JPH06134569A - Brazing method for particle dispersed copper - Google Patents

Brazing method for particle dispersed copper

Info

Publication number
JPH06134569A
JPH06134569A JP28649592A JP28649592A JPH06134569A JP H06134569 A JPH06134569 A JP H06134569A JP 28649592 A JP28649592 A JP 28649592A JP 28649592 A JP28649592 A JP 28649592A JP H06134569 A JPH06134569 A JP H06134569A
Authority
JP
Japan
Prior art keywords
brazing
active metal
brazer
ceramic particles
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28649592A
Other languages
Japanese (ja)
Inventor
Toshiaki Fuse
俊明 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28649592A priority Critical patent/JPH06134569A/en
Publication of JPH06134569A publication Critical patent/JPH06134569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To prevent the embrittleness generated by segregation of ceramic particles by incorporating an active metal, for example, Ti, into a brazing filler metal in such a manner that the brazing filler metal is wet in the ceramic particles when the brazing filler metal melts and brazing a material to be welded by using this active metal. CONSTITUTION:A material 11 to be combined and a material 12 to be combined are the alumina dispersion reinforced copper formed by dispersing the fine particles of Al2O3 of submicron order into pure copper matrix to reinforce the copper. The active metal brazer 13 is inserted between the joint surfaces thereof. The active metal brazer contg. the active metal Ti (at least one kind among Ti, Zr and Hf) in an Au-Cu eutectic brazer is used as the active metal brazer. The materials 11, 13 which are to be joined and are prepared in such a manner are held at and for a prescribed vacuum degree, temp. and time. As a result, the ceramic particles infiltrating the inside of the brazing filler metal from the slightly molten base materials are put into the state of being wetted and dispersed with and into the brazer at the time of solidifying the brazing filler metal and, therefore, the segregation of the ceramic particles in the final solidification and the embrittleness are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微細な粒子をマトリクス
中に分散させてマトリクスを強化させた銅あるいは銅合
金のろう付方法に係り、特にろう付後ろう付部の脆化の
発生を防止するのに好適なろう付方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a brazing method of copper or a copper alloy in which fine particles are dispersed in a matrix to strengthen the matrix, and particularly, to prevent brittleness of a brazed portion after brazing. Brazing method suitable for

【0002】[0002]

【従来の技術】銅は熱伝導、電気伝導ともに良好な材料
である。しかし鉄鋼材料等の他材料に比べて機械的強度
が低い。さらに、 400℃程度で10〜15kgf/mm2 程度に
引張り強さが低下してしまう。そこで、Cu−Cr,C
u−Cr−Zr合金等の析出強化合金が開発されている
が、これらも高温では強度が低下する。
2. Description of the Related Art Copper is a material having good thermal conductivity and electrical conductivity. However, it has lower mechanical strength than other materials such as steel materials. Furthermore, 10 to 15 kgf / mm 2 at 400 ° C The tensile strength will decrease to some extent. Therefore, Cu-Cr, C
Although precipitation strengthening alloys such as u-Cr-Zr alloys have been developed, their strength also decreases at high temperatures.

【0003】近年、純銅並の導電率を有し、かつ高温に
おいても強度低下の少ないセラミクス粒子分散強化銅が
開発されている。アルミナ分散強化銅はこの種の材料で
ある。この材料を利用するには、従来材と同様に接合が
必要不可欠となる。接合は純銅と同様に溶融溶接,圧
接,ろう付等が考えられる。
In recent years, ceramic particle dispersion strengthened copper has been developed which has an electric conductivity similar to that of pure copper and has a small decrease in strength even at high temperatures. Alumina dispersion strengthened copper is such a material. In order to utilize this material, joining is indispensable as with conventional materials. Like pure copper, fusion welding, pressure welding, brazing, etc. can be considered for joining.

【0004】[0004]

【発明が解決しようとする課題】アルミナ分散強化銅を
溶融溶接法たとえば電子ビーム溶接,アーク溶接等で接
合した場合、溶融プール内にアルミナが存在する。この
プールが凝固する際にアルミナは溶融銅にぬれにくいた
め、アルミナが最終凝固部に偏析しやすく、接合部分が
脆化する可能性がある。
When the alumina dispersion strengthened copper is joined by a fusion welding method such as electron beam welding or arc welding, alumina is present in the molten pool. When the pool is solidified, the alumina is difficult to wet the molten copper, so that the alumina is likely to segregate in the final solidified portion, and the joint portion may be embrittled.

【0005】一方、圧接法においては、材料は溶融しな
いため上述のような脆化は生じない。しかし、圧接は接
合材の形状、寸法に制約があり、一般に広く用いること
が難しい。
On the other hand, in the pressure welding method, since the material does not melt, the above-mentioned embrittlement does not occur. However, the pressure welding is generally difficult to widely use because there are restrictions on the shape and size of the bonding material.

【0006】また、ろう付法は圧接ほど形状・寸法に制
約はなく、溶融溶接ほど母材を溶融しないため、アルミ
ナ分散強化銅の接合法として有力なものの一つである。
しかし、ろう付においてもろう材と接する母材の表面層
は溶融している。このためアルミナがろう材中に浸入
し、ろう層の最終凝固部に偏析し、脆化が生じる可能性
がある。
Also, the brazing method is one of the most effective joining methods for alumina-dispersion-strengthened copper because it has no restrictions on the shape and size as the pressure welding and does not melt the base metal as much as fusion welding.
However, even in brazing, the surface layer of the base material in contact with the brazing material is molten. As a result, alumina may penetrate into the brazing material and segregate in the final solidified portion of the brazing layer, causing embrittlement.

【0007】本発明の目的はセラミクス粒子を分散させ
た銅材料をろう付するにあたり、ろう材中に浸入したセ
ラミクス粒子がろう材凝固時に偏析し、脆化するのを防
止するようにした粒子分散銅のろう付方法を提供するこ
とにある。
An object of the present invention is to disperse a ceramic material in which ceramic particles are dispersed in a brazing material so as to prevent the ceramic particles infiltrated into the brazing material from segregating and solidifying during solidification of the brazing material. It is to provide a method of brazing copper.

【0008】[0008]

【課題を解決するための手段】本発明は、セラミクス粒
子分散強化銅をろう付するにあたり、ろう材中に活性金
属を含有したろう材を用いてろう付するようにしたもの
である。
According to the present invention, when brazing a ceramic particle dispersion strengthened copper, a brazing material containing an active metal in the brazing material is used for brazing.

【0009】[0009]

【作用】ろう付時にわずかに溶融した母材からろう材中
にセラミクス粒子が浸入する。ろう材中には活性金属が
含有されているので、このセラミクス粒子に対するぬれ
が良い。このため、ろう材凝固時にセラミクス粒子は溶
液から排出されず、凝固層内に固定されて行くので、セ
ラミクス粒子は偏析せず、ろう付部の脆化を防止するこ
とができる。
[Function] The ceramic particles infiltrate into the brazing material from the base material slightly melted during brazing. Since the brazing material contains an active metal, the ceramic particles have good wettability. Therefore, when the brazing material is solidified, the ceramic particles are not discharged from the solution and are fixed in the solidified layer, so that the ceramic particles are not segregated and embrittlement of the brazed portion can be prevented.

【0010】[0010]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は本発明の一実施例における段取り状態を
示すもので、被接合材11および被接合材12はサブミクロ
ンオーダのAl2 3 微粒子を純銅マトリクス中に分散
させて強化したアルミナ分散強化銅である。Al2 3
の含有量は種々のものが市販されているが、本実施例で
は 0.5wt%Al2 3 のものを用いた。これらの接合
面間に、活性金属ろう13を挿入する。本実施例では活性
金属ろうとして、Ag−Cu共晶ろう内に活性金属のT
iを4wt%分散含有するものを用いた。このように段
取りした被接合材11,13を真空炉内に設置する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a set-up state in one embodiment of the present invention. The materials 11 and 12 to be bonded are alumina dispersion strengthened copper reinforced by dispersing Al 2 O 3 fine particles of submicron order in a pure copper matrix. Is. Al 2 O 3
Although various contents of are commercially available, 0.5 wt% Al 2 O 3 was used in this embodiment. An active metal brazing material 13 is inserted between these joint surfaces. In this embodiment, as the active metal brazing material, the T of the active metal is contained in the Ag—Cu eutectic brazing material.
A material containing 4 wt% of i dispersed therein was used. The materials 11 and 13 thus prepared are set in a vacuum furnace.

【0011】次に、真空炉内を10-4〜10-5Torrの間に真
空度を保って800 〜 850℃まで昇温する。活性金属ろう
13の溶点は約 790℃であるので、800 〜 850℃で保持す
ると活性金属ろう13は溶融する(図2−(a)に示
す)。溶融ろう14が存在したまま同温度で保持すると、
アルミナ分散強化銅製の被接合材11,12の溶融ろう14に
接した表面層15は、ろう材と相互拡散し溶融する(図2
−(b))。被接合材11,12が溶融すると、その中に含
まれていたAl2 3 微粒子16は溶融ろう14内に分散す
る(図2−(c))。ろう材が被接合材11,12に充分ぬ
れた後真空炉内で冷却する。約 750℃以下になると溶融
ろうは凝固する。Ti含有活性金属ろうはアルミナバル
ク材の接合にも用いられることからも明らかなようにア
ルミナに良好なぬれ性を示す。したがって、溶融ろう凝
固時にAl2 3 微粒子は溶融ろうにぬれた状態で凝固
部17内に分散する(図2−(d))。溶融ろうが全て凝
固して凝固厚18を形成した後の組織図を図2−(e)に
示す。せん断試験片を作製したところ、従来のAg−C
u−Sn系ろう材でろう付したものは機械仕上加工中に
剥離した。本実施例のものは、約20kgf/mm2 のせん断
強度を示した。本実施例によれば、ろう材凝固時にAl
2 3 微粒子が、ろう材にぬれて、ろう材中に分散する
ので、ろう層が脆化しない。活性金属ろうとしてよりろ
う付温度の低いCu−Ag−Sn−Ti系を用いると、
母材の劣化をより低くできる。被接合材の組合せは、ア
ルミナ分散強化銅同士に限らず、アルミナ分散強化銅と
他材料との組合せも可能である。銅の分散強化材はアル
ミナに限らず他のセラミクスでも可能である。活性金属
はTiに限らずZr,Hfでも同様の効果が得られる。
Next, the inside of the vacuum furnace is heated to 800 to 850 ° C. while maintaining the degree of vacuum at 10 −4 to 10 −5 Torr. Active metal wax
Since the melting point of 13 is about 790 ° C., the active metal braze 13 melts when kept at 800 to 850 ° C. (shown in FIG. 2- (a)). If the molten wax 14 is kept at the same temperature as it is,
The surface layer 15 of the materials 11 and 12 made of alumina dispersion strengthened copper, which is in contact with the molten brazing material 14, mutually diffuses and melts with the brazing material (FIG.
-(B)). When the materials 11 and 12 to be bonded are melted, the Al 2 O 3 fine particles 16 contained therein are dispersed in the molten brazing material 14 (FIG. 2- (c)). After the brazing material has sufficiently wetted the materials to be joined 11, 12, it is cooled in a vacuum furnace. The molten solder solidifies at temperatures below about 750 ° C. As is apparent from the fact that the Ti-containing active metal brazing material is also used for joining alumina bulk materials, it shows good wettability to alumina. Therefore, the Al 2 O 3 fine particles are dispersed in the solidification part 17 while being wetted by the molten solder when the molten solder is solidified (FIG. 2- (d)). FIG. 2 (e) shows a structural diagram after all the molten brazing solidifies to form the solidified thickness 18. When a shear test piece was prepared, the conventional Ag-C
The brazed u-Sn brazing material was peeled off during the mechanical finishing process. In this embodiment, about 20 kgf / mm 2 The shear strength of According to this embodiment, when the brazing material is solidified, Al
Since the 2 O 3 fine particles wet the brazing material and are dispersed in the brazing material, the brazing layer does not become brittle. When an Cu-Ag-Sn-Ti system having a lower brazing temperature is used as the active metal braze,
The deterioration of the base material can be further reduced. The combination of the materials to be joined is not limited to the alumina dispersion strengthened copper, and the combination of the alumina dispersion strengthened copper and another material is also possible. The dispersion strengthening material for copper is not limited to alumina, but other ceramics can be used. The same effect can be obtained with Zr and Hf as the active metal, not limited to Ti.

【0012】[0012]

【発明の効果】以上説明したように本発明によれば、溶
融ろう材によりごくわずか溶融した母材からろう材中に
侵入したセラミクス粒子がろう材凝固時に、ろうにぬれ
て分散した状態となるので、セラミクス粒子が最終凝固
部に偏析して脆化することを防止できる。
As described above, according to the present invention, the ceramic particles, which have penetrated into the brazing material from the base material that is slightly melted by the molten brazing material, are wet and dispersed in the brazing material when the brazing material is solidified. Therefore, it is possible to prevent the ceramic particles from being segregated in the final solidified portion and embrittled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る被接合材の段取り状態を示す工程
説明図
FIG. 1 is a process explanatory view showing a setup state of a material to be joined according to the present invention.

【図2】本発明のろう付工程を示す工程説明図FIG. 2 is a process explanatory view showing a brazing process of the present invention.

【符号の説明】[Explanation of symbols]

11, 12…被接合材 13…活性金属ろう 14…溶融ろう 15…表面層 16…Al2 3 微粒子 17…凝固部 18…凝固層11, 12 ... Joined material 13 ... Active metal brazing material 14 ... Melting brazing material 15 ... Surface layer 16 ... Al 2 O 3 fine particles 17 ... Solidification part 18 ... Solidification layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミクス粒子を分散させた銅あるいは
銅合金同士し、あるいは他材料とをろう付するにあた
り、ろう材が溶融した際にセラミクス粒子にろう材がぬ
れるようにTi,Zr,Hfの群から選ばれた少なくと
も1種類の活性金属をろう材中に含有させ、このろう材
を用いてろう付するようにしたことを特徴とする粒子分
散銅のろう付方法。
1. When brazing copper or copper alloys in which ceramic particles are dispersed, or another material, in order to wet the brazing material to the ceramic particles when the brazing material melts, Ti, Zr, and Hf are added. A brazing method for particle-dispersed copper, characterized in that at least one active metal selected from the group is contained in a brazing material, and brazing is performed using this brazing material.
JP28649592A 1992-10-26 1992-10-26 Brazing method for particle dispersed copper Pending JPH06134569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28649592A JPH06134569A (en) 1992-10-26 1992-10-26 Brazing method for particle dispersed copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28649592A JPH06134569A (en) 1992-10-26 1992-10-26 Brazing method for particle dispersed copper

Publications (1)

Publication Number Publication Date
JPH06134569A true JPH06134569A (en) 1994-05-17

Family

ID=17705144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28649592A Pending JPH06134569A (en) 1992-10-26 1992-10-26 Brazing method for particle dispersed copper

Country Status (1)

Country Link
JP (1) JPH06134569A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658443A (en) * 2012-05-22 2012-09-12 江苏科技大学 Brazing filler metal for brazing tungsten-copper alloy and stainless steel and brazing process
CN111136361A (en) * 2019-12-31 2020-05-12 陕西斯瑞新材料股份有限公司 Method for vacuum brazing of dispersed copper
CN113725185A (en) * 2021-08-31 2021-11-30 江苏师范大学 Sn-based brazing filler metal capable of realizing vertical chip stacking and bonding method thereof
CN114749750A (en) * 2021-12-31 2022-07-15 上海工程技术大学 Forming control method for brazing joint of 3D printed product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658443A (en) * 2012-05-22 2012-09-12 江苏科技大学 Brazing filler metal for brazing tungsten-copper alloy and stainless steel and brazing process
CN111136361A (en) * 2019-12-31 2020-05-12 陕西斯瑞新材料股份有限公司 Method for vacuum brazing of dispersed copper
CN111136361B (en) * 2019-12-31 2021-07-30 陕西斯瑞新材料股份有限公司 Method for vacuum brazing of dispersed copper
CN113725185A (en) * 2021-08-31 2021-11-30 江苏师范大学 Sn-based brazing filler metal capable of realizing vertical chip stacking and bonding method thereof
CN113725185B (en) * 2021-08-31 2024-03-29 江苏师范大学 Sn-based solder capable of realizing vertical stacking of chips and bonding method thereof
CN114749750A (en) * 2021-12-31 2022-07-15 上海工程技术大学 Forming control method for brazing joint of 3D printed product
CN114749750B (en) * 2021-12-31 2024-01-30 上海工程技术大学 Forming control method of braze welding joint for 3D printing product

Similar Documents

Publication Publication Date Title
JP3330609B2 (en) Brazing method
US4803334A (en) Method for laser beam welding metal matrix composite components
US3322517A (en) Aluminum brazed article
US3373483A (en) Fluxless aluminum brazing
JPH0524967B2 (en)
JP5138879B2 (en) Material composite
US4448605A (en) Ductile brazing alloys containing reactive metals
JP2000117484A (en) Seamless ring-shaped brazing material and manufacture thereof
US4606981A (en) Ductile brazing alloys containing reactive metals
JPH06134569A (en) Brazing method for particle dispersed copper
JPH10314933A (en) Method of joining aluminum material to iron material
JPH05337639A (en) Method for joining aluminum
JPS617081A (en) Joining method utilizing eutectic reaction
JPS6090879A (en) Ceramic and metal bonding method
JP3113736B2 (en) Resistance welding of aluminum
WO1993008952A1 (en) Method for modifying the surface of an aluminum substrate
JPH067925A (en) Method for joining aluminum material
SU854627A1 (en) Method of soldering graphite to aluminium
JP2004050278A (en) Flux and filler metal for brazing magnesium alloy and its brazing method
JPH07148571A (en) Method for brazing iron material and aluminum material
JP3232896B2 (en) Brazing method between members
KR950003091B1 (en) Ceramic binding device by a vacuum brazing
JPH09155548A (en) Welding method of metal
JP4079238B2 (en) Solder wire with metal Na core
JPH0388780A (en) Bonding method