JPH0388780A - Bonding method - Google Patents

Bonding method

Info

Publication number
JPH0388780A
JPH0388780A JP22539289A JP22539289A JPH0388780A JP H0388780 A JPH0388780 A JP H0388780A JP 22539289 A JP22539289 A JP 22539289A JP 22539289 A JP22539289 A JP 22539289A JP H0388780 A JPH0388780 A JP H0388780A
Authority
JP
Japan
Prior art keywords
brazing material
material layer
metal
brazing
average thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22539289A
Other languages
Japanese (ja)
Other versions
JP2854619B2 (en
Inventor
Seiichi Suenaga
誠一 末永
Masako Nakabashi
中橋 昌子
Hiromitsu Takeda
博光 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22539289A priority Critical patent/JP2854619B2/en
Publication of JPH0388780A publication Critical patent/JPH0388780A/en
Application granted granted Critical
Publication of JP2854619B2 publication Critical patent/JP2854619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To lower the solidifying temp. of brazing material and to control the residual stress generated between members in bonding the different members consisting of ceramic and metal by specifying the thickness of the brazing material layer formed on the bonding surface of one member. CONSTITUTION:A brazing material layer having <=1000Angstrom average thickness is formed on the bonding surface of one member consisting of ceramic or metal. The other member consisting of the metal or ceramic different from that of the former member is abutted on the brazing material layer, and the brazing material layer is heated and melted to bond both members. When the thickness of the brazing material layer exceeds 1000Angstrom , the bonding temp. and solidifying temp. are not lowered. Besides, the brazing material layer can be formed by laminating several metallic thin films having <=1000Angstrom average thickness.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、セラミックスと金属の接合方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for joining ceramics and metal.

(従来の技術) 材料の接合方法には、固相接合、融接、焼きばめ、ろう
付は等の種々の方法が知られている。
(Prior Art) Various methods are known for joining materials, such as solid phase joining, fusion welding, shrink fitting, and brazing.

このうち、ろう付は方法は接合面にろう材層を形成、し
、該ろう材層を溶融させて材料同志を接合させるもので
ある。特に、セラミックスと金属の接合に有効な活性金
属法も前記ろう付は法の一つである。活性金属法は、T
 is Z r s Hfなどの酸素又は窒素等と非常
に活性である元素を含有するろう材を使用し、Ti、Z
r、Hfなどのセラミックス表面への活性作用を利用し
て材料同志を接合させる方法で、電子デバイスから構造
材料まで幅広く利用されている。
Among these methods, brazing is a method in which a layer of brazing material is formed on the joint surface, and the layer of brazing material is melted to join the materials together. In particular, brazing is one of the active metal methods that are effective for joining ceramics and metals. The active metal method is T
Using a brazing filler metal containing elements that are highly active with oxygen or nitrogen, such as
It is a method of bonding materials together using the active effects of r, Hf, etc. on the surface of ceramics, and is widely used in everything from electronic devices to structural materials.

ところで、従来の活性金属法を含むろう付は方法は箔又
はペースト状のろう材を接合部に挿入して真空又は不活
性雰囲気中で加熱して接合するものである。しかしなが
ら、かかる箔又はペースト状のろう材を用いる方法では
セラミックスと金属のように異種材料を接合させる場合
、ろう材の溶融の際に生じる熱膨張によって接合部に応
力が残留し、該残留応力によって接合部材が破壊される
という問題があった。前記残留応力は、接合温度が高い
程、接合後の冷却過程でのろう材の凝固温度高い程、大
きくなり、接合部材の破壊がより起こり易くする。特に
、ろう材の凝固時に異種部材間の接合がなされるため、
凝固温度が残留応力の大小に及ぼす影響は極めて大きく
なる。
By the way, the conventional brazing method including the active metal method involves inserting a foil or paste-like brazing material into the joint part and heating it in a vacuum or an inert atmosphere to join the parts. However, when using such foil or paste brazing filler metals to join dissimilar materials such as ceramics and metals, stress remains in the joint due to thermal expansion that occurs when the brazing filler metal melts, and this residual stress causes There was a problem that the joining member was destroyed. The higher the bonding temperature and the higher the solidification temperature of the brazing filler metal during the cooling process after bonding, the greater the residual stress becomes, making it more likely that the bonded member will break. In particular, since the joining between dissimilar parts is done when the brazing filler metal solidifies,
The effect of solidification temperature on the magnitude of residual stress is extremely large.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされたも
ので、セラミックス、金属からなる部材間の接合に際し
て接合温度及び冷却過程での凝固温度を低減して部材間
に生じる残留応力を抑制した接合方法を提供しようとす
るものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and it reduces the joining temperature and solidification temperature during the cooling process when joining members made of ceramics and metals. The present invention aims to provide a joining method that suppresses residual stress generated between members.

