熱することにより溶解流動させ母材4と粒状または塊状の材料1を冶金的に接合させるため、前記金属材料の材質としては、母材4となる鋼等と粒状または塊状の材料1の簡隙において均一に広がり、濡れる性質があれば良く、市販のろう材でなくても上記で挙げた銅製金網でも充分にその特性を有する。
【0030】
母材及び粒状または塊状の材料との間に介在させる前記金属材料は形状および寸法が自由に選択できるもの、例えば、図1に示すような板および箔状の銅であれば入手が容易で、製造コストに占める原料費の割合を低くすることができる。線材の銅であれば、適当な長さに切断し、必要な位置で液相となり、かつ、広がったときに接合するのに充分な量となるように配置すれば良い。
【0031】
さらに、予め粒状または塊状の材料の表面に、接合のために介在させる金属材料を被覆しておけば、母材となる鋼等と粒状または塊状の材料の接触位置で前記金属材料が液相状態で流動することにより、接合に必要な量を補足して供給することが可能である。
【0032】
この場合、前記金属材料の粒状または塊状の材料の表面への被覆方法は、めっき、バレルコーティングおよび溶射等の通常用いられる被覆方法でよく、粒状または塊状の材料の形状、寸法および材質により適当な方法を選択すれば良い。
【0033】
また、母材となる鋼等の接合面の外縁には、接合のために介在させる金属材料が液相となって流失するのを防止するための堰となる薄板を、該薄板の上辺が粒状または塊状の材料の上端からわずかに出る程度に母材の側面に溶接で取付けるか、あるいは、母材の接合面に、接合のために介在させる金属材料、金網及び粒状または塊状の材料が配置できる面積を有し、かつ、粒状または塊状の材料の上端がわずかに出る程度の深さをもった空間を堀込んで加工しても良い。
【0034】
このように、図2、図3または図4に示されるようなホワイトメタル等の金属材料を多量に複合するための整列した空隙をもつ表面層が母材となる鋼等と充分な強度をもって接合された複合材では、空隙が表面層に占める割合は30体積%以上であり、空隙の開口部は内部より小さいため圧入充填されたホワイトメタル等の金属材料が抜けにくい構造となっている。図8は、ホワイトメタル等の充填金属6を表面層に含まれる空隙中に圧入充填した摺動部材または軸受部材に適した機能をもつ複合部材の断面拡大図の一例を示す。
【0035】
整列した空隙をもつ表面層を備えた母材と複合する充填金属材料は、一体複合化のために圧入充填されるため、空隙への充填度を大きくして接合強度を大きくするためにも、変形抵抗が小さい方が望ましいが、必要に応じて圧入充填時に加熱すれば良く、変形流動しやすい変形抵抗になるように適宜な温度で加熱して圧入充填される。
【0036】
また、圧入充填のために荷重を負荷する装置は、従来から用いられている加工機械を用いれば良く、例えばプレス、鍛造機、圧延機等が挙げられ、製品の形状と寸法により適した加工装置を使用すれば良い。
【0037】
そして、加熱のための加熱装置は通常用いられる電気炉が有用であり、特に加熱時に特殊な雰囲気調整は必要としない。つまり、加熱時に酸化皮膜を形成したとしても、圧入充填時に大きく変形流動する充填金属材料表面の酸化皮膜は完全に破壊され、空隙内の金属粒または金属塊や母材金属表面とほとんど金属接触するため、接合界面は充分な接合強度をもつことになり、空隙内に充填された充填金属材料の体積は酸化皮膜の体積よりはるかに大きいため、前記充填金属材料の機械的接合強度の劣化も少ない。
【0038】
ところで、整列した空隙をもつ表面層を備えた母材と複合する充填金属材料は、その製造法および加工履歴に特に制限はなく、粉末焼結材でも鋳造材でも、勿論加工材でも良く、少なくとも圧入充填時に破壊することなく変形流動するような金属材料であれば良く、圧入充填時に加熱を適宜行うことにより適用できる金属材料はかなり増える。
【0039】
【実施例】
以下に示す実施例では、真空ろう付炉を用いてろう付けにより施工を行い、角板状のろう付け複合材を製造した具体例について説明する。
【0040】
実施例1
図9に示すように、板厚22mmで300mm×300mmの面積をもった軟鋼(材質:SS400)板4aを母材とし、該軟鋼板4aの、ろう付けによる接合を行う接合面上に、ろう材となる厚さ0.1mmで290mm×290mmの面積をもった銅板3を配置し、その上にバレル玉1aを整列させるためのステンレス製金網2(目開き:3mm、線径:0.65mm)を置き、3×3の網目1つにつき直径3.2mmの鉄製のバレル玉1aを1個ずつ配置した。そして、銅板3、金網2およびバレル玉1aを軟鋼板4aに密着および固定するために重し5をバレル玉1a上に接触させて配置した。
【0041】
鉄製のバレル玉1aは事前に、バレルコーティングにより厚さ20μmの銅層がバレル玉全面に被覆したものを用いた。
【0042】
軟鋼板4aの外縁には、ろうの流失を防止するため、軟鋼板4aの上記接合面に上記の銅板3、金網2およびバレル玉1aが配置できる面積およびバレル玉1aの上面がわずかに飛び出す程度の深さをもった平底の空間を堀込んだ。
【0043】
施工は通常の真空ろう付炉を用いて、真空度を約10-4torrとした真空雰囲気中でろう材となる銅の融点直下1000℃で90分保持した上で、最終的に1135℃で20分保持した後に冷却した。1000℃保持後および1135℃保持後に段階的に窒素ガスで雰囲気置換を行い、ガス加圧しながら冷却させた。冷却後、炉より取り出したろう付け複合体は図2に示すように、施工前における銅板3が溶けて形成された銅ろう3aにより軟鋼板4a、金網2およびバレル玉1aが全面整列して一体化接合されていた。
【0044】
複合体断面のミクロ組織観察においても、銅ろう3aにより軟鋼板4a、金網2およびバレル玉1aが健全に一体化接合されていることが確認された。
【0045】
さらに摺動部材および軸受部材とするために、バレル玉1aの形成する空隙にホワイトメタルWJ2(代表組成:9重量%アンチモン、5重量%銅、残錫および不可避不純物)を充填した。
【0046】
先ず、図2に示すように、軟鋼板4a、金網2およびバレル玉1aが全面整列して一体化接合された複合板(面積:60mm×60mm)のバレル玉1aに接するように板厚10mmのWJ2の板(面積:50mm×40mm)を上にして配置し、余分な酸化を防ぐため、できるだけ露出がないように全体をアルミ箔で包み、加熱のために大気雰囲気の電気炉へ装入した。
【0047】
加熱温度は250℃、保持時間は1時間として、加熱終了後すばやく35ton油圧プレスの下金敷上に移動させて、ホワイトメタル側に上金敷を手動で接触させた上で、下金敷を油圧で上方に駆動させて、ホワイトメタル板に圧下を加えた。複合板は変形せず、圧下によりホワイトメタル板のみが変形されて、特にバレル玉1aに接触したホワイトメタル板下側が大きく変形流動して、バレル玉1aと軟鋼板4aで形成された空隙内に充填されて、複合板とホワイトメタルが一体化した複合材が得られた。
