JPS608574B2 - イオン源用半導体エミツタ− - Google Patents

イオン源用半導体エミツタ−

Info

Publication number
JPS608574B2
JPS608574B2 JP53098574A JP9857478A JPS608574B2 JP S608574 B2 JPS608574 B2 JP S608574B2 JP 53098574 A JP53098574 A JP 53098574A JP 9857478 A JP9857478 A JP 9857478A JP S608574 B2 JPS608574 B2 JP S608574B2
Authority
JP
Japan
Prior art keywords
emitter
ion source
semiconductor
semiconductor emitter
ionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53098574A
Other languages
English (en)
Other versions
JPS5525942A (en
Inventor
武清 松尾
正雄 交久瀬
久 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP53098574A priority Critical patent/JPS608574B2/ja
Priority to US06/011,863 priority patent/US4301369A/en
Priority to GB7905283A priority patent/GB2028574A/en
Priority to DE2906285A priority patent/DE2906285C2/de
Publication of JPS5525942A publication Critical patent/JPS5525942A/ja
Publication of JPS608574B2 publication Critical patent/JPS608574B2/ja
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils
    • Y10T428/12438Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12528Semiconductor component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12833Alternative to or next to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12889Au-base component

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】 本発明は、電界電離型イオン源または電界脱離型イオン
源に用いられる半導体ェミッタ−に関し、特に質量分析
器に用いて好適のイオン源用半導体ェミッターに関する
一般に、質量分析法はト物理学「化学、生物学、医学、
薬学、農学、工学等の広い分野にわたって使用されてい
るが「 この質量分析法により、原子、分子および有機
化合物の分析を行なうためには、まずイオン化を行なう
必要がある。
従来は、この種イオン化手段として、電子衝撃型イオン
源が使用されているが「従来のこの種のイオン源では、
例えば有機化合物試料の場合、電子との衝突により、化
合物の解裂くフラグメンテーション・Fragmen側
ion)が生じて多数の複雑なマススベクトラムを与え
るので、同定や構造解析に必要な特徴的なスペクトル(
特に分子イオン)を得ることが困難な場合が多い。
そこで、その解決方法の一つとして、電界電離型イオン
化法(フィールド アィオニゼーション・FieldI
onization、以下「FI法」と略す。
)が提案されている。この手段では、まず金属線の表面
上に、電導性針状材(マイクロニードル,Micron
eedle)を成長させてこれを陽極とし、更に数ミリ
メートル離れた対向電極を陰極として、これらの両極間
に10KV以上の電圧をかけて金属表面に強霞湯をつく
る。ついで蒸気圧の高い試料の有機化合物をガス状にし
て送ると、金属表面に電子が吸いとられた形でイオン化
が起るのである。
このようにして金属線からイオンが放射されることなる
ので、この表面上に電導性針状村を成長させた金属線を
イオン放射体すなわちェミッターと呼ぶ。
また、蒸気圧の低い試料のイオン化方法としては、電界
脱離型イオン化法(フィールド ディソ−プション・F
ieldDesorption、以下「FD法」、と略
す。
)が提案されている。この手段では、前述のFI法の場
合と同一の電導性針状材を成長させた金属線(これをF
I法の時と同様にヱミッターと呼ぶ)に試料を溶液まは
懸濁液として添着する。ついでこのェミッターをイオン
源内にセットして陽極とし〜約2肋離れた位置においた
対向電極を陰極として「 これらの両極間に1腿V以上
の電圧をかけて電導性針状材上に試料近傍でiぴVノ仇
程度の電界を発生させる。
これにより試料中の電子は「強露場でひずめられたポテ
ンシャルの壁をトンネル効果により通りぬけて金属線へ
と流れるため、残った正イオンは負の対向電極からの露
場に引かれてェミッター表面から脱離して「質量分析装
置へと導かれ質量分離が行なわれるようになつている。
このようなFI法「FD法によるイオン化により得られ
るマススベクトラムは〜分子イオンピークが強く、しか
も鱗裂によるピークが少ないので、化合物の分子量決定
に適する。
上述のFI法およびFD法によるイオン化機構の説明か
らも明らかなように、FI法およびFD法によるイオン
化効率はt ヱミッ夕−の良否に依存している。
したがってすぐれたェミッターである条件としては、次
の3項目が重要である。
‘1} イオン化効率が大きい。
‘2) 試料保持量が多い。
‘31十分の強度を有する。
ところで、従釆は、ベンゾニトル(C6日5CN)の減
圧気流中で約120000に加熱した直径約10rm程
度のタングステン線に10〜14KVの高電圧をかけて
グラフアィトカーボン状の電導性針状村を成長せしめ、
これをェミツターとして使用している例が多い。
以下、これをカーボンェミッタ−と呼ぶ。このような従
来のカーボンェミツターには、いくつかの問題がある。
すなわち製作上の問題点として、まずタングステン線の
綿密な前処理を必要とし、かつ結晶を成長させるのに約
1虫時間も要する。
さらにその間トタングステン線に流す電流制御、ベンゾ
ニトリルの圧力制御および印加する高電圧制御が高精度
で要求される。その結果、製品としての販売価格が高価
になるほか、使用者が自作する場合には多大の労力を要
するという問題点がある。
また使用上の問題点として〜直径loAmの細いタング
ステン線を使用しているため「機械的強度が弱く、これ
により放電等の電気的ショックや試料の添着時の接触等
に対して容易に断線するという問題点がある。
本発明は、これらの問題を解決しようとするもので「短
時間のうちに製造できて「かつ十分な機械的強度を有し
、しかも試料保持量が多くも更に、イオン化効率の良い
イオン源用半導体ェミッターを提供することを目的とす
る。
このため〜本発明のイオン源用半導体ェミッターは、磯
村の電導性表面に半導体物質から成る多数の針状材を直
立させて電極としたことを特徴としている。
以下「図面により本発明の一実施例としてのイオン源用
半導体ェミッターについて説明すると、第亀図はそのイ
オン源への配設状態を模式的に示す斜視図も第2図はそ
の製造装置を示すブロック図である。
この半導体ェミッターEは「金属製母材としてのタング
ステン線竃の導電性表面に、金メッキ層(図示せず)を
介して、半導体物質としてのシリコンから成る多数の針
状材la(ゥィスカ−・Whisker)を直立させた
構造となっている。
この半導体ヱミツターEの製造過程について詳述すると
、第2図に示すごとく、まず、60山mぐのタングステ
ン線1を半導体ェミッタ−支持棒としての2本の1脚0
のコバール線7の先端にスポット溶接して「 これを真
空箱6‘こ入れてから真空にした後トシリコンから成る
針状材laを成長させる部分に数百オングストロームの
厚さまで金蒸着を行なう。ついでタングステン線川こ定
電圧電源8より電流(0.45V,0.90A)を流し
予備可熱を約1分間行なう。
そしてリークバルブー亀を開放してガスボンベ12内の
シランガス(Si凡5%十〜95%)を真空箱6へ通し
てこの真空箱6の圧力を50〜150トールにする。
配び定電圧電源8からタングステン線1に電流(0.4
5V「 0.90A)を流すと、1分から10分後に、
長さ約20仏m、直径約02山mの多数の針状材la(
アモルプアス〜シリコンウイスカ−・Amorpho雌
Smcon Whisker)が成長して〈る。
なおシランガス圧力の違いにより成長に要する時間が異
なりタングステン線1に流す電流値を変えて温度を変え
ると「電導性針状シリコン亀aの長さおよび直径を変え
ることができる。
このようにして製造された半導体ェミッターEはし第1
図に示すように、電界電離型イオン源または電界脱離型
イオン源に取付けられて、電極(陽極)として使用され
る。
なお、第1図中も符号2は半導体ヱミッターEに対して
配設された対向電極(陰極)、3,46まいずれもレン
ズ電極、5は主スリットを示している。
また「第2図中へ符号9は圧力計、軍肌まロータリーポ
ンブ「 貴3は油拡散ポンプを示している。
ところで「本発明に係る半導体ェミッタ−Eが〜前述の
すぐれたェミッターである条件{1}〜‘3}をどの程
度満足しているかを実験により確認した結果を述べる。
まず条件【1)としてのイオン化効率について述べると
、アセトンを用いてFI法により、イオン化の効率が測
定された結果「 5×10‐6A/Torrが得られた
。またFD法によりイオン化の効率を、コレステロール
、オリゴベプチド試料について測定した結果「 1。
1× 10‐loco山omb/A g、2.2×10
‐11coulombノムgという値をそれぞれ得た。
これらの値はいずれも従来のイオン源用ェミッターとし
てのカーボンェミッターより良い値である。次に条件■
としての試料保持量について述べると、ェミッターEの
直窪が60仏m(従来のカーボンェミツタ−の直径に1
0ムmマ)と太いので、明らかに多量の試料を添着する
ことができる。さらに条件‘3}としての強度に関して
は、化学的強度と機械的強度とを考える必要がある。ま
ず化学強度であるが、半導体ェミッターEを酸性および
塩基性溶液に浸しても目立った劣化を認められない。
つぎに機械的強度であるが、タングステン線1は「その
直径が60ムmふと太いので、機械的強度は十分強くも
数百回の試験中、断線は一度もしていない。なお「前述
の実施例のように、金属製母村としてタングステン線を
用いる代わり‘こ「タンタル線等を用いてもよい。
以上詳述したように「本葬明の半導体ェミッターによれ
ば、イオン化効率、試料保持量および強度のも、ずれの
点においても、従来のカーボンェミツターに比べて、は
るかにすぐれた性能が得られるのである。
【図面の簡単な説明】
図は本発明の一実施例としての半導体ヱミッターを示す
もので、第1図はそのイオン源への配設状態を漠式的に
示す斜視図、第2図はその製造装置を示すブロック図で
ある。 1・・・・・・金属製母材としてのタングステン線、!
a・…・・半導体物質としてのシリコンから成る多数の
針状材、2…・・・対向電極、3,4・…。 ‘レンズ電極、5…・・・主スリット、6……真空箱、
7・・・・・・半導体ェミッター支持棒としてのコバー
ル線、8・・・…定電圧電源、9……圧力計、10・・
・・・・ロータリーポンプ、1竃・…・・リークバルブ
t 12・・・…シランガス入りガスボンベ、13・…
・・油拡散ポンプ「E.…・・半導体ェミツター。第1
図 第2図

Claims (1)

  1. 【特許請求の範囲】 1 母材の電導性表面に半導体物質から成る多数の針状
    材を直立させて電極としたことを特徴とする、イオン源
    用半導体エミツター。 2 上記母材がタングステン、タンタル等の金属からな
    る特許請求の範囲第1項に記載のイオン源用半導体エミ
    ツター。
JP53098574A 1978-08-12 1978-08-12 イオン源用半導体エミツタ− Expired JPS608574B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP53098574A JPS608574B2 (ja) 1978-08-12 1978-08-12 イオン源用半導体エミツタ−
US06/011,863 US4301369A (en) 1978-08-12 1979-02-13 Semiconductor ion emitter for mass spectrometry
GB7905283A GB2028574A (en) 1978-08-12 1979-02-15 Semiconductor emitter for ion sources
DE2906285A DE2906285C2 (de) 1978-08-12 1979-02-19 Ionenquelle für die Feldionisation oder die Felddesorption sowie Verfahren zu deren Herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53098574A JPS608574B2 (ja) 1978-08-12 1978-08-12 イオン源用半導体エミツタ−

Publications (2)

Publication Number Publication Date
JPS5525942A JPS5525942A (en) 1980-02-25
JPS608574B2 true JPS608574B2 (ja) 1985-03-04

Family

ID=14223433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53098574A Expired JPS608574B2 (ja) 1978-08-12 1978-08-12 イオン源用半導体エミツタ−

Country Status (4)

Country Link
US (1) US4301369A (ja)
JP (1) JPS608574B2 (ja)
DE (1) DE2906285C2 (ja)
GB (1) GB2028574A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251775A (ja) * 1985-08-30 1987-03-06 Mitsubishi Electric Corp ポンプ装置
JPS6291071U (ja) * 1985-11-28 1987-06-10
JPH0319649Y2 (ja) * 1986-05-14 1991-04-25
JPH0419390B2 (ja) * 1985-04-13 1992-03-30 Central Automotive Prod
JPH0417822Y2 (ja) * 1986-04-01 1992-04-21
JPH0514833B2 (ja) * 1985-09-02 1993-02-26 Taiyo Barubu Seisakusho Kk

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446373A (en) * 1981-01-12 1984-05-01 Sony Corporation Process and apparatus for converged fine line electron beam treatment objects
US4382186A (en) * 1981-01-12 1983-05-03 Energy Sciences Inc. Process and apparatus for converged fine line electron beam treatment of objects
JPS57132632A (en) * 1981-02-09 1982-08-17 Hitachi Ltd Ion source
US4559102A (en) * 1983-05-09 1985-12-17 Sony Corporation Method for recrystallizing a polycrystalline, amorphous or small grain material
US4703256A (en) * 1983-05-09 1987-10-27 Sony Corporation Faraday cups
US4592799A (en) * 1983-05-09 1986-06-03 Sony Corporation Method of recrystallizing a polycrystalline, amorphous or small grain material
US5014217A (en) * 1989-02-09 1991-05-07 S C Technology, Inc. Apparatus and method for automatically identifying chemical species within a plasma reactor environment
US5447763A (en) * 1990-08-17 1995-09-05 Ion Systems, Inc. Silicon ion emitter electrodes
US6445006B1 (en) 1995-12-20 2002-09-03 Advanced Technology Materials, Inc. Microelectronic and microelectromechanical devices comprising carbon nanotube components, and methods of making same
US5872422A (en) * 1995-12-20 1999-02-16 Advanced Technology Materials, Inc. Carbon fiber-based field emission devices
US6215248B1 (en) * 1997-07-15 2001-04-10 Illinois Tool Works Inc. Germanium emitter electrodes for gas ionizers
DE19963317A1 (de) * 1999-12-22 2001-07-12 Hans Bernhard Linden Verfahren und Vorrichtung zur schonenden Ionisierung von Analysensubstanzen
CN108994531A (zh) * 2018-07-20 2018-12-14 宁波江丰电子材料股份有限公司 Gdms聚焦部件及其加工方法
CN112151352B (zh) * 2020-09-24 2024-01-26 中国科学院合肥物质科学研究院 一种质谱进样电离装置及其工作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3466485A (en) * 1967-09-21 1969-09-09 Bell Telephone Labor Inc Cold cathode emitter having a mosaic of closely spaced needles
US3457478A (en) * 1967-10-26 1969-07-22 Du Pont Wound film capacitors
US3852595A (en) * 1972-09-21 1974-12-03 Stanford Research Inst Multipoint field ionization source
JPS5325632B2 (ja) * 1973-03-22 1978-07-27
JPS5436828B2 (ja) * 1974-08-16 1979-11-12
DE2639841C3 (de) * 1976-09-03 1980-10-23 Siemens Ag, 1000 Berlin Und 8000 Muenchen Solarzelle und Verfahren zu ihrer Herstellung
US4175234A (en) * 1977-08-05 1979-11-20 University Of Virginia Apparatus for producing ions of thermally labile or nonvolatile solids
US4163918A (en) * 1977-12-27 1979-08-07 Joe Shelton Electron beam forming device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419390B2 (ja) * 1985-04-13 1992-03-30 Central Automotive Prod
JPS6251775A (ja) * 1985-08-30 1987-03-06 Mitsubishi Electric Corp ポンプ装置
JPH0514833B2 (ja) * 1985-09-02 1993-02-26 Taiyo Barubu Seisakusho Kk
JPS6291071U (ja) * 1985-11-28 1987-06-10
JPH0417822Y2 (ja) * 1986-04-01 1992-04-21
JPH0319649Y2 (ja) * 1986-05-14 1991-04-25

Also Published As

Publication number Publication date
US4301369A (en) 1981-11-17
DE2906285A1 (de) 1980-02-14
DE2906285C2 (de) 1983-11-10
JPS5525942A (en) 1980-02-25
GB2028574A (en) 1980-03-05

Similar Documents

Publication Publication Date Title
JPS608574B2 (ja) イオン源用半導体エミツタ−
Beckey Field Ionization Mass Spectrometry: International Series of Monographs in Analytical Chemistry
Wang et al. Field emission from nanotube bundle emitters at low fields
JPS5935347A (ja) イオン生成装置
JP4761144B2 (ja) 質量分析用イオン化基板及び質量分析装置
US20090166523A1 (en) Use of carbon nanotubes (cnts) for analysis of samples
US7919338B2 (en) Method of making an integrally gated carbon nanotube field ionizer device
US7884359B2 (en) Integrally gated carbon nanotube ionizer device
US4175234A (en) Apparatus for producing ions of thermally labile or nonvolatile solids
US4038158A (en) Electrochemical generation of field desorption emitters
Fujii Surface ionization of volatile organic compounds on a hot rhenium filament. A potentially valuable ionization technique in organic mass spectrometry
US4156814A (en) Apparatus for producing ions of thermally labile or nonvolatile solids
Minh et al. Selective growth of carbon nanotubes on Si microfabricated tips and application for electron field emitters
Arnot Electron scattering in mercury vapour
JP6947887B2 (ja) 試料をイオン化するための質量分析プローブおよびシステム
Kellogg Pulsed laser atom-probe study of the dissociation of CO on molybdenum
Moser et al. Individual free-standing carbon nanofibers addressable on the 50 nm scale
JPS5812703B2 (ja) イオン源装置
Miller et al. The influence of surface treatment on field emission from silicon microemitters
Wang et al. Metal-vapor vacuum arc as a primary ion source for secondary ion mass spectrometry
Ding et al. Effect of oxygen on field emission properties of ultrananocrystalline diamond-coated ungated Si tip arrays
Robertson Field ionization mass spectrometry
JP4233718B2 (ja) ダイヤモンド系材料を用いた電界放出表示素子の製造方法
JP2791034B2 (ja) カーボンイオンビーム発生方法
JPH09288115A (ja) 先鋭探針の製造方法およびその装置