[発明の構成] (課題を解決するための手段) 本発明は、セラミックス又は金属からなる一方の部材の
接合面に平均厚さ1000Å以下のろう材層又は平均厚
さ1000Å以下の金属薄膜を複数積層したろう材層を
形成し、このろう材層に前記部材と異なる金属又はセラ
ミックスからなる他方の部材を当接させた後、加熱して
前記ろう材層を溶融、接合することを特徴とする接合方
法である。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a plurality of brazing filler metal layers with an average thickness of 1000 Å or less or a plurality of metal thin films with an average thickness of 1000 Å or less on the joint surface of one member made of ceramic or metal. It is characterized by forming a laminated brazing material layer, bringing another member made of a metal or ceramic different from the above member into contact with the brazing material layer, and then heating to melt and join the brazing material layer. This is a joining method.

上記セラミックスとしては、例えばアルミナ、ジルコニ
アなどの酸化物系セラミックス、窒化アルミニウム、窒
化ケイ素、窒化硼素などの窒化物系セラミックス、炭化
ケイ素等の炭化物系セラミックスを挙げることができる
Examples of the ceramics include oxide ceramics such as alumina and zirconia, nitride ceramics such as aluminum nitride, silicon nitride, and boron nitride, and carbide ceramics such as silicon carbide.

上記金属としては、種々の金属、合金を用いることがで
き、例えばCu SF e s N l % Co s
Mo、’fB等を挙げることができる。
Various metals and alloys can be used as the above-mentioned metal, for example, Cu SF e s N l % Co s
Mo, 'fB, etc. can be mentioned.

上記単一のろう材層こしては、例えばTi−Cu合金、
Zr−Cu合金又はCu単体等を挙げることができる。
The single brazing material layer may be made of, for example, a Ti-Cu alloy,
Examples include a Zr-Cu alloy or Cu alone.

かかるろう材層の平均厚さを限定した理由は、その平均
厚さが1000人を越えると接合温度及び凝固温度の低
減化を達成できないからである。より好ましいろう材層
の平均厚さは、5G−1000大の範囲である。
The reason why the average thickness of the brazing material layer is limited is that if the average thickness exceeds 1,000 layers, it will not be possible to reduce the bonding temperature and solidification temperature. A more preferable average thickness of the brazing material layer is in the range of 5G-1000.

上記金属薄膜を複数積層したろう材層としては、例えば
T i / P b 、 Z r / P b %T 
j / B i、Z  r / B  f  、  T
  i  / S  n s  Z  r / S  
n 、  T  i /(:u、Zr/Cuの二層積層
物等を挙げることができる。かかるろう材層を構成する
金属薄膜の平均厚さを限定した理由は、その平均厚さが
L000λを越えると接合温度及び凝固温度の低減化を
達成できないからである。より好ましい金属薄膜の平均
厚さは、50〜1000大の範囲である。
For example, the brazing material layer formed by laminating a plurality of the metal thin films is T i /P b , Z r /P b %T
j / B i, Z r / B f, T
i/S n s Z r/S
n, T i /(:u, Zr/Cu two-layer laminate, etc.).The reason for limiting the average thickness of the metal thin film constituting the brazing material layer is that the average thickness is less than L000λ. This is because, if it exceeds, it is impossible to reduce the bonding temperature and solidification temperature.A more preferable average thickness of the metal thin film is in the range of 50 to 1000 mm.

上記ろう材層又はろう材層を構成する金属薄膜は、厚さ
制御が容易で良好な層形成が可能なスパッタリング法、
イオンブレーティング法、電子ビーム蒸着法により前記
セラミックス又は金属からなる一方の部材に被覆するこ
とが望ましい。
The brazing material layer or the metal thin film constituting the brazing material layer can be formed by sputtering, which allows for easy thickness control and good layer formation.
It is preferable to coat one of the ceramic or metal members by an ion blating method or an electron beam evaporation method.

