JP4151859B2 - Method for joining sputtering target plates - Google Patents

Method for joining sputtering target plates Download PDF

Info

Publication number
JP4151859B2
JP4151859B2 JP30176298A JP30176298A JP4151859B2 JP 4151859 B2 JP4151859 B2 JP 4151859B2 JP 30176298 A JP30176298 A JP 30176298A JP 30176298 A JP30176298 A JP 30176298A JP 4151859 B2 JP4151859 B2 JP 4151859B2
Authority
JP
Japan
Prior art keywords
target plate
plate
joint
coating
backing metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30176298A
Other languages
Japanese (ja)
Other versions
JP2000117427A (en
Inventor
田 征 一 郎 宮
林 良 治 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP30176298A priority Critical patent/JP4151859B2/en
Publication of JP2000117427A publication Critical patent/JP2000117427A/en
Application granted granted Critical
Publication of JP4151859B2 publication Critical patent/JP4151859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、実質的に炭素,ケイ素,セラミックの中から選ばれた材料からなるスパッタリング用のターゲット板とその裏打金属板を接合する方法に関するものである。
なお、ここで「実質的」とは、純粋の炭素等の他に不可避的な不純物や製造時助剤の残留成分あるいは意図的な添加成分が少量含まれる場合があることを指している。
【0002】
【従来の技術】
スパッタリングに使用されるターゲット部材は、通常、スパッタリングで形成する薄膜の材料源になるターゲット板に熱伝導性の良い銅やアルミニウム系の金属の裏打金属板を接合した構造のものである。
ターゲット板と裏打金属板は通常融点の低い柔らかなInやSn系ロウ材でロウ付けがされるが、炭素,ケイ素,セラミックはこれらのロウ材で濡れないために、これらを実質成分とするターゲットのロウ付けに当っては通常、ロウ付けに先立って接合面にロウが濡れやすい様にNiやCuを被膜することが行われている。
従来、このNiやCu被膜は、次のような方法で形成されている。
すなわち、先ずターゲット板の接合面に炭素,ケイ素,セラミックに強い密着性を持つMo,W,Ti,Cr等の被膜をスパッタリングし、この被膜の上に数μm〜数十μm厚さのNiやCuをメッキあるいはスパッタリングで被覆している。
NiやCu膜の上にはさらに低融点のロウ材が溶融メッキされる。
裏打金属板の表面にも低融点ロウ材が溶融メッキされ、ターゲット板,裏打ち金属板双方のロウ材面を互いに重ね合わせて加熱溶融して両者を接合する。
従来方法には次のような欠点がある。
▲1▼ターゲット板の溶融メッキに少なくとも3工程必要とし、工程が複雑で高コストである。
▲2▼スパッタリングを使用するために高価である。とくに炭素材料は、Mo,W,Ti,Cr等のスパッタリング後のNi,Cu被覆のさい、湿式メッキではメッキ液が炭素材料にしみこむので湿式メッキ法は使用できず、Ni,Cu膜もスパッタリングで形成する必要があり極めて高価である。
▲3▼接合面に被覆したNi,Cu膜と溶融メッキ層が合金化し、その結果、溶融メッキ層が固くなり、また融点も上昇して。接合界面の熱応力が大きくなり、変形や割れをひき起こす。
【0003】
【発明が解決しようとする課題】
本発明は、かかる問題点に鑑みてなされたもので、その目的とするところは、実質的に{炭素,ケイ素,セラミック}の中から選ばれた材料からなるスパッタリング用ターゲット板に関して、
▲1▼スパッタリングや湿式メッキ法を用いることなくターゲット板に直接一回の工程で密着強度の大きい溶融メッキ膜を形成でき、
▲2▼ターゲット部材界面の熱応力を軽減でき、かつ
▲3▼極めて安価に施工できる
ターゲット板と裏打金属板の新しい接合方法を提供せんとするものである。
【0004】
【課題を解決するための手段】
上記課題は次の方法で解決できる。すなわち、
(1) 実質的に{炭素,ケイ素,セラミック}の中から選ばれた材料からなるスパッタリング用ターゲット板の接合面に{In,Sn,Pb}の中から選ばれた元素と活性金属元素を主成分とし該活性金属元素の添加量が0.5〜10wt%の範囲にある合金の粉末あるいは箔を、塗布あるいは貼着し、真空,水素,あるいは不活性雰囲気で650〜1200℃の温度に加熱することにより、前記接合面に被膜を融着させる工程1と、該ターゲット板に接合する裏打金属板の接合面に低融点ロウ材の被膜を被覆する工程2と、該ターゲット板、裏打金属板の被膜を重ね合わせ、重ね合わせた被膜を300℃以下の温度で加熱融合させる工程3とを備えてなることを特徴とするスパッタリング用ターゲット板の接合方法。