【0048】
一体化したホワイトメタルを最表面層とする複合体は、切断断面のマクロ観察からバレル玉1aおよび軟鋼板4aで形成された空隙内はほとんど変形流動したホワイトメタルで充填されているのが観察され、充分な接合強度でホワイトメタルと軟鋼板4aが接合された、一体化複合体となっているのが確認された。
【0049】
実施例2
実施例1におけるホワイトメタルの代わりに、純アルミA1050(純度:99.5%以上)を用いて一体化接合を行った。図2に示す軟鋼板4a、金網2およびバレル玉1aが全面整列して一体化接合された複合板(面積:60mm×60mm)のバレル玉1aに接するように板厚10mmの純アルミ板(面積:50mm×50mm)を上にして配置し、余分な酸化を防ぐため、できるだけ露出がないように全体をアルミ箔で包み、加熱のために大気雰囲気の電気炉へ装入した。
【0050】
加熱温度は650℃、保持時間は1時間として、加熱終了後すばやく35ton油圧プレスの下金敷上に移動させて、純アルミ側に上金敷を手動で接触させた上で、下金敷を油圧で上方に駆動させて、純アルミ板に圧下を加えた。複合板は変形せず、圧下により純アルミ板のみが変形して、特にバレル玉1aに接触した純アルミ板下側が大きく変形流動して、バレル玉1aと軟鋼板4aで形成された空隙内に充填されて、複合板と純アルミが一体化した複合材が得られた。
【0051】
一体化した純アルミを最表面層とする複合体は、切断断面のマクロ観察からバレル玉1aおよび軟鋼板4aで形成された空隙内はほとんど変形流動した純アルミで充填されているのが観察され、充分な接合強度で純アルミと軟鋼板4aが接合された、一体化複合体となつているのが確認された。
【0052】
実施例3
実施例1におけるホワイトメタルの代わりに、無酸素銅C1020(純度:99.96%以上)を用いて一体化接合を行った。図2に示す軟鋼板4a、金網2およびバレル玉1aが全面整列して一体化接合された複合板(面積:60mm×60mm)のバレル玉1aに接するように板厚10mmの無酸素銅板(面積:50mm×50mm)を上にして配置し、余分な酸化を防ぐため、できるだけ露出がないように全体を銅箔で包み、加熱のために大気雰囲気の電気炉へ装入した。加熱温度は950℃、保持時間は1時間として、加熱終了後すばやく35ton油圧プレスの下金敷上に移動させて、無酸素銅板側に上金敷を手動で接触させた上で、下金敷を油圧で上方に駆動させて、無酸素銅板に圧下を加えた。複合板は変形せず、圧下により無酸素銅板のみが変形して、特にバレル玉1aに接触した無酸素銅板下側が大きく変形流動して、バレル玉1aと軟鋼板4aで形成された空隙内に充填されて、複合板と無酸素銅が一体化した複合材が得られた。
【0053】
一体化した無酸素銅を最表面層とする複合体は、切断断面のマクロ観察からバレル玉1aおよび軟鋼板4aで形成された空隙内は変形流動した無酸素銅で充填されているのが観察されたが、実施例1および実施例2に示す、ホワイトメタルおよび純アルミと比べると、空隙の体積に対する無酸素銅の充填体積の割合は低かった。しかし、無酸素銅はホワイトメタルおよび純アルミと比べて単体としての強度はかなり高いため、一体化された複合体としては充分な接合強度で無酸素銅と軟鋼板4aは接合されていると判断された。
【0054】
【発明の効果】
(1)ホワイトメタル等の金属材料を複合するための空隙が表面層の30体積%以上を占めた表面層が母材となる鋼等と充分な強度で接合された複合部材を得ることができる。
【0055】
(2)ホワイトメタル等の金属材料を表面層に含まれる空隙中に圧入充填するという、比較的簡単な手段で、潤滑性、耐焼付き性および耐腐食性に優れた摺動部材または軸受部材とすることができる。
【図面の簡単な説明】
【図1】 本発明によって、板状の摺動部材または軸受部材を製造の過程として、粒状または塊状の材料の配置の一例を示す断面配置図である。
【図2】 本発明により製造された、規則的な形状と大きさをもち、且つ、整列した空隙を有する表面層が母材となる鋼等に接合された複合体の断面拡大図である。
【図3】 本発明により製造された、規則的な形状と大きさをもち、且つ、整列した空隙を有する表面層が母材となる鋼等に接合された複合体の他の例を示す断面拡大図である。
【図4】 粒状または塊状の材料としてカットワイヤーを用いて、多くの規則的な形状と大きさをもち、且つ、整列した空隙を有する表面層が母材となる鋼と接合された複合体の断面拡大図である。
【図5】 粒状または塊状の材料を整列させるために母材または重しに加工する断面形状のうち、角溝を示す断面図である。
【図6】 粒状または塊状の材料を整列させるために母材または重しに加工する断面形状のうち、三角溝を示す断面図である。
【図7】 粒状または塊状の材料を整列させるために母材または重しに加工する断面形状のうち、丸溝を示す断面図である。
【図8】 本発明により製造された金属材料との複合部材の断面拡大図である。
【図9】 本発明によって、板状の摺動部材または軸受部材を製造の過程として、粒状または塊状の材料の配置の実施例を示す断面配置図である。
【符号の説明】
1 粒状または塊状の材料
1a バレル玉
1b ステンレス製ボール
1c ステンレス製カットワイヤー
2 金網
3 銅板
3a 銅ろう
3b ニッケルう
4 母材
4a 軟鋼板
5 重し
6 充填金属
31 角溝
32 三角溝
33 丸溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a mechanically joined metal composite member of a metal material and a dissimilar metal material suitable for a sliding member and the bearing member.
[0002]
[Prior art]
Conventionally, as a method of manufacturing such a composite member, a method of spraying and bonding a powdery metal material for bonding on a metal base material, and a continuous method of casting a metal material for bonding continuously on a belt-shaped base material A casting method and a centrifugal casting method in which a metal material is cast in a container containing a rotating base material are known.
[0003]