上記加熱処理は、減圧下又は不活性雰囲気下で行うこと
が望ましい。
The above heat treatment is preferably performed under reduced pressure or an inert atmosphere.

(作用) 本発明によれば、セラミックス又は金属からなる2種の
部材の接合面に平均厚さ1000Å以下のろう材層又は
平均厚さ1000Å以下の金属薄膜を複数積層したろう
材層を形成して加熱することによって、従来法のように
箔又はペースト状のろう材層を用いる場合に比べてろう
材層を溶融させる接合温度及び冷却過程での凝固温度を
低減できる。
(Function) According to the present invention, a brazing material layer having an average thickness of 1000 Å or less or a plurality of laminated metal thin films having an average thickness of 1000 Å or less is formed on the joining surface of two types of members made of ceramic or metal. By heating, the bonding temperature at which the brazing material layer is melted and the solidification temperature during the cooling process can be lowered compared to when a foil or paste brazing material layer is used as in the conventional method.

その結果、接合時での異種材料からなる部材間の熱膨脂
差に伴って接合部に生じる残留応力を低減できるため、
接合後の接合部材への熱影響による亀裂、破壊等を防止
するこεができる。
As a result, it is possible to reduce the residual stress that occurs in the joint due to the difference in thermal expansion and fat between members made of different materials during joining.
It is possible to prevent cracks, destruction, etc. due to thermal effects on the joined members after joining.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

実施例1 純度99.9%のα型アルミナ基材の表面をアセトンで
超音波洗浄した後、この基材上にアルゴンイオンスパッ
タリング装置により 5x 1O−3torrのアルゴ
ン雰囲気中にて平均厚さ 500人のγ2vt%Cu−
Tl合金からなるろう材層を形成した。
Example 1 After the surface of an α-type alumina base material with a purity of 99.9% was ultrasonically cleaned with acetone, an average thickness of 500 people was applied to the base material in an argon atmosphere of 5 x 1O-3 torr using an argon ion sputtering device. γ2vt%Cu-
A brazing material layer made of Tl alloy was formed.

次いで、前記α型アルミナ基材を真空炉中に移し、該基
材のろう材層にMo板を当接させた後、10−’ 〜1
0−” LOrrs  875℃の条件で10分間熱処
理したところ、ろう材層は溶融し、$70”Cで凝固し
た。これにより、融点が880℃のバルクの72vt%
Cu−Ti合金に比べて融点で5℃、凝固点で1゜℃低
減化することができた。
Next, the α-type alumina base material was transferred to a vacuum furnace, and after a Mo plate was brought into contact with the brazing material layer of the base material, 10-' to 1
When heat treated for 10 minutes at 875°C, the brazing filler metal layer melted and solidified at $70°C. This results in 72vt% of the bulk with a melting point of 880°C.
Compared to the Cu-Ti alloy, the melting point was lowered by 5°C and the freezing point was lowered by 1°C.

熱処理後、真空炉中で冷却し、炉外にアルミナ基材を取
出したところ、Mo板はアルミナ基村上に接合され、そ
の引っ張り強度は5kg/cab2以上であった。また
、得られた接合部材を加熱しても接合部の残留応力に起
因する亀裂、破壊等は全く認められなかった。
After the heat treatment, the alumina base material was cooled in a vacuum furnace and taken out of the furnace, and the Mo plate was bonded to the alumina base material, and its tensile strength was 5 kg/cab2 or more. Moreover, even when the obtained bonded member was heated, no cracks, destruction, etc. caused by residual stress in the bonded portion were observed.

実施例2 純度99,9%のα型アルミナ基材の表面をアセトンで
超音波洗浄した後、この基材上にアルゴンイオンスパッ
タリング装置により 5X 10−’torrのアルゴ
ン雰囲気中にて途中で真空を破ることなく平均厚さ50
入のTi1平均厚さ 500人のpbを順次積層して二
層積層構造のろう材層を形成した。次いで、前記α型ア
ルミナ基材を真空炉中に移し、該基材のろう材層上にM
o板を当接させた後、10−s〜10−1゜torr、
  595℃の条件で10分間熱処理したところ、ろう
材層は溶融し、510℃で凝固した。これにより、融点
が800℃のバルクのpbに比べて融点で5℃、凝固点
で90℃、低減化することができた。
Example 2 After the surface of an α-type alumina base material with a purity of 99.9% was ultrasonically cleaned with acetone, a vacuum was applied to the base material in an argon atmosphere of 5×10-'torr using an argon ion sputtering device. Average thickness 50 without tearing
A brazing filler metal layer having a two-layer laminated structure was formed by sequentially laminating PB having an average thickness of 500. Next, the α-type alumina base material is transferred to a vacuum furnace, and M is applied on the brazing material layer of the base material.
After contacting the o plate, 10-s to 10-1°torr,
When heat treated at 595°C for 10 minutes, the brazing material layer melted and solidified at 510°C. As a result, the melting point was lowered by 5°C and the freezing point was lowered by 90°C compared to bulk Pb, which has a melting point of 800°C.

熱処理後、真空炉中で冷却し、炉外にアルミナ基材を取
出したところ、Mo板はアルミナ基打上に接合され、そ
の引っ張り強度は6kg/cm2以上であった。また、
得られた接合部材を加熱しても接合部の残留応力に起因
する亀裂、破壊等は全く認められなかった。
After the heat treatment, it was cooled in a vacuum furnace and the alumina base material was taken out of the furnace. The Mo plate was bonded to the alumina base and its tensile strength was 6 kg/cm2 or more. Also,
Even when the obtained bonded member was heated, no cracks, destruction, etc. caused by residual stress in the bonded portion were observed.

実施例3 純度99.9%のα型アルミナ基材の表面をアセトンで
超音波洗浄した後、この基材上にアルゴンイオンスパッ
タリング装置により 5X 1O−3torrのアルゴ
ン雰囲気中にて途中で真空を破ることなく平均厚さ50
入のZr、平均厚さ 500λのpbを順次積層して二
層積層構造のろう材層を形成した。次いで、前記α型ア
ルミナ基材を真空炉中に移し、該基材のろう材層上にM
o板を当接させた後、10−8〜1O−10torr、
  800℃の条件で10分間熱処理したところ、ろう
材層は溶融し、530℃で凝固した。これにより、融点
が800℃のバルクのpbに比べて凝固点で70℃低減
化することができた。
Example 3 After ultrasonically cleaning the surface of an α-type alumina base material with a purity of 99.9% with acetone, the vacuum was broken midway through an argon atmosphere of 5X 1O-3 torr on this base material using an argon ion sputtering device. Average thickness 50 without
A brazing filler metal layer having a two-layer laminated structure was formed by sequentially laminating Zr containing 100% of the aluminum alloy and PB having an average thickness of 500λ. Next, the α-type alumina base material is transferred to a vacuum furnace, and M is applied on the brazing material layer of the base material.
After contacting the o plate, 10-8 to 1O-10 torr,
When heat treated for 10 minutes at 800°C, the brazing material layer melted and solidified at 530°C. As a result, the freezing point could be lowered by 70°C compared to bulk PB, which has a melting point of 800°C.

熱処理後、真空炉中で冷却し、炉外にアルミナ基材を取
出したところ、Mo板はアルミナ基村上に接合され、そ
の引っ張り強度は8kg/cm2以上であった。また、
得られた接合部材を加熱しても接合部の残留応力に起因
する亀裂、破壊等は全く認められなかった。
After the heat treatment, the alumina base material was cooled in a vacuum furnace and taken out of the furnace, and the Mo plate was bonded to the alumina base material, and its tensile strength was 8 kg/cm2 or more. Also,
Even when the obtained bonded member was heated, no cracks, destruction, etc. caused by residual stress in the bonded portion were observed.

実施例4 純度99.9%の窒化アルミニウム基材の表面をアセト
ンで超音波洗浄した後、この基材上にアルゴンイオンス
パッタリング装置により 5X to−3torrのア
ルゴン雰囲気中にて途中で真空を破ることなく平均厚さ
50入のTi、平均厚さ 500人のBiを順次積層し
て二層積層構造のろう材層を形成した。
Example 4 After ultrasonically cleaning the surface of an aluminum nitride base material with a purity of 99.9% with acetone, the vacuum was broken midway through using an argon ion sputtering device in an argon atmosphere of 5X to 3 torr. A brazing filler metal layer having a two-layer laminated structure was formed by sequentially laminating Ti with an average thickness of 50 mm and Bi with an average thickness of 500 mm.

次いで、前記α型アルミナ基材を真空炉中に移し、該基
材のろう材層上にMo板を当接させた後、10−’ 〜
10−” torr、  540℃の条件で10分間熱
処理したところ、ろう材層は溶融し、450℃で凝固し
た。これにより、融点が544℃のバルクのBiに比べ
て融点で4℃、凝固点で94℃、低減化することができ
た。
Next, the α-type alumina base material was transferred to a vacuum furnace, and after a Mo plate was brought into contact with the brazing material layer of the base material, 10-' ~
When heat treated for 10 minutes at 10-" torr and 540°C, the brazing material layer melted and solidified at 450°C. As a result, the melting point was 4°C and the freezing point was lower than that of bulk Bi, which has a melting point of 544°C. It was possible to reduce the temperature by 94°C.

熱処理後、真空炉中で冷却し、炉外に窒化アルミニウム
基材を取出したところ、Mo板は窒化アルミニウム基材
上に接合され、その引っ張り強度は4kg/cm’以上
であった。また、得られた接合部材を加熱しても接合部
の残留応力に起因する亀裂、破壊等は全く認められなか
った。
After the heat treatment, the aluminum nitride base material was cooled in a vacuum furnace and taken out of the furnace, and the Mo plate was bonded to the aluminum nitride base material, and its tensile strength was 4 kg/cm' or more. Moreover, even when the obtained bonded member was heated, no cracks, destruction, etc. caused by residual stress in the bonded portion were observed.

実施例5 純度99.9%の窒化アルミニウム基材の表面をアセト
ンで超音波洗浄した後、この基材上にアルゴンイオンス
パッタリング装置により 5X 10−’torrのア
ルゴン雰囲気中にて途中で真空を破ることなく平均厚さ
50久のTi、平均厚さ 500大のSnを順次積層し
て二層積層構造のろう材層を形成した。
Example 5 After ultrasonically cleaning the surface of an aluminum nitride base material with a purity of 99.9% with acetone, the vacuum was broken midway through an argon atmosphere of 5X 10-'torr using an argon ion sputtering device on this base material. Ti with an average thickness of 50 mm and Sn with an average thickness of 500 mm were sequentially laminated to form a brazing filler metal layer with a two-layer laminated structure.

次いで、前記α型アルミナ基材を真空炉中に移し、該基
材のろう材層上にMo板を当接させた後、IF’〜10
−” torr、  500℃の条件で10分間熱処理
したところ、ろう材層は溶融し、410’Cで凝固した
。これにより、融点が505℃のバルクのSnに比べて
融点で5℃、凝固点で95℃、低減化することができた
Next, the α-type alumina base material was transferred to a vacuum furnace, a Mo plate was brought into contact with the brazing material layer of the base material, and then IF'~10
When heat treated for 10 minutes at 500°C, the brazing material layer melted and solidified at 410'C.This resulted in a melting point of 5°C and a freezing point of 505°C, compared to bulk Sn, which has a melting point of 505°C. It was possible to reduce the temperature by 95°C.

熱処理後、真空炉中で冷却し、炉外に窒化アルミニウム
基材を取出したところ、MO板は窒化アルミニウム基村
上に接合され、その引っ張り強度は3kg/c+a2以
上であった。また、得られた接合部材を加熱しても接合
部の残留応力に起因する亀裂、破壊等は全く認められな
かった。
After the heat treatment, the aluminum nitride base material was cooled in a vacuum furnace and taken out of the furnace, and the MO plate was bonded onto the aluminum nitride base material, and its tensile strength was 3 kg/c+a2 or more. Moreover, even when the obtained bonded member was heated, no cracks, destruction, etc. caused by residual stress in the bonded portion were observed.

[発明の効果] 以上詳述した如く、本発明の接合方法によればセラミッ
クス、金属からなる部材間の接合に際して接合温度及び
冷却過程での凝固温度を低減して異種材料からなる部材
間の熱膨張差に起因する残留応力の発生を抑制でき、ひ
いては接合後の熱影響による亀裂、破損を防止した信頼
性の高い接合部材を得ることができる等顕著な効果を奏
する。
[Effects of the Invention] As detailed above, according to the joining method of the present invention, when joining members made of ceramics and metals, the joining temperature and the solidification temperature during the cooling process are reduced, and the heat between members made of different materials is reduced. This has remarkable effects such as being able to suppress the generation of residual stress due to the difference in expansion, and thereby making it possible to obtain a highly reliable bonded member that is prevented from cracking or breaking due to thermal effects after bonding.