(2) 上記活性金属がTiである上記1に記載の接合方法。
【0005】
【発明の実施の形態】
本発明で活性金属とは、Ti,Zr,Hf等のTi族元素,V,Nb,Ta等のV族元素、La,Ce等の希土類元素、Ca,Mg等のアルカリ土類金属の一部、その他Cr,Y,Al等、各種の元素と化合物を作りやすい元素を意味するものであり、これらの中でとりわけTi,Zr,Vが好ましい。
これら活性金属の添加量は、0.5〜10wt%の範囲、最も好ましくは1〜5wt%の範囲がよい。活性金属が上限値を超えると固くなって接合界面の熱応力が大きくなり、割れ、変形を引起こすので好ましくない。また、下限値未満では密着強度が弱く、剥離する場合がある。
【0006】
(In,Sn,Pb)の中から選ばれた元素と活性金属の総和は、85wt%以上が好ましく、残り15wt%未満の範囲で他の元素で置換えても良い。
15wt%未満であれば不都合な影響を伴わずに置換できる元素としてはAu,Ag,Cu,Znを例示でき、とりわけAg,Cuは耐熱性使用限界温度を上げるのに効果がある。
【0007】
(In,Sn,Pb)に活性金属元素を0.5〜10wt%の範囲で添加した合金の融点は概ね100〜200℃前後であり、凝固後もIn,Sn,Pbと同じように延性に富む金属である。しかもこれらの合金は、450℃以上では炭素,ケイ素,セラミックに濡れて融着する性質がある。
融着は、いわゆる合金を作って融着するものではなく、セラミック,炭素,ケイ素に活性金属が拡散することによってなされるものであり、拡散によって融着金属層が脆くなったり、固くなったりすることはない。
融着金属層は融着温度,融着時間が変化しても本来の柔らかく延性に富む性質に変化はない。また、融着層は大気中で再溶解しても融着性が劣化することもなく、また延性が阻害されることもない。従来方法は中間層に使用するNi,Cuとの合金化により溶融メッキ層が固くなり、熱応力が大きくなるが、本発明では再溶解によって延性が阻害されない。
これらの合金の粉末あるいは箔を接合面に塗布あるいは貼着して真空,水素,あるいは不活性雰囲気で加熱すると、融点で溶融したものが450℃以上では濡れて広がり融着するようになる。
融着には少なくとも450℃以上の加熱が必須であり、最も好ましくは650〜1200℃の加熱がよい。温度が高いほどよく融着するが1200℃程度で飽和するので1200℃を超える加熱は不経済になる。
融着させる被膜の厚さに特別な制約は無いが、概ね10〜500μm程度が良い。厚すぎると裏打ち金属との接合の際に外にはみ出す量が多くなり不経済であるし、薄すぎると、接合面の凹部を十分に埋めて充填することができずボイドが残ることがある。
【0008】
裏打金属板には熱伝導性の優れた銅,銅合金,アルミニュウム,アルミニュウム合金あるいはその他熱伝導性に優れた金属材料が使用されており、ターゲット板との接合に先立ち、接合面に予めIn,Sn,Pb,Zn系の融点の低いロウ材を溶融メッキあるいは電気メッキする。この際、ロウ材との密着性をよくするために必要に応じて裏打金属板の表面にNi,Cu,Ag,Au等の被膜をメッキしても良い。
溶融メッキあるいは電気メッキ層の厚さも概ね10〜500μm程度が好ましい。
【0009】
ターゲット板と裏打金属板の接合は、ターゲット板の融着金属層と、裏打金属板の溶融メッキあるいは電気メッキ層を重ね合わせ、少なくとも一方の被膜金属の融点以上の温度に加熱して両方の被膜を融合させることによって接合する。この際、ターゲット板の融着金属層を融点以上の温度に加熱して、再溶融しても、融着金属層の融着効果が消失することはない。両方の被膜を溶融,融合,合金化してもターゲット板との融着性は残る。つまり真空,還元,不活性雰囲気のもとで、500℃以上に加熱して融着させた被膜を、大気中、概ね300℃以下の温度で再溶解し、ほかの合金と融合させても本来の融着性がそのまま残る。
ここに本発明の最大の特徴がある。
また、一方の被膜がIn系であり、他方の被膜がSn系である場合のように、両方の融点以下の温度に加熱して、両方の被膜の接触面に両被膜よりも低融点のIn−Sn系合金などの融液を生成させる形で融合させても良い。
あるいは両方の被膜同志を加圧して両被膜の融点未満の適宜温度で固相拡散させて接合しても良い。
接合温度は裏打金属板の軟化開始温度(概ね300℃)以下が好ましい。再結晶温度を越えると裏打金属板が軟化して剛性や強度に不足を来たすことがある。
【0010】
本発明接合方法によれば、ターゲット板の材質が炭素,ケイ素の場合、破壊テストでは、ターゲット板がえぐられるように破壊する。つまり接合強度はターゲット板の材料強度である。一方ターゲット板の材質が強度の高いセラミック単結晶や焼結体の場合、ロウ材の部分で破断することもあるが、この際の剪断強度はInを用いた場合では50〜100kg/cm2である。いずれにしても本発明方法の接合強度は、ターゲット板の接合強度としては十分すぎるレベルにある。
【0011】
【実施例】
実施例によって本発明を説明する。
[実施例1]
ターゲット板 :φ150×厚さ5mmの黒鉛板
裏打金属板 :φ180×厚さ10mmのCu−Cr合金
工程1
Sn−5wt%Ti合金の粉末に水と有機糊材(PVP)を混ぜてペースト状となし、これをターゲット板の片面(接合面)全面に約100μmの厚さ塗布した。乾燥後、真空度2×10-5トールの真空炉で850℃に10分加熱した。
ターゲット板の片面全面にSn−5wt%Ti合金の被膜が融着した。
被膜の平均厚さは30μmであった。
工程2
裏打金属板の片面に250℃に加熱してIn−Pb合金を60μm溶融メッキした。
工程3
ターゲット板の融着膜と裏打金属板の溶融メッキ膜を重ね合わせて大気中260℃に加熱して融着膜と溶融メッキ膜を溶融し、ターゲット板(上)を回転させて余分の溶融ロウ材を外に排出させてから凝固させた。
結果
接合部の検査
超音波深傷器で接合部の検査を行った。
割れ、剥離は認められず、接合面積の99%が溶着していた。
製品を4分割し、分割片の一つを金槌で破壊テストした。
接合部の剥離はなくターゲット板が欠けただけであった。
接合部の強度はターゲット板の強度以上であることが確認できた。
因に、ターゲット板にTiをスパッタリングした後、更にNiをスパッタリングしSnを30μm溶融メッキしたものを本実施例と同じ方法で裏打金属板と接合したものは、ターゲット板とロウ材の界面で剥離が発生した。また費用は本発明方法の10倍かかった。
【0012】
[実施例2]
ターゲット板 :φ100×厚さ5mmのケイ素単結晶をスライスした円板
裏打金属板 :φ120×厚さ10mmの純銅製
工程1
Sn−30wt%In−1wt%Zr合金の粉末にエタノールと有機糊材(PVA)を混ぜてペースト状となし、これをターゲット板の片面(接合面)全面に約150μmの厚さ塗布した。
乾燥後、真空度1×10-5トールの真空炉で900℃に10分加熱した。
ターゲット板の片面全面にSn−30wt%In−1wt%Zr合金の被膜が融着した。
被膜の平均厚さは60μmであった。
工程2
裏打金属板の片面を200℃に加熱してInを50μm溶融メッキした。
工程3
上記ターゲット板と裏打金属板を大気中で別々に加熱し、溶融した融着膜と溶融メッキ膜とを特開平6−114549号に開示されたスライド方式で200℃で余分の溶融ロウ材を排出させながら合体させてから凝固させ融着した。
結果
接合部の検査
超音波深傷器で接合部の検査を行った。
割れ、剥離は認められず、接合面積の98%が溶着していた。
製品を4分割し、分割片の一つを金槌で破壊テストした。
接合部の剥離はなくターゲット板が欠けただけであった。
接合部の強度はターゲット板の強度以上であることが確認できた。
【0013】
[実施例3]
ターゲット板 :φ150×厚さ5mmの高純度アルミナ焼結体
裏打金属板 :φ180×厚さ10mmの純銅製
工程1
Sn−8wt%Ti合金の粉末にエタノールと有機糊材(PVA)を混ぜてペースト状となし、これをターゲット板の片面(接合面)全面に約150μmの厚さ塗布した。
乾燥後、真空度1×10-5トールの真空炉で1000℃に10分加熱した。
ターゲット板の片面全面にSn−8wt%Ti合金の被膜が融着した。
被膜の平均厚さは50μmであった。
工程2
裏打金属板の片面に250℃に加熱してSn−Pb半田を100μm溶融メッキした。
工程3
実施例2と同じスライド方式で両被膜を250℃で合体させた。
結果
接合部の検査
超音波深傷器で接合部の検査を行った。
割れ、剥離,気泡は認められず、接合面積の100%溶着していた。
製品をスパッタリングのターゲットとして実使用に供した。
ターゲット板の使用可能限界厚さまで使用したが何の問題も発生しなかった。
因に、従来方法(Tiをスパッタリングした後Niをフラッシュメッシュし、真空中850℃でシンタリング処理した後、更にNi溶融メッキする方法)でターゲット板にSnを溶融メッキし、その他は本実施例と同じ条件で裏打金属板に接合すると、接合後に250μm/直径の歪みが発生した。
本発明方法は従来法に比べて接合後の変形量を小さくできることを確認できた。
【0014】
[実施例4]
ターゲット板 :φ150×厚さ5mmの窒化ケイ素焼結体
裏打金属板 :φ180×厚さ10mmの純銅製
工程1
Sn−5wt%Al合金の粉末にエタノールと有機糊材(PVA)を混ぜてペースト状となし、これをターゲット板の片面(接合面)全面に約100μmの厚さ塗布した。
乾燥後、真空度4×10-5トールの真空炉で1100℃に10分加熱した。
ターゲット板の片面全面にSn−5wt%Al合金の被膜が融着した。
被膜の平均厚さは30μmであった。
工程2
裏打金属板の片面にNiを5μm電気メッキした後、この上にInを100μm
メッキした。
工程3
ターゲット板の融着膜と裏打金属板のIn膜を重ね合せて真空中(5×10-4)で加熱しながら140℃に加熱して融着膜とIn膜を接合した。
接合部からは融液が外にはみ出ており、接合面に低融点の融液が生成されたことを確認できた。
結果
接合部の検査
超音波深傷器で接合部の検査を行った。
割れ、剥離は認められず、接合面積の99%溶着していた。
製品を4分割し、分割片の一つを金槌で破壊テストした。
接合部の剥離はなく窒化ケイ素部分が一部欠けただけであった。
接合部の強度はターゲット板の強度以上であることが確認できた。
【0015】
[実施例5]
ターゲット板 :φ150×厚さ3mmのインジウム−錫酸化物燒結体
裏打金属板 :φ180×厚さ10mmの無酸素銅製
工程1
Sn−5wt%Ti−10wt%Ag製の箔(厚さ50μm)を、エタノールと有機糊材を混合した糊を用いターゲット板の片面(接合面)全面に貼り付けた。
乾燥後、真空度2×10-5トールの真空炉で900℃に20分加熱した。
ターゲット板の片面全面にSn−5wt%Ti−10wt%Ag合金の被膜が融着した。
工程2
裏打金属板の片面にIn−Pbハンダを100μm溶融メッキした。
工程3
ターゲット板の融着膜と裏打金属板の溶融メッキ膜を重ね合せて大気中270℃に加熱して融着膜と溶融メッキ膜を溶融させて擦り合わせ、余分の溶融ロウ材を外に排出させてから凝固させた。
結果
接合部の検査
超音波深傷機で接合部の検査を行った。
割れ、剥離は認められず、接合面積の99%溶着していた。
製品を4分割し、分割片の一つを金槌で破壊テストした。
接合部の剥離はなくターゲット板が欠けただけであった。
【0016】
【発明の効果】
本発明方法は下記の効果を有する。
1.ターゲット材に直接、一回の工程で低融点の柔らかい被膜を融着できる。
2.接合部の熱応力が小さく、変形も小さく、割れも発生しない。
3.低コストで施工できる。
4.炭素,ケイ素,セラミック全般に適用できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of joining a sputtering target plate made of a material substantially selected from carbon, silicon, and ceramic and its backing metal plate.
Here, “substantial” means that in addition to pure carbon or the like, inevitable impurities, a residual component of a manufacturing aid, or an intentionally added component may be included in a small amount.
[0002]
[Prior art]
The target member used for sputtering usually has a structure in which a backing metal plate made of copper or aluminum based metal having good thermal conductivity is joined to a target plate which is a material source of a thin film formed by sputtering.
The target plate and the backing metal plate are usually brazed with a soft In or Sn brazing material having a low melting point, but carbon, silicon, and ceramic are not wetted by these brazing materials, so that these are the main components. For brazing, Ni or Cu is usually coated on the joint surface prior to brazing so that the solder can be easily wetted.
Conventionally, this Ni or Cu film is formed by the following method.
That is, first, a film of Mo, W, Ti, Cr or the like having strong adhesion to carbon, silicon, and ceramic is sputtered on the joint surface of the target plate, and Ni or several μm to several tens of μm thick Ni or Cu is coated by plating or sputtering.
On the Ni or Cu film, a low melting point brazing material is hot dip plated.
A low melting point brazing material is also hot-plated on the surface of the backing metal plate, and the brazing material surfaces of both the target plate and the backing metal plate are overlapped with each other and heated and melted to join them.
The conventional method has the following drawbacks.
(1) At least three processes are required for hot dipping of the target plate, and the process is complicated and expensive.
(2) Expensive due to the use of sputtering. In particular, the carbon material is coated with Ni, Cu after sputtering of Mo, W, Ti, Cr, etc. In wet plating, since the plating solution penetrates into the carbon material, the wet plating method cannot be used, and Ni, Cu films can also be sputtered. It must be formed and is extremely expensive.
(3) The Ni, Cu film coated on the joint surface and the molten plating layer are alloyed, and as a result, the molten plating layer becomes harder and the melting point increases. The thermal stress at the joint interface increases, causing deformation and cracking.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and the object of the present invention is substantially related to a sputtering target plate made of a material selected from {carbon, silicon, ceramic}.
(1) A hot dip plating film with high adhesion strength can be formed directly on the target plate in one step without using sputtering or wet plating.
(2) A new bonding method for the target plate and the backing metal plate that can reduce the thermal stress at the interface of the target member and (3) can be constructed at an extremely low cost.
[0004]
[Means for Solving the Problems]
The above problem can be solved by the following method. That is,
(1) An element selected from {In, Sn, Pb} and an active metal element are bonded to the joint surface of a sputtering target plate substantially made of a material selected from {carbon, silicon, ceramic}. An alloy powder or foil having the active metal element added in the range of 0.5 to 10 wt% as a main component is applied or pasted, and a temperature of 650 to 1200 ° C. in a vacuum, hydrogen, or an inert atmosphere. To heat the film, the process 1 for fusing the coating to the bonding surface, the process 2 for coating the bonding surface of the backing metal plate to be bonded to the target plate, and the target plate, backing A sputtering target plate joining method, comprising: a step of superimposing a metal plate coating; and heating and fusing the superposed coating at a temperature of 300 ° C. or lower .
(2) The joining method according to 1 above, wherein the active metal is Ti.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the active metal means a Ti group element such as Ti, Zr, or Hf, a V group element such as V, Nb, or Ta, a rare earth element such as La or Ce, or a part of an alkaline earth metal such as Ca or Mg. In addition, other elements such as Cr, Y, Al and the like, which easily form compounds with various elements, mean Ti, Zr, and V among these.
The addition amount of these active metals is in the range of 0.5 to 10 wt%, most preferably in the range of 1 to 5 wt%. If the active metal exceeds the upper limit, it becomes hard and the thermal stress at the joint interface increases, causing cracking and deformation, which is not preferable. On the other hand, if it is less than the lower limit, the adhesion strength is weak and may peel off.
[0006]
The sum of the elements selected from (In, Sn, Pb) and the active metal is preferably 85 wt% or more, and may be replaced with other elements in the range of less than 15 wt%.
If it is less than 15 wt%, examples of elements that can be substituted without adverse effects include Au, Ag, Cu, and Zn. In particular, Ag and Cu are effective in raising the heat-resistant use limit temperature.
[0007]
The melting point of an alloy in which an active metal element is added to (In, Sn, Pb) in the range of 0.5 to 10 wt% is approximately 100 to 200 ° C., and it is a metal with high ductility even after solidification, just like In, Sn, and Pb. It is. Moreover, these alloys have the property of being wetted and fused to carbon, silicon, and ceramic at 450 ° C. or higher.
Fusion is not made by fusing so-called alloys, but by active metal diffusing into ceramic, carbon, and silicon, and the fusion metal layer becomes brittle or hard due to diffusion. There is nothing.
The fusing metal layer does not change its original soft and ductile property even if fusing temperature and fusing time are changed. Further, even if the fusion layer is re-dissolved in the air, the fusion property is not deteriorated and the ductility is not hindered. In the conventional method, although the hot-dip plated layer becomes hard due to alloying with Ni and Cu used for the intermediate layer and the thermal stress increases, in the present invention, ductility is not hindered by remelting.
When these alloy powders or foils are applied or pasted to the joint surface and heated in a vacuum, hydrogen, or inert atmosphere, the melted melting point becomes wet and spreads above 450 ° C.
For fusing, heating at least 450 ° C. is essential, and heating at 650 to 1200 ° C. is most preferable. The higher the temperature, the better the fusion, but saturation occurs at about 1200 ° C, so heating above 1200 ° C becomes uneconomical.
Although there is no special restriction | limiting in the thickness of the film to fuse | melt, about 10-500 micrometers is good in general. If it is too thick, the amount of the metal protruding outside during joining to the backing metal increases, which is uneconomical. If it is too thin, the concave portion of the joint surface cannot be sufficiently filled and a void may remain.
[0008]
The backing metal plate is made of copper, copper alloy, aluminum, aluminum alloy, or other metal material with excellent thermal conductivity, which has excellent thermal conductivity. Prior to bonding with the target plate, In, Sn, Pb, Zn-based brazing material having a low melting point is hot-plated or electroplated. At this time, in order to improve the adhesion to the brazing material, a coating of Ni, Cu, Ag, Au or the like may be plated on the surface of the backing metal plate as necessary.
The thickness of the hot dipped or electroplated layer is also preferably about 10 to 500 μm.
[0009]
For joining the target plate and the backing metal plate, the fused metal layer of the target plate and the hot-plated or electroplated layer of the backing metal plate are overlapped and heated to a temperature equal to or higher than the melting point of at least one of the coating metals. Join by fusing. At this time, even if the fusion metal layer of the target plate is heated to a temperature equal to or higher than the melting point and remelted, the fusion effect of the fusion metal layer does not disappear. Even if both coatings are melted, fused, and alloyed, the fusion with the target plate remains. In other words, a film that has been heated and fused to 500 ° C or higher in a vacuum, reducing, or inert atmosphere is redissolved in the atmosphere at a temperature of approximately 300 ° C or lower and fused with other alloys. The fusibility of this remains.
This is the greatest feature of the present invention.
In addition, as in the case where one coating is In-based and the other coating is Sn-based, it is heated to a temperature below the melting point of both coatings, and an In melting point lower than both coatings is formed on the contact surface of both coatings. -You may fuse in the form which produces | generates melts, such as Sn-type alloy.
Alternatively, both coatings may be pressurized and bonded by solid phase diffusion at an appropriate temperature below the melting point of both coatings.
The joining temperature is preferably not more than the softening start temperature (approximately 300 ° C.) of the backing metal plate. When the recrystallization temperature is exceeded, the backing metal plate may soften, resulting in insufficient rigidity and strength.
[0010]
According to the joining method of the present invention, when the material of the target plate is carbon or silicon, in the destructive test, the target plate is broken so as to be removed. That is, the bonding strength is the material strength of the target plate. On the other hand, when the material of the target plate is a ceramic single crystal or sintered body with high strength, it may break at the brazing material part, but the shear strength at this time is 50-100 kg / cm 2 when using In. is there. In any case, the bonding strength of the method of the present invention is at a level that is too high as the bonding strength of the target plate.
[0011]
【Example】
The examples illustrate the invention.
[Example 1]
Target plate: φ150 × 5 mm thick graphite-backed metal plate: φ180 × 10 mm thick Cu-Cr alloy process 1
Sn-5 wt% Ti alloy powder was mixed with water and organic paste (PVP) to form a paste, and this was applied to the entire surface of one surface (joint surface) of the target plate to a thickness of about 100 μm. After drying, it was heated to 850 ° C. for 10 minutes in a vacuum oven with a vacuum degree of 2 × 10 −5 Torr.
A Sn-5 wt% Ti alloy film was fused to the entire surface of one side of the target plate.
The average thickness of the coating was 30 μm.
Process 2
One side of the backing metal plate was heated to 250 ° C., and an In—Pb alloy was plated by 60 μm.
Process 3
The fusion film on the target plate and the molten plating film on the backing metal plate are overlaid and heated to 260 ° C in the atmosphere to melt the fusion film and the molten plating film, and the target plate (top) is rotated to remove excess molten solder. The material was discharged and solidified.
Results Inspection of the joint The joint was inspected with an ultrasonic deep wound device.
No cracking or peeling was observed, and 99% of the joint area was welded.
The product was divided into four parts, and one of the divided pieces was destructively tested with a hammer.
There was no peeling of the joint, and the target plate was only missing.
It was confirmed that the strength of the joint was higher than the strength of the target plate.
Incidentally, after sputtering Ti on the target plate, further sputtering Ni and hot-plating Sn 30 μm, and joining it to the backing metal plate in the same way as this example, peel off at the interface between the target plate and the brazing material There has occurred. The cost was 10 times that of the method of the present invention.
[0012]
[Example 2]
Target plate: Disc-lined metal plate sliced from a silicon single crystal of φ100 x 5 mm thick: Pure copper process 1 of φ120 x 10 mm thick
Sn-30 wt% In-1 wt% Zr alloy powder was mixed with ethanol and organic paste (PVA) to form a paste, which was applied to the entire surface of one side (joint surface) of the target plate to a thickness of about 150 μm.
After drying, it was heated to 900 ° C. for 10 minutes in a vacuum furnace with a vacuum degree of 1 × 10 −5 Torr.
A Sn-30 wt% In-1 wt% Zr alloy coating was fused to the entire surface of one side of the target plate.
The average thickness of the coating was 60 μm.
Process 2
One side of the backing metal plate was heated to 200 ° C. and 50 μm indium was hot-plated.
Process 3
The target plate and the backing metal plate are separately heated in the atmosphere, and the molten fused film and the molten plated film are discharged at 200 ° C. by the slide method disclosed in JP-A-6-114549. Then, they were combined and then solidified and fused.
Results Inspection of the joint The joint was inspected with an ultrasonic deep wound device.
No cracking or peeling was observed, and 98% of the bonded area was welded.
The product was divided into four parts, and one of the divided pieces was destructively tested with a hammer.
There was no peeling of the joint, and the target plate was only missing.
It was confirmed that the strength of the joint was higher than the strength of the target plate.
[0013]
[Example 3]
Target plate: φ150 x 5mm thick high purity alumina sintered metal backing metal plate: φ180 x 10mm thick pure copper process 1
Sn-8 wt% Ti alloy powder was mixed with ethanol and organic paste (PVA) to form a paste, which was applied to the entire surface of one side (joint surface) of the target plate to a thickness of about 150 μm.
After drying, it was heated to 1000 ° C. for 10 minutes in a vacuum furnace with a vacuum degree of 1 × 10 −5 Torr.
A Sn-8 wt% Ti alloy coating was fused to the entire surface of one side of the target plate.
The average thickness of the coating was 50 μm.
Process 2
One side of the backing metal plate was heated to 250 ° C., and Sn—Pb solder was plated by 100 μm.
Process 3
Both coatings were combined at 250 ° C. in the same sliding manner as in Example 2.
Results Inspection of the joint The joint was inspected with an ultrasonic deep wound device.
No cracks, delamination, or bubbles were observed, and 100% of the bonded area was welded.
The product was subjected to actual use as a sputtering target.
Although the target plate was used up to the usable limit thickness, no problem occurred.
Incidentally, Sn is hot-plated on the target plate by a conventional method (a method in which Ni is sputtered after Ni is flash meshed and sintered at 850 ° C. in vacuum and then Ni is hot-plated). When bonded to the backing metal plate under the same conditions as described above, a strain of 250 μm / diameter was generated after bonding.
It was confirmed that the method of the present invention can reduce the deformation after joining as compared with the conventional method.
[0014]
[Example 4]
Target plate: φ150 x 5mm thick silicon nitride sintered metal backing metal plate: φ180 x pure 10mm thick copper process 1
Sn-5 wt% Al alloy powder was mixed with ethanol and organic paste (PVA) to form a paste, and this was applied to the entire surface of one side (joint surface) of the target plate to a thickness of about 100 μm.
After drying, it was heated for 10 minutes to 1100 ° C. in a vacuum oven at a vacuum degree 4 × 10 -5 Torr.
A Sn-5 wt% Al alloy coating was fused to the entire surface of one side of the target plate.
The average thickness of the coating was 30 μm.
Process 2
After 5 μm of Ni was electroplated on one side of the backing metal plate, 100 μm of In was deposited on this.
Plated.
Process 3
The fused film of the target plate and the In film of the backing metal plate were superposed and heated to 140 ° C. while heating in vacuum (5 × 10 −4 ) to join the fused film and the In film.
It was confirmed that a melt having a low melting point was generated on the joint surface because the melt protruded from the joint.
Results Inspection of the joint The joint was inspected with an ultrasonic deep wound device.
No cracking or peeling was observed, and 99% of the bonded area was welded.
The product was divided into four parts, and one of the divided pieces was destructively tested with a hammer.
There was no peeling of the joint and only a portion of the silicon nitride portion was missing.
It was confirmed that the strength of the joint was higher than the strength of the target plate.
[0015]
[Example 5]
Target plate: φ150 x 3 mm thick indium-tin oxide sintered backing metal plate: Oxygen-free copper process 1 of φ180 x 10 mm thickness
A foil (thickness 50 μm) made of Sn-5 wt% Ti-10 wt% Ag was affixed to the entire surface of one surface (joint surface) of the target plate using glue mixed with ethanol and an organic paste material.
After drying, it was heated to 900 ° C. for 20 minutes in a vacuum furnace with a degree of vacuum of 2 × 10 −5 Torr.
A Sn-5 wt% Ti-10 wt% Ag alloy coating was fused to the entire surface of one side of the target plate.
Process 2
In-Pb solder was 100 μm hot-plated on one side of the backing metal plate.
Process 3
The fusion film on the target plate and the molten plating film on the backing metal plate are overlaid and heated to 270 ° C in the atmosphere to melt and rub the fusion film and the molten plating film to discharge the excess molten brazing material to the outside. Then it was solidified.
Results Inspection of the joint The joint was inspected with an ultrasonic deep wound machine.
No cracking or peeling was observed, and 99% of the bonded area was welded.
The product was divided into four parts, and one of the divided pieces was destructively tested with a hammer.
There was no peeling of the joint, and the target plate was only missing.
[0016]
【The invention's effect】
The method of the present invention has the following effects.
1. A soft film having a low melting point can be fused directly to the target material in a single step.
2. The thermal stress at the joint is small, the deformation is small, and no cracks occur.
3. Can be constructed at low cost.
4). Applicable to carbon, silicon, and ceramics in general.

Claims (2)

実質的に{炭素,ケイ素,セラミック}の中から選ばれた材料からなるスパッタリング用ターゲット板の接合面に{In,Sn,Pb}の中から選ばれた元素と活性金属元素を主成分とし該活性金属元素の添加量が0.5〜10wt%の範囲にある合金の粉末あるいは箔を、塗布あるいは貼着し、真空,水素,あるいは不活性雰囲気で650〜1200℃の温度に加熱することにより、前記接合面に被膜を融着させる工程1と、
該ターゲット板に接合する裏打金属板の接合面に低融点ロウ材の被膜を被覆する工程2と、
該ターゲット板、裏打金属板の被膜を重ね合わせ、重ね合わせた被膜を300℃以下の温度で加熱融合させる工程3と
を備えてなることを特徴とするスパッタリング用ターゲット板の接合方法。
Substantially {carbon, silicon, ceramic} on the bonding surface of the sputtering target plate made of a material selected from among the principal components {an In, Sn, Pb} an element selected and active metal elements from the Then, an alloy powder or foil in which the addition amount of the active metal element is in the range of 0.5 to 10 wt% is applied or stuck, and heated to a temperature of 650 to 1200 ° C. in a vacuum, hydrogen, or an inert atmosphere. Step 1 for fusing a coating to the joint surface ,
A step 2 of coating a coating of a low melting point brazing material on the joining surface of the backing metal plate to be joined to the target plate;
And a step 3 of superimposing the target plate and the backing metal plate, and fusing the superposed coatings at a temperature of 300 ° C. or lower .
上記活性金属がTiである請求項1に記載の接合方法。The joining method according to claim 1, wherein the active metal is Ti.
JP30176298A 1998-10-09 1998-10-09 Method for joining sputtering target plates Expired - Fee Related JP4151859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30176298A JP4151859B2 (en) 1998-10-09 1998-10-09 Method for joining sputtering target plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30176298A JP4151859B2 (en) 1998-10-09 1998-10-09 Method for joining sputtering target plates

Publications (2)

Publication Number Publication Date
JP2000117427A JP2000117427A (en) 2000-04-25
JP4151859B2 true JP4151859B2 (en) 2008-09-17

Family

ID=17900872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30176298A Expired - Fee Related JP4151859B2 (en) 1998-10-09 1998-10-09 Method for joining sputtering target plates

Country Status (1)

Country Link
JP (1) JP4151859B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6799790B2 (en) * 2016-12-06 2020-12-16 パナソニックIpマネジメント株式会社 Joining material and the joining body obtained from it and the manufacturing method of the joining body
WO2018122971A1 (en) * 2016-12-27 2018-07-05 三ツ星ベルト株式会社 Electroconductive paste, electronic substrate, and method for manufacturing said substrate
DE102020111698A1 (en) * 2020-04-29 2021-11-04 Rogers Germany Gmbh Method for producing a metal-ceramic substrate and a metal-ceramic substrate produced by such a method

Also Published As

Publication number Publication date
JP2000117427A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
KR910004024B1 (en) Titanium-copper-nickel braze filler metal and method of brazing
TW200900242A (en) Reactive multilayer joining with improved metallization techniques
US8020749B2 (en) Dissimilar metal joining method
US4562121A (en) Soldering foil for stress-free joining of ceramic bodies to metal
JP5734272B2 (en) Double brazing member comprising at least one first layer of Ni-based brazing and at least one second layer containing an active element, method of manufacturing the double brazing member and use of the double brazing member
JP4601052B2 (en) Dissimilar metal joining method
US20090186195A1 (en) Reactive Multilayer Joining With Improved Metallization Techniques
JP2009269085A (en) Method of bonding different metals and bonded structure
TW201020332A (en) Sputter target assembly having a low-temperature high-strength bond
JPH04228480A (en) Composite being stable at high temperature and preparation thereof
JP4151859B2 (en) Method for joining sputtering target plates
US20040060962A1 (en) Method of joining surfaces
JPH07223090A (en) Brazing filler metal for joining aluminum alloy with copper, and composite material joined thereby
JPH0867978A (en) Method for soldering target for sputtering
JP3660014B2 (en) Sputtering target
US4706872A (en) Method of bonding columbium to nickel and nickel based alloys using low bonding pressures and temperatures
JP3629578B2 (en) Ti-based material and Cu-based bonding method
JP4331370B2 (en) Method for manufacturing HIP joined body of beryllium and copper alloy and HIP joined body
JP4519981B2 (en) Solid phase diffusion bonding sputtering target assembly and manufacturing method thereof
JPH06172993A (en) Diffusion bonded sputtering target assembled body and its production
JP2854619B2 (en) Joining method
JPS59141393A (en) Brazing filler material
JPH04304369A (en) Chromium-silicon oxide target material
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPH07110426B2 (en) Method for manufacturing tantalum / copper / stainless steel (carbon steel) clad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees