JPS6030181A - Amorphous thin film photovoltaic element - Google Patents

Amorphous thin film photovoltaic element

Info

Publication number
JPS6030181A
JPS6030181A JP58138028A JP13802883A JPS6030181A JP S6030181 A JPS6030181 A JP S6030181A JP 58138028 A JP58138028 A JP 58138028A JP 13802883 A JP13802883 A JP 13802883A JP S6030181 A JPS6030181 A JP S6030181A
Authority
JP
Japan
Prior art keywords
layer
intrinsic
type
amorphous silicon
band width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58138028A
Other languages
Japanese (ja)
Inventor
Masatoshi Kitagawa
雅俊 北川
Takashi Hirao
孝 平尾
Koshiro Mori
森 幸四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58138028A priority Critical patent/JPS6030181A/en
Publication of JPS6030181A publication Critical patent/JPS6030181A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To enhance photoelectric conversion efficiency of an amorphous thin film photovoltaic element by a method wherein an intrinsic layer having small optically forbidden band width is provided at a part of an intrinsic layer excluding the neighborhood of a P type layer and an N type layer. CONSTITUTION:A P type amorphous silicon layer 5 introduced with carbon atoms is formed on a transparently conductive film 2 formed on a glass substrate 1. Then an intrinsically amorphous silicon layer 4 and an intrinsically silicone germanium layer 5 are formed. The former has optically forbidden band width of the degree of 1.7-1.8eV, and the latter has small optically forbidden band width as 1.4-1.6eV. Moreover an intrinsically amorphous silicon layer 6, and an N type amorphous silicon layer 7 introduced with carbon atoms are formed. A metal electrode 8 of high reflectivity is formed finally. By positioning the amorphous silicone germanium layer near by the center of the intrinsic layer like this, and moreover by making thickness of the layer thereof thin, the rate of rebonding of electrons and holes is reduced, and moreover optically forbidden band width of the N type layer is enlarged, light of long wavelength not absorbed completely at the intrinsic layer is reflected by the Ag electrode 8, absorbed again at the intrinsic layer, and can be utilized as photoelectromotive force.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非晶質前1模からなる光起電力素子に関する。[Detailed description of the invention] Industrial applications The present invention relates to a photovoltaic device consisting of an amorphous substrate.

従来例の構成とその問題点 最近、非晶質シリコンを主材料とする薄膜光起動力素子
は、安価な光起電力素子として注目を集めている。しか
し、非晶質シリコンの光学的禁止帯幅ば1.6〜1.s
eVであり、かつ発生した電子、正孔の拡散長がIy常
に短いため、660〜700nm以」−の長波長光の収
集効率が悪く、光の利用効率が悪いという欠点があった
Conventional Structures and Problems Recently, thin film photovoltaic devices mainly made of amorphous silicon have attracted attention as inexpensive photovoltaic devices. However, the optical bandgap width of amorphous silicon is 1.6 to 1. s
eV, and the diffusion length of the generated electrons and holes is always short, so there was a drawback that the collection efficiency of long wavelength light of 660 to 700 nm or more was poor, and the light utilization efficiency was poor.

これを解決する方法として、光学的禁止帯幅が1.3〜
1.5eVとなる非晶質シリコンゲルマご一つムを1型
(真性)層全部寸たは人躬光側と反対側のl型層の端部
に使用し、その部分で長波長光る一有効に利用する試み
が行なわれている。しかし、非晶質シリコンゲルマニウ
ムは、非晶質シリコンに比してさらに電子、正孔の拡散
長が短く、結甲的に光電変換効率の向上が行なわれない
のが現状である。
As a way to solve this problem, the optical bandgap width is 1.3~
An amorphous silicon germanium film with a voltage of 1.5 eV is used for the entire length of the 1-type (intrinsic) layer or at the end of the 1-type layer on the side opposite to the human light side. Efforts are being made to utilize it effectively. However, amorphous silicon germanium has a shorter diffusion length of electrons and holes than amorphous silicon, and the current situation is that the photoelectric conversion efficiency cannot be significantly improved.

発明の目的 本発明は、」二重問題点を軽減し、高効率な光起電力素
子を得る新規な構成を提供するものである。
OBJECTS OF THE INVENTION The present invention provides a novel configuration that alleviates the dual problems and provides a highly efficient photovoltaic device.

発明の構成 本発明は、導電性基板上に、炭素原子、酸素原子あるい
は窒素原子を導入したある導電J(1]の非晶質シリコ
ン層、真性もしくは真性に近い非晶質シリコン層、真性
もしくは真性に近いゲルマニウムおよびスズ原子を含む
非晶質シリコン層、 J’rl’J−#)しくけ真性に
近い非晶質シリコン層、炭素原子。
Structure of the Invention The present invention provides an amorphous silicon layer of a certain conductivity J(1) into which carbon atoms, oxygen atoms, or nitrogen atoms are introduced, an intrinsic or near-intrinsic amorphous silicon layer, an intrinsic or An amorphous silicon layer containing near-intrinsic germanium and tin atoms, J'rl'J-#) A near-intrinsic amorphous silicon layer, carbon atoms.

酸素原子あるいは窒素原子を導入した前記導電型と反対
導電型の非晶717+)コン膜および導電性膜を順次配
する等によりp−1−n構造をもつ光起電力素子におい
て、その真性型層のp型層およびn型層の近傍を除く一
部分に、その部分以外の真性型層より光学的禁止帯幅の
小さい真性型層をもつことを特徴とする。さらに具体的
には真性層を従来型の光起電力素子に用いられた真性層
の厚さの¥。〜1イ程度とし、光によって発生した電子
In a photovoltaic element having a p-1-n structure, the intrinsic type layer is formed by sequentially disposing an amorphous 717+) conductive film of the conductivity type opposite to the above conductivity type into which oxygen atoms or nitrogen atoms are introduced, and a conductive film. It is characterized by having an intrinsic type layer in a part excluding the vicinity of the p-type layer and n-type layer, which has an optical bandgap width smaller than that of the intrinsic type layer other than that part. More specifically, the thickness of the intrinsic layer used in conventional photovoltaic devices. ~1A, and is an electron generated by light.

正孔の拡散長ケもって充分に収集可能の厚さとするもの
である。
The thickness is such that holes can be sufficiently collected by the diffusion length.

実施例の説明 以下、本発明の構成およびその製造法について図面に基
づいて説明する。図において、1i1′:l:例えばガ
ラス基板、2ばITOやSnO,、あるいはITOとS
nO2の二層膜である。この透明導電膜上に炭素原子を
導入し/こp型非晶買シリコン層3を例えばioo〜2
0OA程度の薄膜として形成する。
DESCRIPTION OF EMBODIMENTS Hereinafter, the structure of the present invention and its manufacturing method will be explained based on the drawings. In the figure, 1i1':l: For example, a glass substrate, 2: ITO, SnO, or ITO and S
It is a two-layer film of nO2. Carbon atoms are introduced onto this transparent conductive film and the p-type amorphous silicon layer 3 is
It is formed as a thin film of approximately 0OA.

この層の形成には5j−H4とB2H6ガス以外に例え
ばCH4ガスを混合したガスを原料ガスとして用い律る
。このときの条件としては、例えばSiH〆対してB2
H6は0.1vo1%、 CH4は50Vo1%程度と
し、基板温度200〜260°Cで高周波クロー放電す
る。4は厚さ500〜1000人程度の真性非晶質シリ
コン層であるが、不純物が入れられていない非晶質シリ
コン層は少しn型に近い真性型であるだめ、SiH4に
対17.s o 〜s o ppm程度の82H6を混
合し、本来の意味での真性型もしくは少しp型に近い真
性型層としている。5は真性型非晶質シリコンゲルマニ
ウノ、層であり、真性型非晶質7リコン層4が1.7〜
i、seV程度の光学禁止帯幅を有するのに比へ1,4
〜1.6eV と小さい光学禁止帯幅を有する。この層
の形成には5IH4ガスとGeH4ガスを、:o、2g
度の混合比の原料ガスを用い、ルカ厚は200〜500
A程度である。6は厚さ100〜500A程度の不純物
が添加されない真性型非晶質シリコン層であり、真性層
4と同様の光学的禁止帯幅を有する。7け炭素原子を導
入したn型非晶質7リコン層で、この層の形成にはSi
H4,OH4,PH,の混合ガスを用い、PH3はSi
H4ガスに対し1 vo1%程度とし、OH,はSiH
,に対し50 vo1%程度とし、100〜300A程
度形成する。8は反射率の高い金属電極で、例えばAg
を○、1〜1μm程度真空蒸着法で形成する。このよう
にして目的の高効率な光起電力素子を完成することがで
きる。
In forming this layer, a gas mixture of, for example, CH4 gas in addition to 5j-H4 and B2H6 gas is used as a raw material gas. The conditions at this time include, for example, B2 for SiH
H6 is 0.1 vol%, CH4 is about 50 vol 1%, and high frequency claw discharge is performed at a substrate temperature of 200 to 260°C. 4 is an intrinsic amorphous silicon layer with a thickness of about 500 to 1000 nm, but since the amorphous silicon layer without any impurities is an intrinsic type, which is slightly closer to n-type, it has a thickness of 17. About so to so ppm of 82H6 is mixed to form an intrinsic type layer in the original sense or an intrinsic type layer slightly close to p type. 5 is an intrinsic type amorphous silicon germanium layer, and the intrinsic type amorphous 7 silicon layer 4 is 1.7~
Although it has an optical band gap of about i, seV, the ratio is 1.4
It has a small optical band gap of ~1.6 eV. To form this layer, 5IH4 gas and GeH4 gas were used: o, 2g
Using a raw material gas with a mixing ratio of
It is about A. Reference numeral 6 denotes an intrinsic type amorphous silicon layer to which no impurities are added, with a thickness of about 100 to 500 Å, and has the same optical bandgap width as the intrinsic layer 4 . This is an n-type amorphous 7-Li layer with 7 carbon atoms introduced, and Si is used to form this layer.
Using a mixed gas of H4, OH4, PH, PH3 is Si
About 1 vol 1% for H4 gas, OH, is SiH
, about 50 vol. 1%, and about 100 to 300 A is formed. 8 is a metal electrode with high reflectance, for example Ag
○: Formed by vacuum evaporation to a thickness of about 1 to 1 μm. In this way, the desired highly efficient photovoltaic device can be completed.

このような構成をとることにより、長波長光の光吸収ニ
I:多いという利点かあるが、電子、正孔の拡散長の非
常に小さいという欠点のある非晶質シリコンゲルマニウ
ム層を真性層の中央近くに位置さ一1=r、かつその層
の厚さを薄くすることにより、電子、正孔の再結合の割
合を小さくし、さらにn型層の光学禁止帯幅を大きくす
ることにより、p外層で吸収しきれなかった長波長をA
g電極7で反則さぜ、再び真性層で吸収さぜ、光起電力
として利用し、各真性層の厚さがl(すいことに」:る
光利用率の低下を・十分に補っている。
By adopting such a configuration, the amorphous silicon germanium layer, which has the advantage of having a large amount of light absorption of long wavelength light but has the disadvantage of having a very small diffusion length for electrons and holes, can be replaced with an intrinsic layer. By positioning it near the center and reducing the thickness of the layer, the rate of recombination of electrons and holes is reduced, and by increasing the optical forbidden band width of the n-type layer, The long wavelength that could not be completely absorbed by the p outer layer is
The light is absorbed by the g electrode 7, is absorbed again by the intrinsic layer, and is used as a photovoltaic force, sufficiently compensating for the decrease in the light utilization rate due to the thickness of each intrinsic layer. .

庁お」−記実施例では、非晶質7リコン薄膜てあったが
他の非晶質薄膜からなる光起電力素子であっても」:い
。1だ実施例ではガラス」−に透明電極を形成しガラス
側から入光し2、かつp型層から入光する光起電力素子
を示し/こが、金属板」二に形成し最後に透明電極を形
成し、前・記透明電極から入光してもよい。さらにp型
層3.真性型層4〜6゜n型層7と形成する代わりに、
n型層7.A件型層6〜4、p型層3の順に形成しても
よい。
In the example described above, an amorphous 7-licon thin film was used, but a photovoltaic element made of other amorphous thin films may also be used. In the first embodiment, a photovoltaic element is shown in which a transparent electrode is formed on a glass plate, and light enters from the glass side.2, and light enters from a p-type layer. An electrode may be formed and light may be input from the transparent electrode. Furthermore, p-type layer 3. Instead of forming the intrinsic type layer 4 to 6 degrees with the n type layer 7,
n-type layer7. The A-type layers 6 to 4 and the p-type layer 3 may be formed in this order.

発明の効果 本発明によれば、AfJ述のように光の利用率を向上さ
せながらしかも光によって発生した電子および正孔の河
結合の割合を小さくすることか可能であり、高い変換効
率を有する光起電素子かIWられる。
Effects of the Invention According to the present invention, as mentioned in AfJ, it is possible to improve the light utilization efficiency and also to reduce the ratio of river coupling of electrons and holes generated by light, resulting in high conversion efficiency. The photovoltaic element is IW.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例の光起電力素子の構成例を示す
縦断面図である1、 1・・・・ガラス基板、2・・透明導電11つ↓、3 
・p型層、4〜6・・・真(’I−J8す層、7 ・n
型層、8・・・・金属電極。
The drawings are vertical cross-sectional views showing an example of the configuration of a photovoltaic device according to an embodiment of the present invention.
・P-type layer, 4-6... true ('I-J8 layer, 7 ・n
Mold layer, 8...metal electrode.

Claims (1)

【特許請求の範囲】[Claims] 基板」二に形成した非晶質薄膜よりなるp−1−n構造
を有し、その真性−型層のp型層およびn型層の近傍を
除く一部分に、その部分以外の真性型層より光学的禁止
帯幅の小さい真性型層を持つことを特徴とする非晶質薄
膜光起電力素子。
It has a p-1-n structure consisting of an amorphous thin film formed on a "substrate", and a part of the intrinsic-type layer excluding the vicinity of the p-type layer and n-type layer has a p-1-n structure consisting of an amorphous thin film formed on a substrate. An amorphous thin film photovoltaic device characterized by having an intrinsic type layer with a small optical band gap.
JP58138028A 1983-07-28 1983-07-28 Amorphous thin film photovoltaic element Pending JPS6030181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58138028A JPS6030181A (en) 1983-07-28 1983-07-28 Amorphous thin film photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58138028A JPS6030181A (en) 1983-07-28 1983-07-28 Amorphous thin film photovoltaic element

Publications (1)

Publication Number Publication Date
JPS6030181A true JPS6030181A (en) 1985-02-15

Family

ID=15212354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58138028A Pending JPS6030181A (en) 1983-07-28 1983-07-28 Amorphous thin film photovoltaic element

Country Status (1)

Country Link
JP (1) JPS6030181A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143877A (en) * 1986-12-08 1988-06-16 Hitachi Ltd Amorphous solar cell
JPH0232569A (en) * 1988-07-22 1990-02-02 Mitsubishi Electric Corp Amorphous solar cell
JPH03131073A (en) * 1989-10-17 1991-06-04 Canon Inc Photovoltaic element
JPH03131072A (en) * 1989-10-17 1991-06-04 Canon Inc Photovoltaic element
JPH03131071A (en) * 1989-10-17 1991-06-04 Canon Inc Photovoltaic element
JPH04255273A (en) * 1991-02-07 1992-09-10 Canon Inc Photovoltaic element
JP2014003275A (en) * 2012-06-14 2014-01-09 Nexpower Technology Corp Thin-film solar cell and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143877A (en) * 1986-12-08 1988-06-16 Hitachi Ltd Amorphous solar cell
JPH0232569A (en) * 1988-07-22 1990-02-02 Mitsubishi Electric Corp Amorphous solar cell
JPH03131073A (en) * 1989-10-17 1991-06-04 Canon Inc Photovoltaic element
JPH03131072A (en) * 1989-10-17 1991-06-04 Canon Inc Photovoltaic element
JPH03131071A (en) * 1989-10-17 1991-06-04 Canon Inc Photovoltaic element
JPH04255273A (en) * 1991-02-07 1992-09-10 Canon Inc Photovoltaic element
JP2014003275A (en) * 2012-06-14 2014-01-09 Nexpower Technology Corp Thin-film solar cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR840004986A (en) Semiconductor photoelectric conversion device and manufacturing method thereof
JPS6030181A (en) Amorphous thin film photovoltaic element
JPS6334632B2 (en)
JP3249619B2 (en) Solar cell
JPH05275725A (en) Photovoltaic device and its manufacture
JP2001284619A (en) Phtovoltaic device
JPS62159475A (en) Amorphous silicon solar cell
JPS60142575A (en) Photovoltaic element
JPS61135167A (en) Thin-film solar cell
JPS6152992B2 (en)
JPS61244073A (en) Amorphous silicon photoelectric conversion element
JPS6030180A (en) Amorphous thin film photovoltaic element
JPH0685291A (en) Semiconductor device and its manufacture
JPS62113482A (en) Photovoltaic device
JP2002033499A (en) Photovoltaic device
JPS61224368A (en) Semiconductor device
JPS58196064A (en) Photoelectric conversion device
JPH0799776B2 (en) Method for manufacturing amorphous silicon solar cell
JP2810495B2 (en) Photovoltaic element
JP3284151B2 (en) Solar cell
JP2957653B2 (en) Photovoltaic device
JP2680583B2 (en) Photovoltaic device
JPS63318166A (en) Photovoltaic device
JPS6312397B2 (en)
JPS59101880A (en) Thin film solar battery