Claims (2)

【特許請求の範囲】[Claims] (1)セラミックス又は金属からなる一方の部材の接合
面に平均厚さ1000Å以下のろう材層を形成し、この
ろう材層に前記部材と異なる金属又はセラミックスから
なる他方の部材を当接させた後、加熱して前記ろう材層
を溶融、接合することを特徴とする接合方法。
(1) A brazing metal layer with an average thickness of 1000 Å or less is formed on the joint surface of one member made of ceramic or metal, and the other member made of a metal or ceramic different from the above member is brought into contact with this brazing metal layer. A joining method characterized in that the brazing material layer is then heated to melt and join.
(2)セラミックス又は金属からなる一方の部材の接合
面に平均厚さ1000Å以下の金属薄膜を複数積層した
ろう材層を形成し、このろう材層に前記部材と異なる金
属又はセラミックスからなる他方の部材を当接させた後
、加熱して前記ろう材層を溶融、接合することを特徴と
する接合方法。
(2) A brazing filler metal layer consisting of a plurality of laminated metal thin films with an average thickness of 1000 Å or less is formed on the joining surface of one member made of ceramic or metal, and the brazing filler metal layer is formed on the joining surface of one member made of a metal or ceramic different from the said member. A joining method characterized in that after the members are brought into contact, the brazing material layer is melted and joined by heating.
JP22539289A 1989-08-31 1989-08-31 Joining method Expired - Fee Related JP2854619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22539289A JP2854619B2 (en) 1989-08-31 1989-08-31 Joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22539289A JP2854619B2 (en) 1989-08-31 1989-08-31 Joining method

Publications (2)

Publication Number Publication Date
JPH0388780A true JPH0388780A (en) 1991-04-15
JP2854619B2 JP2854619B2 (en) 1999-02-03

Family

ID=16828642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22539289A Expired - Fee Related JP2854619B2 (en) 1989-08-31 1989-08-31 Joining method

Country Status (1)

Country Link
JP (1) JP2854619B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632669A (en) * 1992-07-15 1994-02-08 Toshiba Corp Joined body, metallized body and production of metallized body
CN115302033A (en) * 2022-08-22 2022-11-08 哈尔滨工业大学(威海) Low-temperature indirect brazing method for zirconia ceramic and titanium alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632669A (en) * 1992-07-15 1994-02-08 Toshiba Corp Joined body, metallized body and production of metallized body
CN115302033A (en) * 2022-08-22 2022-11-08 哈尔滨工业大学(威海) Low-temperature indirect brazing method for zirconia ceramic and titanium alloy
CN115302033B (en) * 2022-08-22 2023-11-21 哈尔滨工业大学(威海) Low-temperature indirect brazing method for zirconia ceramic and titanium alloy

Also Published As

Publication number Publication date
JP2854619B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
JPH0217509B2 (en)
JPH0249267B2 (en)
EP0301492B1 (en) Method for bonding cubic boron nitride sintered compact
JPH06108246A (en) Diffusion-bond sputtering target assembly and its production
JPH0388780A (en) Bonding method
WO1994017551A1 (en) Intermediate-temperature diffusion welding
JPH0867978A (en) Method for soldering target for sputtering
US5361971A (en) Intermediate-temperature diffusion welding
JP3469261B2 (en) Diffusion bonded sputtering target assembly and method of manufacturing the same
JPH09249463A (en) Brazing material for sealing vacuum airtight container and production of vacuum airtight container
JP4331370B2 (en) Method for manufacturing HIP joined body of beryllium and copper alloy and HIP joined body
JP3302714B2 (en) Ceramic-metal joint
JP3687161B2 (en) Joining method of ceramic structures
JP4151859B2 (en) Method for joining sputtering target plates
JPH04295069A (en) Method for metallizing ceramics and production of ceramics-metal combined body by utilizing this method
JPH029779A (en) Production of ceramic-metal composite body
JPH06134569A (en) Brazing method for particle dispersed copper
JP2001048668A (en) Method for joining ceramics and metal, joined body and piezoelectric vibrator
JPH01179768A (en) Method for bonding ceramic material and metallic material
JP3215554B2 (en) Method of joining materials with different coefficients of thermal expansion
JP3316578B2 (en) Method for producing joined body of ceramic member and aluminum member
JPH0547513B2 (en)
JPH0649620B2 (en) Method for joining ceramic member and metal member
JPS61169190A (en) Composite brazing filler metal
JPH0369865B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees