JPS6088311A - 加速度計システム - Google Patents

加速度計システム

Info

Publication number
JPS6088311A
JPS6088311A JP59192785A JP19278584A JPS6088311A JP S6088311 A JPS6088311 A JP S6088311A JP 59192785 A JP59192785 A JP 59192785A JP 19278584 A JP19278584 A JP 19278584A JP S6088311 A JPS6088311 A JP S6088311A
Authority
JP
Japan
Prior art keywords
acceleration
accelerometer
cluster
signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59192785A
Other languages
English (en)
Other versions
JPH0465963B2 (ja
Inventor
ノーマン・フレデリツク・ワトソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferranti International PLC
Original Assignee
Ferranti PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ferranti PLC filed Critical Ferranti PLC
Publication of JPS6088311A publication Critical patent/JPS6088311A/ja
Publication of JPH0465963B2 publication Critical patent/JPH0465963B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • G01C21/188Compensation of inertial measurements, e.g. for temperature effects for accumulated errors, e.g. by coupling inertial systems with absolute positioning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 産業上の利用分野 本発明は加速度計システムに関するものであり、特に慣
性プラットホームに関連する加速度網7ステムに関する
ものである。従って本発明は航空機工業分野で利用され
る。
従来の技術 慣性プラットホームの構造は、@<の形をとることがで
き、一つの構成形状は、母体乗物の慣性航行システムに
用いられるプラットホーム装置であシ、その装置ではデ
イゲート(dithered)・リング・レーザ・ジャ
イロスコープから成る直交受感トライアット及び加速度
計から成る直交受感三つ組がクラスタといわれる共通の
堅固な構造体に取付けられている。このプラットホーム
とクラスタは、母体乗物に対して動かないように保持さ
れて、ジャイロと加速度計が運動を行うとき、プラット
ボームと乗物の空間内での加速度及び並進加速度を検出
することができる。ジャイロ及び加速度計によって作ら
れた信号は5通常適当な算法の適用によって乗物の運動
を定める処理H」算機に送られる。計算機によるこの周
知の信号処理は、本明細書で、触れているが、これは当
該技術の一部分を構成しているが本発明の一部を構成し
ないので、その前二糸m M JE、−&叶躇b−理想
的には、このクラスタ加速度網は、比較的低周波数(数
10ヘルツより小さい)で単一方向性または振動性であ
る乗物の加速度の成分だけに応答すべきで、慣性品質加
速度計として公知のものが高周波数の応答を悪くすると
いう犠牲を払って、加速度の低周波変動において正確に
応答するように設計されている。本明細書において「低
周波加速度計」という用語は、このような慣性品質加速
度計をさすのに用いられる。
しかし、一つのクラスタ構成内に三つの単軸加速度側ジ
ャイロτ位置決めすることについての制約は、誤った加
速度測定を生じさせる付加的な加速度が、それらを補償
または除去しなげれば、感知されることを意味する。
このような誤差の源及びそれらの解決法を定める方程式
は、教科1、例えば米国ニューシャーシー州、エンゲル
ウッド・クリフスのプ1/ンナイス・ホール・インコー
ポレーテノド(Prentice−4−IalLInc
 、 ) 発行の「慣性誘導工学(InertialG
uida、nce Engineering)jに詳し
く載っている。
そのような誤差の源の二つが、bわゆるコーニング(c
aning)効果とスカリング(scull ing)
効果であって、前者は角加速度測定の誤差を生ずるジャ
イロ入力軸の運動によって生じさせられ、後者は、それ
によって2本の直交軸に沿った数100ヘルツの比較的
高周波数のi+’T線振動と角振動が第うの直交軸に7
9つた定常直線加速度を生ずるものである。
発明が解決しようとする問題点 これらの誤差を補償するために、その効果を生ずる信号
の測定と処理を必要とする補正をジャイロ及び慣性品質
加速度計によって測定される角加速度及び直線加速度に
加える必要がある0スカリング効果の場合に1例えば、
結果として生ずる定常直線加速度は、慣性品質加速度計
の動作帯域中以内にあるが、通常の慣性品質加速度計が
応答できる周波数以上の周波数の軸が0父した振動加速
度から生ずる。測定されて処理されなげればならないの
は、これらの高周波加速度(及び対応するコーニング効
果の高周波角運動)であり、このような高周波振動加速
度を測定できる加速変則を以後「高周波数範囲」で作動
できるという。
前記クラスタは、システムのハウジング及び母体乗物か
ら防振弾性取付台によって機械的に隔βilEできるが
、そのような隔離は、決して完全ではなく、刊体乗物に
よって引起こされたり、前記取付台によって変形された
加速度がクラスタに作用して、」二に挙げた振動加速度
を誘導することがある。
さらに、ジャイロ・ディザ機11なからの反作用トルク
がクラスタのl゛心のまわりに数100ヘルツのティザ
周波数でクラスタの角運動を生じさせることがある。理
論的には、このような角運動は、加速置割を重上・にお
くことによって小さくすることができるが、実際には泪
器類の大部分はそのような理想的な位置決めを妨げ、ク
ラスタの運動を定めるためには、加速変態の理想的位置
からの変位によって生ずる運動の1口線加速度成分を考
慮して測定した直線加速度及び角加速度について寸法効
果の計算を行って、加速度計1定をクラスタ内の単一の
点に戻すことが必要である。
このような寸法効果の割算は、普常の性質のものであシ
、このシステムの処理用割算機によって適用される適当
な周知の算法によって容易に行われるが、この計算に用
いられる算法、すなわちデータの実現は5個々の加速度
計及びジャイロの特性によって左右され、従ってこの種
の算法は、何らかの計器の変化があった場合に、清算機
による解法に容易に適応することができない。寸だ、寸
法効果の補正を行うためには、上記のような振動加速度
の正確な測定が数kHzまで伸びる測定帯域1コヲ必要
とする。広い帯域中にわたってこのような誤差を処理す
るのに必要な言4算機の容量と割算時間は、このシステ
ムの費用と動作性能を決める重装な要因となっている。
発明の目的 本発明の目的は、上に概説した誤差効果を除くことがで
きるか、もしくはそれらの誤差の補正のための測定f言
号會周知の装置ならびに上記のような加速度計クラスタ
を組込んだ慣性プラントホーム、Iff(、IA−7、
rhrh突旦IF徂;乙、rP4:で”k7’、#)、
捷たはその両方を達成する慣性プラットホーム加速度計
クラスタな提供することである。
本発明の第1の面によれば、慣性グラノドホーム加速度
剖クラスタがう本の直交軸の各々に関連して本願でいう
低周波数範囲内で作動できる少なくとも一つの加速置割
と、本願でいう高周波数範囲で作動でき、他の直交軸及
びクラスタの1心に共通な打撃の中心のまわりに痔距離
に配設された1対の加速度計と、前記1対の(高尚波)
加速度計からの信号のオロから前記軸に沿ったクラスタ
の振動加速度を表す和信号を発生するように使用できる
と共に、前記1対の(高周波)加速置割からの信号間の
差から前記直交軸の一方のまわりのクラスタの角加速度
を表す差信号ケ生ずるように使用できる信号処理手段k
 9ifiえている。
イロ及び加速度システムから受けた信号に応じて、う次
元空間におけるプラントホームの運動ヲ割算する処理手
段k Difiえた前の節で定義した加速度計クラスタ
を011+えている。
実施例 第1図を参服すると、慣性プラントホームが中空立方形
構造体1oの中に形成されたジャイロ及び加速置割クラ
スタを備えている。外壁の三つにジャイロ・パッケージ
GxGy及びGzが取付けられ、それぞれのパッケージ
には周知の形の機械的にディザされるリングレーザ・ジ
ャイロが入っている。立方体の壁11の内面は、壁面の
中心近くに置かれた数句はブロック12を付けていて壁
の平面に垂直に伸びる平らな取付は面15を与える0 これらのブロックは、向かい合いの壁面と関連して対を
成しており、各列の取付は面が同一平面上にあるように
置かれ、前記平面は、他の二つの平面に直交して立方溝
造体を通って伸びており。
三つの平面すべてがクラスタの重心illで交差する。
取付は面15の各々には、一つの加速度計が付いており
、それらの加速度計は、取付はブロックに矢印で示され
、lliに示したx、y及び2座標軸の方向に伸びてい
る受感軸に従って15X。
15x、]、5Y、15Y、15z及び15zとして示
されている。
各列において加速度計15及び15’ir、l:、重心
illの両側に等距離症れて配置されていることがわか
るであろう。
クラスタが、例えば、X方向に並進加速度を受けると、
加速度泪15x及び15′Xからの言号の平均(それら
の和の関数)がその方向の並進加速度の尺度であること
が認められるであろう。運動がy軸の周りの回転を含む
場合、加速度it 15 x及び15′Xからの信号は
、引算の形のものであり、それらの差によってその軸の
周りの角加速度を表す。加速度計15Mと15′yとの
間の信号差は、軸の周りの角加速度を表し、加速置割1
5zと15′zとの間の信号差は、X軸の周りの角加速
度を表すことがわかるであろう。
X軸に関連した二つの加速度計15x及び15′xを含
む加速度計システムAx’t=示す第2図を参照する。
これらの加速度計は、構成が同じ単一軸の装置であり、
それぞれは、ゼロから数kHzまでにわたる動作帯域を
もち、アナログの形の出方信号を与える。一つの適当な
装置が米国ワシ7トン州しドモンドにあるサンドストラ
ンド・データ・コントロール・インコーホレーテッド(
Sunds trandData Control I
nc、)によって作られたサンドストランド9A200
0水晶たわみ形加速度割である。
装置]、 5 x、15’xの加速度の大きさに関係す
る出力信号は、加速度計の相対振幅を整合させて、基準
化する基準化(scaling)増幅器16、i 6’
に送られる。増幅器16及び16′の出力は、加算増幅
器17に送られ、それの出方18は、加速度計の信号の
和に比例し、クラスタのX軸に沿った並進、すなわち直
線、加速度の関数である。
増幅器16及び16′の出力は、また差動増幅器19の
入力に送られ、それの出力2oが加速度計の信号間の差
に比例して、クラスタのy軸の周りの回転加速度の関数
である。
クラスタのX方向におづ゛るすべての並進加速度を含む
出力18からの「和」信号は、またAD変換器21を介
して処理計算機22に加えられ、その処理a]算機22
は、またクラスタの他の加速度g」システムAy及びA
z’ZらびにジャイロC)x、(、y及び(yzからの
対応する「和」及び「差」信号を受けて航空機の運動に
よるクラスタの運動を普通の方法で定めるための割算を
行う。
・ 1−和」及び「差」信号は、アナログの形であって
、アナログ回路を用いてコーニング誤差及びスカリング
誤差を割算する普通の補正発生回路25に加えられる。
決定される誤差に関係する信号は、AD変換器2)↓を
介して計算機22に加えられて、加速度計及びジャイロ
の読みを修正してiiI記コーニング及びスカリング運
動を補償するのに用いられる。
回路2うは、二つのセクション25と26に分割されて
いる。上側セクション25は、5軸の周りのコーニング
効果のための補正信@全発生し。
特定の軸、例えば、X軸の周りのコーニング速度は、C
(y軸の周りの回輪角)×(X軸の周りの回転角速度)
] −1−C(X軸の周りの回転角度)×(y軸の周り
の回転角速度)〕として定義でき、X軸及びy軸の各々
の周りのコーニング速度に対して対応する関係が成り立
つ。X軸加速度計システムAxからの差信号は、y軸の
周りの角加速度を表し、その信号の第1の時間積分が回
転の角速度を表し、第2の時間積分がy軸の周りの回転
角度を表す。
加速度H」システムAx(y軸の周りの回転に関係する
)の出力20は5出力端子27yが出力29T/をもつ
第2段の積分器28yに接続された第1段の積分器26
Yに加えられる。第1段の、積分器27yUtた、乗算
器50の一方の入力に加えられ、その乗算器の第2の入
力は第2段の積分−器28x(加速変態システムAzか
らのX軸信号を受ける)に接続されている。第2段の積
分器の出力29Yは、乗算器う1の一方の入力に接続さ
れ、その乗算器への第2の入力は、第1段の積分器2G
xの出力に接続される。積信号が加算増幅器う2の中で
加算され、2軸の周りのコーニング速度を表す信号が出
力55にぢIれる。このアナログ信号は、AD変換器2
11に加えられて1次に上述の割n機22に加えられる
加速度計Ay及びAzからの対応する「差」信号は、そ
れぞれ第1段の積分器26z及び2Gxに加えられる。
その他の積分器の段は、対応して乗算器と加算器を介し
て接続されて、X軸及びyIIilIlのコーニング速
度信号を与える。
補正発生回路25の下側部分26は、スカリノグ誤差に
対する補正信号を与え、その信号は、任意の軸1例えば
、y軸に対して、〔(X軸の周りの角変位)+ (X軸
に沿った直線加速度)〕十[(X軸の周りの角度変位)
X(x・1ill+ K沿った直線加速度)〕として定
義できる。乗算器35Yは。
第1の入力が第2段の積分器2Fizの出力29Zへ接
続されて、2軸の周りの変位を表す信号を受け、第2の
入力が加速度削システムA、 xの「和−1出力18に
接続されて、X軸に沿った@線加速度を表す信号を受け
る。乗算器35′yは、第1の入力が第2段の積分器2
8xの出力29xに接続されて、X軸の周りの変移を表
す信号を受け、第2の入力が加速度計システムAzの「
和」出力に接続されて、2軸に沿った曲線加速度を表す
信号全党ける。乗算器の出力線36Y及び56′yの上
に現れる積信号は、加算増幅器57Yに加えられて、ス
カリング補正を表す増幅器37yの線38の上の出力信
号は、AD変換器211’i介して計算器22に加えら
れる。対応する乗算器対55x、55’x及び35z、
35’zが第2段の積分器信号及び加速置割の「和」葡
受けて、それらの関連の加算増幅器37x及び57zか
らそれぞれX及び2軸に対するスカリング補正信号を発
生する。加速度網システム及び積分器28から受けた信
号の相対振動は、適当な増ψ1■器またはl&衰器(図
を明瞭にするために省いである)によって調節すること
が必要なことがある。
路、特にアナログ乗算器を用いると、割算機22が対応
する計算をディジタルで行わなくてよくなるので、かな
りの計算処理時間を節約する。
図示のスカリング補償信号は、それら音用いて直線加速
度側信号(「和」信号から導かれる)への補正を行うの
に用いる計算機に加えられるが、線う8の上のアナログ
信号に!当に基糸化して各加速度システムからのアナロ
グ「和」信号と混合し、それによって計算機への入力の
数とディジタル処理の量を減らすことがわかるであろう
。高周波角運動測定値をアナログ形式で導くために、加
速度計を用いると、高周波ジャイロ誤差と雑音を除き、
計算機22によって必要とされる母体乗物の運動と関連
する本質的に低周波数の変動を得るために、リングレー
ザ・ジャイロのディジタル出力にディジタルフィルタ5
9を用いることを可能にする。
上述のクラスタ構成の主な利益は1個々の加速度計がそ
れらの打撃の中心を互いにずらした状態で「υ柑l、+
ζhイ1八入雀 =りの■市亦自「1゛市度曾」″・ソ
プテムの各々の打・槽の中、1.ば、クラスタの重心1
)■に共存できて、それにより加速度計信号における寸
法効果の補正を行う必要を完全にナクシて、クラスタ構
成音一層簡単にする。
」二連の加速度訓システムの構成は、慣性プラットホー
ム構造体を簡単にするだけでなく1、そのほかの設備を
備えることも可能にする。例えば、クラスタの低周波角
運動の測定は、本質的にはジャイロによって行われ、角
運動の高周波11111ffl(誤差補正のための)は
加速度計システムによって行われるが、測定システムの
精度もしくは安定度またはその両方を決めるために作ら
れる信号間の比較を行うことができるように、それらの
動作範囲内に重複部分があることがある。またある形の
自己検査を各加速度旧システムの成分加速度訓の間に設
けることもできる。長い時定数をもった加速度出力を(
振動回転の微分効果を除くプこめに)積分して、加速度
訓の応召間の一致を確立するために結果を比較する積分
手段を備えた自己検査手段(図示なし)を設けることも
できる。
第2図に関して上に述べた慣性プラットホーム・クラス
タ構成は、二つの広帯域中加速度計を用い、それぞれが
母体乗物の低周波「慣性」運動とクラスタの高周波振動
運動との両方ならびに母体乗物によって誘導されるすべ
てのものに応答する。
このような広い応答帯域中をもつ加速度計が複剋]で、
本質的に高価な装置であることが認められるであろう。
加速置割システムの詳細を示すもう一つの別の構成が第
う図に示されている。
X軸に関連する加速度計システムA xは、「高」周波
数応答5例えば、5Hzから2kHzにわたる帯域中を
もつが、母体乗物の運動に関連する定常及び低周波加速
度を検出するには増さない1対の圧電気加速度計110
x及びIJ O’ x Itl備えている。
適当な加速変則が米国カリフォルニア州2サン・ウオン
゛ケープス1゛ラノ(San Juan Capest
rano)のエンデブν(’Endevco )コーポ
レーシヨンによって作られているタイプ225OAであ
る。本明細誓において述べられているように、高周波加
iJi度計は、第2図に関して前に説明した加速度計1
5x及び15′Xと同様に配設され、すなわち。
それの両側におりてその受感軸ヲX!l!llIの方向
に方向を合せて重心illから等距離に配設されている
この加速度計システムはまた、独立の1低周波」加速度
訓50”xをも備え、この加速度計は、ゼロから50 
Hz以上捷でにわたる周波数応答帯域中をもつ本願の出
願会社によって作られているタイプFA2のような普通
に市販されている慣性品質計器である。
二つの高周波加速度計40x及び40’xの出力は、基
準化増幅器51及び51′ヲ介してそれぞれ加算増幅器
42及び差動増幅器145へ送られ、これらの増幅器の
出力は第2図の回路25に対応する補正発生回路1II
Iに接続されている。
加算増幅器142の出力45はまた、結合回路1i6の
信号を与えるように接続されており、その回路へ低周波
加速度計110’xのアナログ出力信号も送られる。
高周波及び低周波加速度計信号は、差動出力をもつ増幅
器1i7、IIgでそれぞれ適当に基@化される。各増
幅器の一方の出力は、他方の増幅器に接続されて、増幅
器1i7から信号を受けるように接続された低域フィル
タ50及び増幅器118からの信号を受けるように接続
された高域フィルり51に対する共通レールl19に与
える。これらのフィルタの出力は、結合増幅器52の二
つの入力に接続され、増幅器52は、結合帯域中を超え
て伸びる加速度信号(il−AD変換器54従って第2
図の割算機22に対応する計算器55へ与える出力をも
っている。フィルタ回路網の構成要素は、約10HZの
分割周波数を与えるように選択される0対応する加速度
計システムA′y及びA’ Z id t:た、補正発
生回路1llIに対する「和コ及び「差」信号と割算機
55への入力のための高周波及び低周波直線応答信号を
生ずる。
この結合加速度計信号の中で5加速度計1+2xからの
101(zより小さい分割周波数の振動成分だけが寸法
効果誤差を受けて、計算機が寸法効果補正算法を含む必
要があったとしても、複雑さを少なくり、l0Hz以下
の周波数の範囲というその制限のために、比較的少しの
割算容Gしか必要としないようにする。さらに、一つの
軸と関連する低周波加速度計を重心1稀に置いて、その
加速度側が寸法効果誤差を受けず、補償算法を他の二つ
の低周波加速度計に関して加えさえすればよい場合は、
さらに簡単にすることができる。
従って、少なくとも高周波応答部分がクラスタの重心と
一致した共通な打撃の中心をもつように対称にずらされ
ている加速度計システムを用いる慣性プラットホーム・
クラスタを形成することによって、並進及び回転振動を
決定して、コーニング及びスカリング効果などの誤差の
源をアナログ形式で、かつ寸法効果誤差を除去または少
なくとも減らしながら、従来の処理用側算機においてデ
ィジタル方式で行うよりずっとうまく取除くのに用いる
ことができるようにする。
先に概略述べた各システムの高周波加速度計の間に自己
検査のための手段を設けてもよい。さらに自己検査手段
(図示なし)がまた高周波加速度計と低周波加速度計の
動作帯域において重複がある場合に設けられてもよい。
この共通帯域内の信号をそれその帯域フィルタによって
隔離して、応答の一致からの隔たりを確定するために比
較してもよい。
捷だ、加速度側システムを広い帯域中の加速度側または
限られた帯域中を有する加速変信10組合せで形成して
もよいことを示した。係属出願の英国特許願第 号は、
単軸低周波慣性品 質加速度計及び高周波加速度計を備え、それらの出力は
′、基ω化されて、交差フィルタを介して接続され、上
述の広い動作帯域にわたって伸びる統一された出力を与
える単軸加速度システムを記載しており、すなわち加速
度;41J O′’x、lIo x及び結合ユニットl
I6と類似である。自立加速度側システムが全帯域中に
わたって所望の応答全力えるように校正されて作られる
ことができるので2異なる特性をもった個々の加速度計
でするよりさらに容易に一つのシステム内で埴換えるこ
とができる。
このような自立加速度計システムは、第2図に関して説
明した広帯域中加速度計の変更形として対で使用できた
ことがわかるであろう。
【図面の簡単な説明】
第1図は本発明による慣性プラントホームに関連した(
ジャイロ及び)加速度側システムの斜視図。 第2図は本発明による第1の形の単軸加速度システムを
含む慣性プラットホームの回路図。 第う図は、第2の形の単軸加速度計システムを含む慣性
プラットホームの回路図を示す。 lQ1

Claims (1)

  1. 【特許請求の範囲】 1 三つの直交軸の各々に関連して、低周波範囲内で差
    動できる少なくとも一つの加速度計と;高周波範囲で作
    動でき、他の直交軸及びクラスタの重心に共通な打撃の
    中心の周シに拓距離に配設された1対の加速度側と;前
    記1対の(高周波)加速度計からの信号の和から前記軸
    に沿ったクラスタの振動加速度を表す和信号を発生する
    ように利用できると共に前記1対の(高周波)加速度計
    からの信号間の差から前記直交軸の一方の周りのクラス
    タの角加速度を表す差信号を生ずるように使用できる信
    号処理手段とを備えて成る慣性プラットホーム加速度計
    クラスタ。 2、 前記信号処理手段が高周波範囲で二つの加速MM
    iによって作られた信号の絶対及び相対m1l1品′f
    t匍1徊1す入子−)Is V 4市田で番1甘潅ルキ
    pと、前記基檗化された信号に応じて前記信号の代数平
    均に関係する和信会ヲ作る加算増幅器と、前記基準化さ
    れた信号間の大きさと極性との差に応じて前記差信号を
    作る差動入力増幅器とを含む特許請求の範囲第1項に記
    載の加速度側クラスタ。 3 前記クラスタが閉じた立方形ハウジング構造体を備
    え、5本の座標軸の各々と関連した1対の高周波加速度
    側が前記ハウジング構造体の内側の向かい合った面に取
    付けられている特許請求の範囲第1項または第2項に記
    載の加速度側クラスタ。 生 加速度側対間の回転運動の周期に比較して長い周期
    にわたって積分される高周波数範囲における加速度計対
    によって作られた信号を比較し、かつそれらの応答にお
    ける差の指示を与えるように差動できる自己検査手段を
    含む特許請求の範囲第1項ないし第5項のいずれかに記
    載の加速度計クラスタ。 ら 4ζ力n g FIE宜→−・ソステ人端;4−す
    1−J’h、4: n 1+ fsら数k i(zにわ
    たる動作帯域mtもつ二つの加速度網から成る特許請求
    の範囲第1項ないし第)1項のいずれかに記載の加速度
    計クラスタ。 6、 各加速度計システムが加速度における低周波及び
    高周波の変動の測定のための独立の加速度i−1を含む
    特許請求の範囲第1項ないし第4項のいずれかに記載の
    加速度計クラスタ。 7 一つの加速度計システムの低周波加速度計がクラス
    タの重心に置かれている特許請求の範囲第6項に記載の
    加速置割クラスタ。 8 前記処理手段の和信号及び低周波加速度網の信号に
    応じて成分低周波及び高周波加速度網の低周波及び高周
    波動作範囲を含む帯域l〕にわたって伸びる統一加速度
    に関した信号を作る結合手段を含む特許請求の範囲第6
    項または第7項に記載の加速度計クラスタ。 9 前記結合手段が低周波加速度網からの信号を受けて
    所定の分割周波数以下の周波数の信号を通過させるよう
    に接続された低域フィルタ手段と前記処理手段の加算手
    段からの信号を受けて前記分割周波数以上の信号を通過
    させるように接続された広域フィルタ手段を含む分割フ
    ィルタ回路網を備えている特許請求の範囲第8項に記載
    の加速fK削クラスタ。 10 低周波帯域において作動できる加速度計からの信
    号と高周波帯域において作動できる加速度網からの信号
    とを両方の形式の加速度網に共通な帯域において通過さ
    せるように作動できるフィルタ手段と、各形式の加速度
    計から受取られる信号を比較して、それらの応答内の差
    を表示するように作動できる比較手段とを備えた自己検
    査手段をさらに含む特許請求の範囲第6項ないし第9項
    のいずれかに記載の加速度計クラスタ。
JP59192785A 1983-09-16 1984-09-17 加速度計システム Granted JPS6088311A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8324856 1983-09-16
GB08324856A GB2146776B (en) 1983-09-16 1983-09-16 Accelerometer systems

Publications (2)

Publication Number Publication Date
JPS6088311A true JPS6088311A (ja) 1985-05-18
JPH0465963B2 JPH0465963B2 (ja) 1992-10-21

Family

ID=10548887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59192785A Granted JPS6088311A (ja) 1983-09-16 1984-09-17 加速度計システム

Country Status (5)

Country Link
US (1) US4601206A (ja)
JP (1) JPS6088311A (ja)
DE (1) DE3433189C2 (ja)
FR (1) FR2552222B1 (ja)
GB (1) GB2146776B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266911A (ja) * 1985-05-22 1986-11-26 Nippon Kogaku Kk <Nikon> 光フアイバジヤイロを用いた測量装置
JPH0221213A (ja) * 1988-07-08 1990-01-24 Japan Aviation Electron Ind Ltd 光干渉角速度計及び慣性装置
DE4208404A1 (de) * 1991-03-20 1992-09-24 Hitachi Ltd Verfahren und einrichtung zur gierimpulserfassung fuer fahrzeuge und dieses verfahren und diese einrichtung verwendende bewegungssteuerungseinrichtung fuer fahrzeuge
JP2006105598A (ja) * 2004-09-30 2006-04-20 Honda Motor Co Ltd 加速度・角速度センサユニット
CN113156163A (zh) * 2020-01-23 2021-07-23 美国亚德诺半导体公司 用于改善mem加速度计的频率响应的方法和装置

Families Citing this family (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951508A (en) * 1983-10-31 1990-08-28 General Motors Corporation Vibratory rotation sensor
US5331401A (en) * 1985-06-03 1994-07-19 Litton Systems, Inc. Method and apparatus for controlling dither in a multiple gyro system
US4870588A (en) * 1985-10-21 1989-09-26 Sundstrand Data Control, Inc. Signal processor for inertial measurement using coriolis force sensing accelerometer arrangements
US4749157A (en) * 1986-08-18 1988-06-07 Hughes Aircraft Company Spacecraft accelerometer auto-alignment
US4747317A (en) * 1986-12-18 1988-05-31 Atlantic Richfield Company System for surveying fluid transmission pipelines and the like
GB8707091D0 (en) * 1987-03-25 1988-02-10 Emi Plc Thorn Ionic conductivity accelerometer
US4839838A (en) * 1987-03-30 1989-06-13 Labiche Mitchell Spatial input apparatus
DE3733837A1 (de) * 1987-10-07 1989-04-27 Messerschmitt Boelkow Blohm Schaltungsanordnung zum erfassen von beschleunigungen
GB8725911D0 (en) * 1987-11-05 1987-12-09 Emi Plc Thorn Ionically conductive accelerometer
US4873867A (en) * 1988-02-12 1989-10-17 Trc, Inc. Redundant signal device for auto crash testing
US5012174A (en) * 1988-06-20 1991-04-30 Sperry Marine Inc. Method and apparatus for countering vibrations of a platform
FR2648234B1 (fr) * 1989-06-09 1991-08-30 Persival Ass Dispositif de prise des mesures des divers elements constitutifs du mouvement d'un mobile
US5130937A (en) * 1990-03-07 1992-07-14 Sundstrand Corporation Method and apparatus for storing velocity data
US5440326A (en) 1990-03-21 1995-08-08 Gyration, Inc. Gyroscopic pointer
US5128671A (en) * 1990-04-12 1992-07-07 Ltv Aerospace And Defense Company Control device having multiple degrees of freedom
DE9015495U1 (ja) * 1990-11-12 1992-01-02 Technischer Ueberwachungs-Verein Bayern E.V., 8000 Muenchen, De
JP2637630B2 (ja) * 1991-01-30 1997-08-06 三菱電機株式会社 制御情報の検出方法及び装置
US5422817A (en) * 1991-08-13 1995-06-06 Litton Systems, Inc. Strapdown inertial navigation system using high order
USRE40891E1 (en) 1991-11-26 2009-09-01 Sandio Technology Corp. Methods and apparatus for providing touch-sensitive input in multiple degrees of freedom
US6597347B1 (en) 1991-11-26 2003-07-22 Itu Research Inc. Methods and apparatus for providing touch-sensitive input in multiple degrees of freedom
US5335557A (en) * 1991-11-26 1994-08-09 Taizo Yasutake Touch sensitive input control device
DE69204653T2 (de) * 1992-02-11 1996-04-18 Fokker Space & Systems Bv Zusammenbau von Beschleunigungsmessaufnehmern zur Verwendung in einem Messystem für dreidimensionale Bewegungen eines festen Körpers.
US5453758A (en) * 1992-07-31 1995-09-26 Sony Corporation Input apparatus
US5307325A (en) * 1992-08-31 1994-04-26 Magnavox Electronic Systems Company Accelerometer sensor noise reduction method and means
DE4238512C1 (de) * 1992-11-14 1994-01-20 Deutsche Aerospace Inertialstabilisierungssystem
US5363700A (en) * 1992-11-17 1994-11-15 Honeywell Inc. Skewed axis inertial sensor assembly
GB2272974A (en) * 1992-11-27 1994-06-01 Gec Ferranti Defence Syst Inertial guidance system
US5383363A (en) * 1993-02-10 1995-01-24 Ford Motor Company Inertial measurement unit providing linear and angular outputs using only fixed linear accelerometer sensors
CA2121380A1 (en) * 1993-04-22 1994-10-23 Ross D. Olney Rotation sensor using linear accelerometers
US5731804A (en) 1995-01-18 1998-03-24 Immersion Human Interface Corp. Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems
US5721566A (en) 1995-01-18 1998-02-24 Immersion Human Interface Corp. Method and apparatus for providing damping force feedback
US5805140A (en) 1993-07-16 1998-09-08 Immersion Corporation High bandwidth force feedback interface using voice coils and flexures
US5767839A (en) * 1995-01-18 1998-06-16 Immersion Human Interface Corporation Method and apparatus for providing passive force feedback to human-computer interface systems
US6437771B1 (en) 1995-01-18 2002-08-20 Immersion Corporation Force feedback device including flexure member between actuator and user object
US5739811A (en) 1993-07-16 1998-04-14 Immersion Human Interface Corporation Method and apparatus for controlling human-computer interface systems providing force feedback
US5734373A (en) * 1993-07-16 1998-03-31 Immersion Human Interface Corporation Method and apparatus for controlling force feedback interface systems utilizing a host computer
US5724264A (en) * 1993-07-16 1998-03-03 Immersion Human Interface Corp. Method and apparatus for tracking the position and orientation of a stylus and for digitizing a 3-D object
GB9417202D0 (en) * 1994-08-25 1994-10-19 Elford Paul C D Three-dimensional position indicator
FR2725026B1 (fr) * 1994-09-28 1997-01-10 Aerospatiale Procede et dispositif pour minimiser dans un systeme de mesures inertielles l'erreur due a un mouvement perturbant dans la restitution de la vitesse
JPH08159806A (ja) * 1994-10-04 1996-06-21 Murata Mfg Co Ltd 方位センサおよび方位距離センサ
US6850222B1 (en) 1995-01-18 2005-02-01 Immersion Corporation Passive force feedback for computer interface devices
US5691898A (en) 1995-09-27 1997-11-25 Immersion Human Interface Corp. Safe and low cost computer peripherals with force feedback for consumer applications
US6166723A (en) * 1995-11-17 2000-12-26 Immersion Corporation Mouse interface device providing force feedback
US7113166B1 (en) 1995-06-09 2006-09-26 Immersion Corporation Force feedback devices using fluid braking
US6697748B1 (en) 1995-08-07 2004-02-24 Immersion Corporation Digitizing system and rotary table for determining 3-D geometry of an object
FR2738639B1 (fr) * 1995-09-11 1997-11-21 Aerospatiale Procede et dispositif pour s'affranchir des erreurs dynamiques d'un accelerometre de precision
US5999168A (en) 1995-09-27 1999-12-07 Immersion Corporation Haptic accelerator for force feedback computer peripherals
US5959613A (en) 1995-12-01 1999-09-28 Immersion Corporation Method and apparatus for shaping force signals for a force feedback device
US5754023A (en) 1995-10-26 1998-05-19 Cybernet Systems Corporation Gyro-stabilized platforms for force-feedback applications
US6704001B1 (en) * 1995-11-17 2004-03-09 Immersion Corporation Force feedback device including actuator with moving magnet
US6028593A (en) 1995-12-01 2000-02-22 Immersion Corporation Method and apparatus for providing simulated physical interactions within computer generated environments
US6219032B1 (en) 1995-12-01 2001-04-17 Immersion Corporation Method for providing force feedback to a user of an interface device based on interactions of a controlled cursor with graphical elements in a graphical user interface
US7027032B2 (en) 1995-12-01 2006-04-11 Immersion Corporation Designing force sensations for force feedback computer applications
US8508469B1 (en) 1995-12-01 2013-08-13 Immersion Corporation Networked applications including haptic feedback
US6147674A (en) 1995-12-01 2000-11-14 Immersion Corporation Method and apparatus for designing force sensations in force feedback computer applications
US6859819B1 (en) 1995-12-13 2005-02-22 Immersion Corporation Force feedback enabled over a computer network
US6078308A (en) 1995-12-13 2000-06-20 Immersion Corporation Graphical click surfaces for force feedback applications to provide user selection using cursor interaction with a trigger position within a boundary of a graphical object
CA2195811A1 (en) * 1996-03-18 1997-09-19 Daniel A. Tazartes Coning compensation in strapdown inertial navigation systems
US5890093A (en) * 1996-11-01 1999-03-30 Litton Systems, Inc. Sculling compensation in strapdown inertial navigation systems
US5922951A (en) * 1997-06-11 1999-07-13 The Broken Hill Proprietary Company Ltd. Gravity gradiometer
US5962782A (en) 1997-06-11 1999-10-05 The Broken Hill Proprietary Company Limited Gravity gradiometer accelerometers
JP2000097707A (ja) * 1998-09-18 2000-04-07 Fujitsu Ltd 加速度センサ
US6481283B1 (en) * 1999-04-05 2002-11-19 Milli Sensor Systems & Actuators, Inc. Coriolis oscillating gyroscopic instrument
US6613708B1 (en) 1999-06-07 2003-09-02 Exxonmobil Chemical Patents Inc. Catalyst selectivation
RU2168201C1 (ru) * 1999-11-03 2001-05-27 Супрун Антон Евгеньевич Устройство для ввода информации в эвм
US7292223B2 (en) * 2000-02-24 2007-11-06 Innalabs Technologies, Inc. Location tracking device
US7061469B2 (en) * 2000-02-24 2006-06-13 Innalabs Technologies, Inc. Method of data input into a computer
US7191652B2 (en) 2000-02-24 2007-03-20 Innalabs Technologies, Inc. Magnetofluidic accelerometer with partial filling of cavity with magnetic fluid
US20060059976A1 (en) * 2004-09-23 2006-03-23 Innalabs Technologies, Inc. Accelerometer with real-time calibration
US7178399B2 (en) * 2004-03-03 2007-02-20 Innalabs Technologies, Inc. Housing for magnetofluidic accelerometer
US20060059988A1 (en) * 2004-09-23 2006-03-23 Innalabs Technologies, Inc. Magnetofluidic accelerometer with non-magnetic film on drive magnets
US7296469B2 (en) * 2000-02-24 2007-11-20 Innalabs Technologies, Inc. Magnetofluidic accelerometer with active suspension
US7084854B1 (en) 2000-09-28 2006-08-01 Immersion Corporation Actuator for providing tactile sensations and device for directional tactile sensations
US7365326B2 (en) * 2000-12-26 2008-04-29 Honeywell International Inc. Camera having distortion correction
US6575031B2 (en) * 2001-01-26 2003-06-10 Mts Systems Corporation Transducer for measuring displacement of a vehicle spindle
US6937033B2 (en) * 2001-06-27 2005-08-30 Immersion Corporation Position sensor with resistive element
JP2004053530A (ja) * 2002-07-23 2004-02-19 National Institute Of Advanced Industrial & Technology 移動体の高精度姿勢検出方法及びその装置
US6948367B2 (en) * 2003-07-02 2005-09-27 The Boeing Company Dual bridge angular and linear accelerometer
US6895817B2 (en) * 2003-07-02 2005-05-24 The Boeing Company Dual bridge angular accelerometer
US7124634B2 (en) * 2003-07-29 2006-10-24 The Boeing Company Single plate capacitive acceleration derivative detector
US6785975B1 (en) * 2003-08-05 2004-09-07 The Boeing Company Accelerometer augmented precision compass
FR2861464B1 (fr) * 2003-10-28 2006-02-17 Commissariat Energie Atomique Detecteur de mouvement a six degres de liberte avec trois capteurs de position et procede de fabrication d'un capteur
US6928876B2 (en) * 2003-11-13 2005-08-16 The Boeing Company Dual flexure plate angular accelerometer
US7831354B2 (en) * 2004-03-23 2010-11-09 Continental Teves, Inc. Body state estimation of a vehicle
KR100937572B1 (ko) * 2004-04-30 2010-01-19 힐크레스트 래보래토리스, 인크. 3d 포인팅 장치 및 방법
US8629836B2 (en) 2004-04-30 2014-01-14 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
DE102004021648B4 (de) * 2004-05-03 2016-06-30 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Störeinflussbereinigung eines beschleunigungsabhängigen Sensorsignals
US7310577B2 (en) * 2004-09-29 2007-12-18 The Boeing Company Integrated capacitive bridge and integrated flexure functions inertial measurement unit
US7552781B2 (en) 2004-10-20 2009-06-30 Black & Decker Inc. Power tool anti-kickback system with rotational rate sensor
US7583819B2 (en) * 2004-11-05 2009-09-01 Kyprianos Papademetriou Digital signal processing methods, systems and computer program products that identify threshold positions and values
US7360425B2 (en) * 2004-11-22 2008-04-22 The Boeing Company Compensated composite structure
US7228739B2 (en) 2004-11-23 2007-06-12 The Boeing Company Precision flexure plate
US8137195B2 (en) 2004-11-23 2012-03-20 Hillcrest Laboratories, Inc. Semantic gaming and application transformation
US7331229B2 (en) * 2004-12-09 2008-02-19 The Boeing Company Magnetic null accelerometer
US7137208B2 (en) * 2004-12-14 2006-11-21 The Boeing Company Leveling device
JP2006176084A (ja) * 2004-12-24 2006-07-06 Advics:Kk 車両挙動センサの検出値補正方法
WO2006076499A1 (en) * 2005-01-13 2006-07-20 Analog Devices, Inc. Five degree of freedom inertial measurement unit
US20060185431A1 (en) * 2005-02-23 2006-08-24 Henryk Birecki Camera motion detection system
WO2006104140A1 (ja) * 2005-03-28 2006-10-05 Asahi Kasei Emd Corporation 進行方向計測装置及び進行方向計測方法
US7296470B2 (en) * 2005-04-14 2007-11-20 The Boeing Company Extended accuracy flexured plate dual capacitance accelerometer
US7650238B2 (en) * 2005-05-09 2010-01-19 Northrop Grumman Corporation Environmental characteristic determination
US20060250257A1 (en) * 2005-05-09 2006-11-09 Reynolds Christopher I Sensor orientation for environmental error reduction
US7825903B2 (en) * 2005-05-12 2010-11-02 Immersion Corporation Method and apparatus for providing haptic effects to a touch panel
US7237437B1 (en) * 2005-10-27 2007-07-03 Honeywell International Inc. MEMS sensor systems and methods
US7606552B2 (en) * 2005-11-10 2009-10-20 Research In Motion Limited System and method for activating an electronic device
DE112007002360T5 (de) * 2006-10-02 2009-08-20 Cyberoptics Semiconductor, Inc., Beaverton Niveausensor mit redundanten Beschleunigungsmessern
US20080105050A1 (en) * 2006-11-08 2008-05-08 Honeywell International Inc. Accelerometer derived gyro vibration rectification error compensation
US7934423B2 (en) * 2007-12-10 2011-05-03 Invensense, Inc. Vertically integrated 3-axis MEMS angular accelerometer with integrated electronics
US8462109B2 (en) 2007-01-05 2013-06-11 Invensense, Inc. Controlling and accessing content using motion processing on mobile devices
US8020441B2 (en) * 2008-02-05 2011-09-20 Invensense, Inc. Dual mode sensing for vibratory gyroscope
US8508039B1 (en) 2008-05-08 2013-08-13 Invensense, Inc. Wafer scale chip scale packaging of vertically integrated MEMS sensors with electronics
US20090262074A1 (en) * 2007-01-05 2009-10-22 Invensense Inc. Controlling and accessing content using motion processing on mobile devices
US8250921B2 (en) 2007-07-06 2012-08-28 Invensense, Inc. Integrated motion processing unit (MPU) with MEMS inertial sensing and embedded digital electronics
US8952832B2 (en) 2008-01-18 2015-02-10 Invensense, Inc. Interfacing application programs and motion sensors of a device
US20090265671A1 (en) * 2008-04-21 2009-10-22 Invensense Mobile devices with motion gesture recognition
US8141424B2 (en) 2008-09-12 2012-03-27 Invensense, Inc. Low inertia frame for detecting coriolis acceleration
US8047075B2 (en) * 2007-06-21 2011-11-01 Invensense, Inc. Vertically integrated 3-axis MEMS accelerometer with electronics
US20100071467A1 (en) * 2008-09-24 2010-03-25 Invensense Integrated multiaxis motion sensor
US7779689B2 (en) * 2007-02-21 2010-08-24 Freescale Semiconductor, Inc. Multiple axis transducer with multiple sensing range capability
US7778793B2 (en) * 2007-03-12 2010-08-17 Cyberoptics Semiconductor, Inc. Wireless sensor for semiconductor processing systems
ITTO20070335A1 (it) * 2007-05-15 2008-11-16 Sequoia It S R L Accelerometro ad ampia banda con autoriconoscimento della calibrazione
FR2917175B1 (fr) * 2007-06-08 2010-04-16 Eurocopter France Procede et systeme d'estimation de la vitesse angulaire d'un mobile
US8260477B2 (en) * 2007-12-04 2012-09-04 King Fahd University Of Petroleum And Minerals Method and apparatus for tracking center of gravity of air vehicle
US8020442B2 (en) * 2008-05-22 2011-09-20 Rosemount Aerospace Inc. High bandwidth inertial measurement unit
GB2464092A (en) * 2008-09-25 2010-04-07 Prosurgics Ltd Surgical mechanism control system
US8499611B2 (en) * 2008-10-06 2013-08-06 Teradyne, Inc. Disk drive emulator and method of use thereof
IL195104A (en) 2008-11-04 2013-07-31 Dekel Tzidon A device and method for integrating @ @ inertial @ @ measurements from cluster @ sensors
KR101185589B1 (ko) * 2008-11-14 2012-09-24 (주)마이크로인피니티 움직임 감지를 통한 사용자 명령 입력 방법 및 디바이스
DE102009009562A1 (de) * 2009-02-19 2010-09-09 Integrated Dynamics Engineering Gmbh Kombinierter Bewegungssensor zum Einsatz in Feedback-Regelsystemen zur Schwingungsisolation
DE102009042091A1 (de) * 2009-09-18 2011-03-24 Spohn+Burkhardt Gmbh & Co. Schalthebel mit Beschleunigungssensor
US20120227491A1 (en) * 2009-12-17 2012-09-13 Toyota Jidosha Kabushiki Kaisha Angular velocity detecting apparatus
AU2011204260A1 (en) 2010-01-07 2012-06-07 Black & Decker Inc. Power screwdriver having rotary input control
US9475180B2 (en) 2010-01-07 2016-10-25 Black & Decker Inc. Power tool having rotary input control
US8418778B2 (en) 2010-01-07 2013-04-16 Black & Decker Inc. Power screwdriver having rotary input control
US9266178B2 (en) 2010-01-07 2016-02-23 Black & Decker Inc. Power tool having rotary input control
CN102175889B (zh) * 2011-01-24 2012-11-07 长春工业大学 一种伺服转台角加速度自适应测量方法
FR2972275B1 (fr) 2011-03-03 2014-01-03 Thales Sa Procede et systeme de determination de l'attitude d'un aeronef par mesures accelerometriques multi-axes
US8384487B2 (en) * 2011-04-08 2013-02-26 Ut-Battelle, Llc Orthogonally referenced integrated ensemble for navigation and timing
US20130068017A1 (en) * 2011-09-20 2013-03-21 Noel Perkins Apparatus and method for analyzing the motion of a body
US9140717B2 (en) 2011-09-20 2015-09-22 The Regents Of The University Of Michigan Apparatus and method for identifying and analyzing the free flight dynamics of a body
EP2631035B1 (en) 2012-02-24 2019-10-16 Black & Decker Inc. Power tool
FR2991044B1 (fr) * 2012-05-24 2014-05-09 Sagem Defense Securite Centrale inertielle a gyroscopes vibrants montes sur un carrousel et procede de mesure angulaire
US9032794B2 (en) 2012-08-09 2015-05-19 The Regents Of The University Of Michigan Pitcher training apparatus and method using a ball with an embedded inertial measurement unit
WO2014110672A1 (en) * 2013-01-21 2014-07-24 Trusted Positioning Inc. Method and apparatus for determination of misalignment between device and pedestrian
US9213889B2 (en) 2013-03-28 2015-12-15 The Regents Of The University Of Michigan Athlete speed prediction method using data from attached inertial measurement unit
CN104090126B (zh) * 2014-05-21 2016-08-31 浙江大学 一种加速度计带宽的测试方法
US9551730B2 (en) * 2014-07-02 2017-01-24 Merlin Technology, Inc. Mechanical shock resistant MEMS accelerometer arrangement, associated method, apparatus and system
US10426637B2 (en) 2015-05-11 2019-10-01 The Hong Kong Polytechnic University Exoskeleton ankle robot
US10316884B2 (en) 2015-06-18 2019-06-11 Matthew C. Prestwich Motion activated switch and method
AU2016344004A1 (en) 2015-10-30 2018-06-14 Ion Geophysical Corporation Multi-axis, single mass accelerometer
US10794929B2 (en) * 2016-03-18 2020-10-06 Stanley Convergent Security Solutions, Inc. System for vibration sensing
US10589413B2 (en) 2016-06-20 2020-03-17 Black & Decker Inc. Power tool with anti-kickback control system
US10919617B2 (en) * 2016-10-21 2021-02-16 Aurora Flight Sciences Corporation Distributed acceleration sensing for robust disturbance rejection
WO2019143838A1 (en) * 2018-01-17 2019-07-25 Cubic Corporation Cuboid inertial measurement unit
US11255871B1 (en) * 2018-08-03 2022-02-22 Mcube, Inc. Differential MEMS device and methods
CN112955752A (zh) 2018-09-13 2021-06-11 离子地球物理学公司 多轴线、单质量加速度计
JP7394352B2 (ja) * 2019-03-26 2023-12-08 パナソニックIpマネジメント株式会社 信号処理装置、慣性力センサ、信号処理方法、及びプログラム
RU2729175C1 (ru) * 2019-10-02 2020-08-04 Акционерное общество "Научно-исследовательский институт электронных приборов" Способ виброиспытаний изделий
JP7375522B2 (ja) * 2019-12-20 2023-11-08 セイコーエプソン株式会社 センサーユニット、電子機器および移動体
FR3112392B1 (fr) * 2020-07-07 2022-07-22 Autovib Accéléromètre industriel triaxial
DE102020215304A1 (de) * 2020-12-03 2022-06-09 Robert Bosch Gesellschaft mit beschränkter Haftung Inertialmesseinheit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2811344A (en) * 1955-01-03 1957-10-29 Gen Electric Acceleration responsive system
US2996268A (en) * 1957-11-25 1961-08-15 Gen Motors Corp Inertial guidance system
US3563662A (en) * 1966-06-13 1971-02-16 Sperry Rand Corp Apparatus for sensing movement about a plurality of axes
SU574677A1 (ru) * 1973-07-13 1977-09-30 Киевский Ордена Ленина Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Акселерометр компенсационного типа
US4179818A (en) * 1976-10-07 1979-12-25 Litton Systems, Inc. Tetrahedral redundant inertial reference unit
GB2082801B (en) * 1980-08-27 1983-12-21 Ferranti Ltd Inertial platform
DE3141836A1 (de) * 1981-10-22 1983-05-05 Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen Kurs-lage-referenzgeraet
GB2146775B (en) * 1983-09-16 1986-07-30 Ferranti Plc Accelerometer system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266911A (ja) * 1985-05-22 1986-11-26 Nippon Kogaku Kk <Nikon> 光フアイバジヤイロを用いた測量装置
JPH0221213A (ja) * 1988-07-08 1990-01-24 Japan Aviation Electron Ind Ltd 光干渉角速度計及び慣性装置
DE4208404A1 (de) * 1991-03-20 1992-09-24 Hitachi Ltd Verfahren und einrichtung zur gierimpulserfassung fuer fahrzeuge und dieses verfahren und diese einrichtung verwendende bewegungssteuerungseinrichtung fuer fahrzeuge
DE4208404C2 (de) * 1991-03-20 1997-03-06 Hitachi Ltd Vorrichtung und Verfahren zur Ermittlung von Gierimpulsen eines Fahrzeugs und Verwendung der Vorrichtung für eine Bewegungssteuereinrichtung für Fahrzeuge
JP2006105598A (ja) * 2004-09-30 2006-04-20 Honda Motor Co Ltd 加速度・角速度センサユニット
CN113156163A (zh) * 2020-01-23 2021-07-23 美国亚德诺半导体公司 用于改善mem加速度计的频率响应的方法和装置

Also Published As

Publication number Publication date
DE3433189A1 (de) 1985-04-04
FR2552222A1 (fr) 1985-03-22
GB2146776B (en) 1986-07-30
US4601206A (en) 1986-07-22
JPH0465963B2 (ja) 1992-10-21
FR2552222B1 (fr) 1988-10-28
DE3433189C2 (de) 1994-01-20
GB2146776A (en) 1985-04-24

Similar Documents

Publication Publication Date Title
JPS6088311A (ja) 加速度計システム
US4611491A (en) Accelerometer system
Dean et al. A characterization of the performance of a MEMS gyroscope in acoustically harsh environments
Geiger et al. MEMS IMU for ahrs applications
US8543281B2 (en) Method and system for estimating the angular speed of a mobile
EP1752733A2 (en) Bias and quadrature reduction in class II Coriolis vibratory gyros
KR101314151B1 (ko) 주기적 회전 진동을 이용한 6축 진동 센서의 교정 방법 및 장치
KR101658473B1 (ko) Mems자이로스코프의 가속도 민감도 보정 방법
RU2683144C1 (ru) Способ определения ошибок ориентации измерительных осей лазерных гироскопов и маятниковых акселерометров в бесплатформенной инерциальной навигационной системе
Baranov et al. A novel multiple-axis MEMS gyroscope-accelerometer with decoupling frames
CN113865585B (zh) 一种陀螺仪组合高阶误差系数分离与补偿方法和系统
CN115876225A (zh) 基于二自由度转台的mems imu标定方法及系统
WO1996006328A1 (en) Three-dimensional measurement unit and position indicator
GB2146775A (en) Accelerometer system
EP3798642A1 (en) Coriolis vibratory accelerometer system
ES2255240T3 (es) Procedimiento y sistema de medida vibratoria combinada.
JPS5947788A (ja) 角速度センサのロツクインレ−トを表わす信号を発生する装置
Katrycz et al. On specification and measurement of the IFOG vibration error
Kapeel et al. Modeling and simulation of low cost MEMS gyroscope using matlab (simulink) for UAV autopilot design
KR100771492B1 (ko) 진동형 마이크로 자이로스코프를 이용한 자세각 직접측정제어방법
Grigorie et al. Fuzzy logic denoising of the miniaturized inertial sensors in redundant configurations
RU2794283C1 (ru) Способ определения ориентации объекта в бесплатформенной инерциальной навигационной системе
Chi et al. Single-stage vibratory gyroscope control methods for direct angle measurements
Grigorie et al. The influences of the gyro sensors' errors on the attitude calculus
TWI411766B (zh) Uniaxial Control Input Gyroscope System with Flaw Compensation.