However, any of the manufacturing methods has limitations on the thickness and area of the sintered layer or cast layer and the steel used as a base material, and is not suitable for thick and large-sized products because of a lack of dimensional freedom.
[0004]
In particular, metallic materials with excellent lubricity, seizure resistance, and corrosion resistance include white metals such as tin or lead alloys, aluminum alloys containing tin, copper alloys, etc. as bonding materials. When applied to the production of a composite material as a moving member and a bearing member, there is a problem that the mechanical strength at the bonding interface between the bonding material and the base material is poor.
[0005]
For this reason, in order to increase the bonding strength between the bonding material and the base material, it is conceivable to perform preliminary treatment such as plating on the bonding surface in advance. There is a problem that this leads to an increase in manufacturing cost.
[0006]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that more types of metal materials that improve functions such as lubricity, seizure resistance, and corrosion resistance can be applied with less dimensional restrictions. It is to obtain a metal composite material having a sufficient bonding strength at low cost.
[0007]
[Means for Solving the Problems]
In the present invention , a metal material having a low melting point is interposed on a metal base material, and a metal mesh having openings of equal intervals and a constant shape is arranged. A surface layer arranged in a single layer or several layers of metal grains or metal lumps having a non-contact interval is formed, a pressing material is disposed on the surface layer, and the surface layer is made of at least one metal material having a low melting point. The metal particles or metal lumps arranged in a single layer or several layers by pressing the pressing material while heating to a temperature above the temperature at which the liquid phase is generated in the part and below the melting point of the base material and the metal particles or metal lump Is a method of manufacturing a metal composite member that is used as a sliding member or a bearing member by press-fitting and filling a metal material having a low melting point into a gap between the two.
[0008]
As a result, a composite member having a sufficient size and a small size limit with a base material such as steel can be obtained at low cost.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention are shown in the accompanying drawings. FIG. 1 shows an example of the arrangement of granular or massive material when producing a plate-like sliding member or bearing member according to the present invention. The ball as the granular or massive material 1 is made of a steel plate or the like. The base material 4, the copper plate 3 having a lower melting point than the base material 4, and the entire state of the wire mesh 2 for alignment are shown.
[0011]
2 and 3 are enlarged cross-sectional views of a composite body manufactured according to the present invention, having a regular shape and size, and having a surface layer having aligned voids bonded to steel or the like as a base material. An example of the figure is shown. In the case of FIG. 2, a composite plate is shown in which barrel balls 1 a are aligned on the entire surface of a wire mesh 2 on a mild steel plate 4 a that is a base material and are integrally joined by a copper braze 3 a. 3 shows a composite plate in which stainless steel balls 1b are integrally joined by nickel brazing 3b.
[0012]
FIG. 4 shows a case where a cut wire 1c obtained by cutting a wire rod to a length of about a diameter is used as the granular or lump material 1, and a cylindrical shape cut to a length of about a diameter is used. Since the shape and size of the voids formed tends to be non-uniform when the number of holes is 3 times or more, it is preferable to cut the length approximately equal to the diameter of the wire into an equiaxed shape.
[0013]
The metal base material 4 (4a) may be a so-called steel material having a composition of carbon steel, stainless steel, and alloy steel.
[0014]
Conventionally, the particle size of the powder used for making the porous material is almost 32 mesh or less, but the granular or massive material used as a raw material in the present invention has a particle size exceeding 32 mesh, rather, in the arrangement work at the time of construction. Larger grains or lumps are easier to handle.
[0015]
In addition, a granular or massive material is preferably a material having an equiaxed shape and a smooth surface, but there is no limitation on the production history and the production method, and a powder having a small particle size is solidified and molded by an appropriate method and granulated. Even the block-shaped deformed body can be used as long as it has a structural strength sufficient to maintain its shape.
[0016]
The “surface layer having voids” in the present invention can be obtained by disposing a granular or massive material in a single layer or at most several layers at intervals not in contact with each other. Alternatively, bonding is performed at the interface between the bulk material and the base steel, etc., and a surface layer with regular shapes and sizes of voids can be formed, so a metal material such as white metal is press-fitted into the voids. Convenient to do.
[0017]
Granular or lump-shaped materials are formed before construction because the shape and size of the voids formed after construction are more uniform when they are arranged in alignment than when they are irregularly arranged on the surface of the base steel, etc. It becomes possible to control the shape and size of the gap.
[0018]
In other words, when the irregular arrangement is made, the shape and size of the gaps become messy, and the distribution of the gaps and the thickness of the surface layer become non-uniform, so that sufficient functions as a sliding member and a bearing member are given. I can't.
[0019]
Therefore, in order to arrange the granular or massive material in alignment with the surface of steel or the like as a base material, for example, in the example shown in FIG. The wire mesh only needs to be a mesh having equal intervals and constant openings, and the manufacturing method is not limited.
[0020]
As the material of the metal mesh, an alloy containing iron, which is a main component such as steel as a base material, for example, a material having a composition such as carbon steel, stainless steel, and alloy steel is easily available. The wire mesh used for the alignment arrangement remains in the surface layer even after construction, and the wire mesh itself has a function of forming a void in the surface layer and fixing a metal material such as white metal to the surface layer.
In addition, the wire mesh is made of a material having a melting point lower than that of the base steel, such as copper or a copper alloy, so that the wire mesh is not left after the construction, and is not only arranged and arranged before and during the construction. In addition, when joining by brazing with steel or the like as a base material, it is also possible to give a copper wire mesh a function as a brazing material.
[0021]
As a means for preventing the alignment material such as the wire mesh used for aligning the granular or massive material from remaining after the treatment, in addition to using the wire mesh having a low melting point, the base material 4 shown in FIG. 5, it is also possible to use a material obtained by processing steel as a base material into the cross-sectional shape shown in FIGS.
[0022]
That is, if steel or the like as a base material is processed into the cross-sectional shape of the square groove 31 shown in FIG. 5, the triangular groove 32 shown in FIG. 6, or the round groove 33 shown in FIG. It is easy to obtain a regularly aligned state of the granular or massive material by arranging the above, so that the dissimilar material can be obtained even after the construction as compared with the case where the aligning material made of the dissimilar material is used. It will not remain.
[0023]
On the other hand, when a groove having the above-mentioned cross-sectional shape for processing the granular or massive material is processed in the weight 5 shown in FIG. 1 instead of the base material, the granular or massive material is aligned along the groove. It is sufficient to fix and reverse upside down. If a groove having a cross-sectional shape for alignment is formed on the weight 5, the weight 5 can be repeatedly used for alignment, leading to a reduction in manufacturing cost.
[0024]
Moreover, if the expanded metal which has a suitable hole shape and a dimension is arrange | positioned on the surface of the weight 5 as a press material shown in FIG. Since the cross-sectional shape processing is unnecessary, it can be used repeatedly, which is more economical.
[0025]
In any case, the cross-sectional shape may be selected to be a shape that closely adheres to the shape of the granular or massive material that forms the void. Can be high.
[0026]
In order to integrally bond the base material such as steel and the granular or massive material constituting the surface layer, a metal material having a lower melting point is interposed between the base material such as steel and the granular or massive material. Then, by heating above a temperature at which a liquid phase is generated in part, the metal material that has become a liquid phase dissolves and flows, and the base material such as the steel and the granular or massive material are metallurgically joined. To do.
[0027]
As a method similar to this joining method, ordinary brazing is also in its category, but the joining method in the present invention has a broader meaning than the method by brazing. In other words, in normal brazing, the metal material originally interposed for bonding is heated to a temperature that is only a liquid phase during construction, whereas in the present invention, it is heated to a temperature that is higher than the temperature at which a liquid phase is generated. Therefore, construction in a wide temperature range is possible.
[0028]
Therefore, an ordinary brazing furnace can be applied as the equipment for construction. In addition to the copper plate 3 shown in FIG. 1, silver brazing, phosphor copper brazing, brass brazing, nickel brazing, etc. used as ordinary brazing materials The normal brazing furnace can also be applied to these materials.
[0029]
In the case shown in FIG. 1, a metal material having a lower melting point is interposed between steel or the like as the base material 4 and the granular or massive material 1, and the temperature is higher than the temperature at which a liquid phase is generated in a part thereof. In order to melt and flow by heating and to join the base material 4 and the granular or lump-like material 1 in a metallurgical manner, the metal material is made of steel or the like used as the base material 4 and the clearance between the granular or lump-like material 1. As long as it has a property of spreading uniformly and getting wet, the copper wire mesh mentioned above is sufficient even if it is not a commercially available brazing material.
[0030]
The metal material interposed between the base material and the granular or massive material can be freely selected if its shape and dimensions can be freely selected, for example, a plate and foil-like copper as shown in FIG. The ratio of the raw material cost to the manufacturing cost can be reduced. If it is copper of a wire, what is necessary is just to arrange | position so that it may cut | disconnect to a suitable length, it may become a liquid phase in a required position, and may become sufficient quantity to join when it spreads.
[0031]
Furthermore, if the surface of the granular or massive material is coated with a metallic material that is interposed for joining, the metallic material is in a liquid phase at the contact position between the base steel and the granular or massive material. It is possible to supplement and supply the amount necessary for joining.
[0032]
In this case, the method of coating the surface of the granular or massive material with the metal material may be a commonly used coating method such as plating, barrel coating, or thermal spraying, and is suitable depending on the shape, size and material of the granular or massive material. Select a method.
[0033]
In addition, a thin plate that serves as a weir to prevent the metallic material interposed for bonding from flowing out as a liquid phase is disposed on the outer edge of the joining surface of steel or the like as a base material, and the upper side of the thin plate is granular. Alternatively, it can be attached to the side of the base material by welding so that it slightly protrudes from the upper end of the massive material, or a metallic material, wire mesh and granular or massive material intervening for joining can be arranged on the joining surface of the preform. Processing may be performed by excavating a space having an area and having a depth such that the upper end of the granular or massive material slightly protrudes.
[0034]
As described above, the surface layer having aligned voids for compounding a large amount of metal materials such as white metal as shown in FIG. 2, FIG. 3, or FIG. In the composite material, the ratio of the voids to the surface layer is 30% by volume or more, and since the opening of the void is smaller than the inside, the metal material such as press-fitted white metal is difficult to escape. FIG. 8 shows an example of an enlarged cross-sectional view of a composite member having a function suitable for a sliding member or a bearing member in which a filling metal 6 such as a white metal is press-fitted into a gap included in a surface layer.
[0035]
Filled metal material that is combined with a base material having a surface layer with aligned voids is press-fitted for integration, so that the degree of filling in the voids can be increased to increase the bonding strength. Although it is desirable that the deformation resistance is small, heating may be performed at the time of press-fitting as needed, and press-fitting is performed by heating at an appropriate temperature so as to obtain a deformation resistance that easily deforms and flows.
[0036]
In addition, as a device for applying a load for press-fitting and filling, a conventionally used processing machine may be used, for example, a press, a forging machine, a rolling mill, etc., and a processing apparatus suitable for the shape and dimensions of the product. Should be used.
[0037]
As a heating device for heating, a commonly used electric furnace is useful, and no special atmosphere adjustment is particularly required during heating. In other words, even if an oxide film is formed during heating, the oxide film on the surface of the filled metal material that deforms and flows greatly during press-fitting is completely destroyed, and the metal particles or metal lumps in the void and the base metal surface are almost in metal contact Therefore, the bonding interface has sufficient bonding strength, and the volume of the filling metal material filled in the gap is much larger than the volume of the oxide film, so that the deterioration of the mechanical bonding strength of the filling metal material is small. .
[0038]
By the way, the filling metal material combined with the base material having the surface layer having the aligned voids is not particularly limited in its manufacturing method and processing history, and may be powder sintered material, cast material, of course, processed material, at least Any metal material that can be deformed and flowed without being destroyed at the time of press-fitting and filling can be applied by appropriately performing heating at the time of press-fitting and filling.
[0039]
【Example】
In the following examples, a specific example will be described in which construction is performed by brazing using a vacuum brazing furnace to produce a square plate-like brazed composite material.
[0040]
Example 1
As shown in FIG. 9, a mild steel (material: SS400) plate 4a having a thickness of 22 mm and an area of 300 mm × 300 mm is used as a base material, and the brazing surface of the mild steel plate 4a is joined by brazing. A stainless steel mesh 2 (mesh opening: 3 mm, wire diameter: 0.65 mm) for arranging a copper plate 3 having a thickness of 0.1 mm and an area of 290 mm × 290 mm as a material and arranging the barrel ball 1 a thereon ) And an iron barrel ball 1a having a diameter of 3.2 mm was arranged for each 3 × 3 mesh. Then, a weight 5 was placed in contact with the barrel ball 1a so that the copper plate 3, the wire mesh 2 and the barrel ball 1a were adhered and fixed to the mild steel plate 4a.
[0041]
As the barrel ball 1a made of iron, a barrel layer coated in advance with a copper layer having a thickness of 20 μm was used.
[0042]
On the outer edge of the mild steel plate 4a, the area where the copper plate 3, the wire mesh 2 and the barrel ball 1a can be arranged on the joining surface of the mild steel plate 4a and the upper surface of the barrel ball 1a slightly protrude to prevent the brazing of the steel plate 4a. A flat-bottomed space with a depth of 5mm was dug.
[0043]
The construction was carried out using a normal vacuum brazing furnace, held at a temperature of 1000 ° C. for 90 minutes just below the melting point of copper as a brazing material in a vacuum atmosphere with a degree of vacuum of about 10 −4 torr, and finally at 1135 ° C. Cooled after holding for 20 minutes. After holding at 1000 ° C. and after holding at 1135 ° C., the atmosphere was gradually replaced with nitrogen gas, and cooling was performed while gas was pressurized. After the cooling, the brazed composite taken out from the furnace is integrated as shown in FIG. 2 in which the mild steel plate 4a, the wire mesh 2 and the barrel ball 1a are aligned and integrated by the copper braze 3a formed by melting the copper plate 3 before construction. It was joined.
[0044]
Also in the microstructure observation of the cross section of the composite, it was confirmed that the mild steel plate 4a, the wire mesh 2 and the barrel ball 1a were integrally joined integrally by the copper brazing 3a.
[0045]
Further, white metal WJ2 (representative composition: 9% by weight antimony, 5% by weight copper, residual tin and inevitable impurities) was filled in the gap formed by the barrel ball 1a in order to obtain a sliding member and a bearing member.
[0046]
First, as shown in FIG. 2, the thickness of the steel plate 4a, the wire mesh 2 and the barrel ball 1a is 10 mm thick so as to come into contact with the barrel ball 1a of a composite plate (area: 60 mm × 60 mm) integrally aligned and joined. WJ2 plate (area: 50 mm x 40 mm) was placed on top, and in order to prevent excessive oxidation, the whole was wrapped with aluminum foil so that it was not exposed as much as possible, and was charged into an electric furnace in an air atmosphere for heating. .
[0047]
Heating temperature is 250 ° C and holding time is 1 hour. After the heating is finished, move it quickly onto the lower metal mat on the 35 ton hydraulic press, manually touch the upper metal anvil against the white metal side, and then move the lower metal anvil upward. To reduce the pressure on the white metal plate. The composite plate is not deformed, and only the white metal plate is deformed by the reduction, and particularly the lower side of the white metal plate in contact with the barrel ball 1a is greatly deformed and flows into the gap formed by the barrel ball 1a and the mild steel plate 4a. Filled, a composite material in which the composite plate and white metal were integrated was obtained.
[0048]
It is observed from the macro observation of the cut cross section that the composite with the integrated white metal as the outermost surface layer is filled with white metal that is almost deformed and flowed in the gap formed by the barrel ball 1a and the mild steel plate 4a. It was confirmed that the white metal and the mild steel plate 4a were joined to each other with a sufficient joining strength to form an integrated composite.
[0049]
Example 2
Instead of the white metal in Example 1, pure aluminum A1050 (purity: 99.5% or more) was used for integrated joining. A pure aluminum plate (area: 10 mm) so as to come into contact with the barrel ball 1a of a composite plate (area: 60 mm × 60 mm) in which the mild steel plate 4a, the wire mesh 2 and the barrel ball 1a shown in FIG. : 50 mm × 50 mm), and the whole was wrapped with aluminum foil so as not to be exposed as much as possible in order to prevent excessive oxidation, and then charged in an electric furnace in an air atmosphere for heating.
[0050]
The heating temperature is 650 ° C, the holding time is 1 hour, and after the heating is finished, move it quickly onto the lower metal mat on the 35 ton hydraulic press, manually touch the upper metal anvil on the pure aluminum side, and then raise the lower metal anvil hydraulically To reduce the pressure on a pure aluminum plate. The composite plate is not deformed, and only the pure aluminum plate is deformed by the reduction, and particularly the lower side of the pure aluminum plate in contact with the barrel ball 1a is greatly deformed and flowed into the gap formed by the barrel ball 1a and the mild steel plate 4a. Filled to obtain a composite material in which the composite plate and pure aluminum were integrated.
[0051]
From the macro observation of the cut cross-section, it is observed that the void formed by the barrel ball 1a and the mild steel plate 4a is almost filled with pure aluminum that is deformed and flowed in the composite having the integrated pure aluminum as the outermost surface layer. It was confirmed that pure aluminum and the mild steel plate 4a were joined with sufficient joint strength to form an integrated composite.
[0052]
Example 3
Instead of the white metal in Example 1, oxygen-free copper C1020 (purity: 99.96% or more) was used for integrated joining. An oxygen-free copper plate (area: 10 mm) so as to come into contact with the barrel ball 1a of a composite plate (area: 60 mm × 60 mm) in which the mild steel plate 4a, the wire mesh 2 and the barrel ball 1a shown in FIG. : 50 mm × 50 mm), and the whole was wrapped with copper foil so as not to be exposed as much as possible in order to prevent excessive oxidation, and charged in an electric furnace in an air atmosphere for heating. The heating temperature is 950 ° C, the holding time is 1 hour, and after the heating is finished, move it quickly onto the lower metal anvil of 35 ton hydraulic press, and manually contact the upper anvil with the oxygen-free copper plate side, Driven upward, a reduction was applied to the oxygen-free copper plate. The composite plate is not deformed, and only the oxygen-free copper plate is deformed by the reduction, and particularly the lower side of the oxygen-free copper plate in contact with the barrel ball 1a is greatly deformed and flowed into the gap formed by the barrel ball 1a and the mild steel plate 4a. Filled to obtain a composite material in which the composite plate and oxygen-free copper were integrated.
[0053]
It is observed from the macro observation of the cut cross section that the composite having the integrated oxygen-free copper as the outermost layer is filled with the deformed and flow-free oxygen-free copper in the void formed by the barrel ball 1a and the mild steel plate 4a. However, compared with the white metal and pure aluminum shown in Example 1 and Example 2, the ratio of the filling volume of oxygen-free copper to the volume of the voids was low. However, oxygen-free copper is considerably higher in strength as a single unit than white metal and pure aluminum, so it is judged that oxygen-free copper and mild steel plate 4a are bonded with sufficient bonding strength as an integrated composite. It was done.
[0054]
【The invention's effect】
(1) It is possible to obtain a composite member that is joined with sufficient strength to steel or the like in which a surface layer in which a void for compounding a metal material such as white metal occupies 30% by volume or more of the surface layer is a base material. .
[0055]
(2) A sliding member or bearing member excellent in lubricity, seizure resistance, and corrosion resistance by a relatively simple means of press-fitting a metal material such as white metal into the voids included in the surface layer; can do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional arrangement view showing an example of arrangement of granular or massive materials as a process of manufacturing a plate-like sliding member or bearing member according to the present invention.
FIG. 2 is an enlarged cross-sectional view of a composite manufactured according to the present invention and having a regular shape and size and having a surface layer having aligned voids joined to steel or the like as a base material.
FIG. 3 is a cross-sectional view showing another example of a composite manufactured according to the present invention and having a regular shape and size and having a surface layer having aligned voids bonded to steel or the like as a base material. It is an enlarged view.
FIG. 4 is a diagram of a composite in which a cut wire is used as a granular or agglomerated material, and has a surface layer having many regular shapes and sizes, and a surface layer having aligned voids joined to the base steel. It is a cross-sectional enlarged view.
FIG. 5 is a cross-sectional view showing a square groove among cross-sectional shapes processed into a base material or a weight in order to align granular or massive materials.
FIG. 6 is a cross-sectional view showing a triangular groove among cross-sectional shapes processed into a base material or a weight in order to align granular or massive materials.
FIG. 7 is a cross-sectional view showing a round groove in a cross-sectional shape processed into a base material or a weight in order to align granular or massive materials.
FIG. 8 is an enlarged cross-sectional view of a composite member with a metal material manufactured according to the present invention.
FIG. 9 is a cross-sectional arrangement view showing an example of arrangement of granular or massive material as a process of manufacturing a plate-like sliding member or bearing member according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Granular or lump material 1a Barrel ball 1b Stainless steel ball 1c Stainless steel cut wire 2 Wire net 3 Copper plate 3a Copper brazing 3b Nickel iron 4 Base material 4a Mild steel plate 5 Weight 6 Filling metal 31 Square groove 32 Triangular groove 33 Round groove

Claims (6)

金属母材上に低融点の金属材料を介在させるとともに等間隔および一定形状の目開きをもつ金網を配置し、
この金網上に金属粒あるいは金属塊を整列することによって隣同志が接触しない間隔を持つ金属粒あるいは金属塊の単層または数層に配列された表面層を形成し、
この表面層の上に押圧材を配置し、
この表面層を少なくとも低融点の金属材料の一部に液相が発生する温度以上で、且つ、母材と金属粒または金属塊の融点以下の温度に加熱しつつ押圧材を押圧し、
単層または数層に配列された金属粒あるいは金属塊の間の空隙内に低融点の金属材料を圧入充填して摺動部材または軸受部材として用いられる金属複合部材の製造方法。
A metal net having a low-melting-point metal material on a metal base material and having an opening at regular intervals and a constant shape is arranged.
Forming a surface layer arranged in a single layer or several layers of metal grains or metal chunks with a spacing that the neighbors do not contact by aligning metal grains or metal chunks on this wire mesh,
Place the pressing material on this surface layer,
Pressing the pressing material while heating this surface layer to a temperature that is at least a temperature at which a liquid phase is generated in a part of the low melting point metal material and below the melting point of the base material and the metal particles or metal lump,
A method for producing a metal composite member used as a sliding member or a bearing member by press-fitting a metal material having a low melting point into a gap between metal particles or metal blocks arranged in a single layer or several layers.
金網として、母材と同種の金属からなる金網を用い、加熱処理後、金網を金属複合部材中に残留させる請求項1に記載の金属複合部材の製造方法。The method for producing a metal composite member according to claim 1, wherein a metal mesh made of the same kind of metal as the base material is used as the metal mesh, and the wire mesh is left in the metal composite member after the heat treatment. 金網として、金属粒あるいは金属塊の間の空隙内に圧入充填される低融点の金属と同種の金属からなる金網を用い、加熱処理後、金網を圧入充填される低融点の金属中に溶け込ませる請求項1に記載の金属複合部材の製造方法。 As the wire mesh, a wire mesh made of the same kind of metal as the low melting point metal that is press-fitted into the gaps between the metal grains or the metal lump is used. The method for producing a metal composite member according to claim 1 . 金属粒が32メッシュ以上であり、また、金属塊が等軸形状で平滑な表面をもつ材料等軸形状で平滑な表面をもつ線材を直径程度の長さに切断したカットワイヤーである請求項1に記載の金属複合部材の製造方法。 A metal wire having a mesh size of 32 mesh or more, and a metal lump is a material having an equiaxed shape and a smooth surface. The manufacturing method of the metal composite member of description . 粒状または塊状の材料の表面に、あらかじめ、低融点の金属材料を被覆する請求項1に記載の金属複合部材の製造方法。 The method for producing a metal composite member according to claim 1, wherein the surface of the granular or massive material is previously coated with a metal material having a low melting point . 母材表面の外縁に、低融点の金属材料が液相となって流失するのを防止するための堰を設ける請求項1に記載の金属複合部材の製造方法。 The method for producing a metal composite member according to claim 1, wherein a weir for preventing the low melting point metal material from flowing out as a liquid phase is provided on the outer edge of the surface of the base material .
JP20697297A 1997-07-31 1997-07-31 Method for producing metal composite member Expired - Lifetime JP3898803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20697297A JP3898803B2 (en) 1997-07-31 1997-07-31 Method for producing metal composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20697297A JP3898803B2 (en) 1997-07-31 1997-07-31 Method for producing metal composite member

Publications (2)

Publication Number Publication Date
JPH1150264A JPH1150264A (en) 1999-02-23
JP3898803B2 true JP3898803B2 (en) 2007-03-28

Family

ID=16532060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20697297A Expired - Lifetime JP3898803B2 (en) 1997-07-31 1997-07-31 Method for producing metal composite member

Country Status (1)

Country Link
JP (1) JP3898803B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439309A3 (en) * 1990-01-22 1992-11-25 Seiko Epson Corporation Apparatus for reproducing and amplifying sound
CN105583227B (en) * 2016-01-07 2017-06-16 四川飞龙电子材料有限公司 A kind of manufacture method of copper-molybdenum carbon/carbon-copper composite material

Also Published As

Publication number Publication date
JPH1150264A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
EP0174984B1 (en) Liquid phase bonded amorphous materials and process for preparation thereof
KR100886111B1 (en) Powder metal scrolls
EP1273385B1 (en) Method for diffusion bonding magnesium/aluminum components
CN107457475A (en) The coating unit and method of metal surface wear-resistant coating
CN101479841A (en) Manufacturing method for susceptor and susceptor using this method
JP3898803B2 (en) Method for producing metal composite member
JP4104778B2 (en) Cylinder inner surface coating method
EP2327808A1 (en) Magnesium-based composite material having ti particles dispersed therein, and method for production thereof
CN109763006B (en) Forming and connecting integrated method for aluminum-magnesium composite component
KR100297609B1 (en) Brazing material uniformly mixed with metal powder and flux and production thereof
CN207077090U (en) The coating unit of metal surface wear-resistant coating
WO1988007932A1 (en) Plymetal brazing strip
JP3588137B2 (en) Metal material surface coating method
EP0636445A1 (en) Brazing
JPS6046889A (en) Production of multi-layered roll
EP3205429A1 (en) Methods of manufacturing composite materials, composite wires, and welding electrodes
JPS62188707A (en) Hard facing method for integrally forming sintered hard layer on surface of ferrous metallic sheet
JPH1016126A (en) Mechanical composite member and manufacture thereof
JP6690288B2 (en) Titanium-encapsulating structure and method for producing titanium multilayer material
JP4167011B2 (en) Method for producing composite material comprising non-ferrous metal alloy containing low melting point material and steel
JP3626553B2 (en) Manufacturing method of clad material of copper alloy and steel
JP3774286B2 (en) Manufacturing method of clad material of copper alloy and alloy steel
CA2939189C (en) Brazing and soldering alloy wires
Wojtaszek et al. Manufacturing and properties of al-al alloy bimetallic composites obtained from powders by hot extrusion
JPH09300024A (en) Complex tool material joining steel and cemented carbide and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term