JP2001284619A - Phtovoltaic device - Google Patents

Phtovoltaic device

Info

Publication number
JP2001284619A
JP2001284619A JP2000090562A JP2000090562A JP2001284619A JP 2001284619 A JP2001284619 A JP 2001284619A JP 2000090562 A JP2000090562 A JP 2000090562A JP 2000090562 A JP2000090562 A JP 2000090562A JP 2001284619 A JP2001284619 A JP 2001284619A
Authority
JP
Japan
Prior art keywords
film
layer
microcrystalline
microcrystalline silicon
photovoltaic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000090562A
Other languages
Japanese (ja)
Inventor
Masao Isomura
雅夫 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000090562A priority Critical patent/JP2001284619A/en
Publication of JP2001284619A publication Critical patent/JP2001284619A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To provide a photovoltaic device which uses a fine crystal silicon semiconductor thin film having a thin film as an optical active layer. SOLUTION: By plasma CVD with substrate temperatures at the time of forming a film at 200 deg.C or more, a fine crystal silicon germanium with a composition ratio of germanium being 20% to 50% is formed, and this fine crystal silicon germanium is used as an optical active layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、微結晶シリコン
ゲルマニウム(μC−SiGe)を光活性層に用いた光
起電力素子に関する。
The present invention relates to a photovoltaic device using microcrystalline silicon germanium (μC-SiGe) for a photoactive layer.

【0002】[0002]

【従来の技術】従来、原料ガスのグロー放電分解や光C
VD法により形成される非晶質シリコン(以下、a−S
iと記す。)を主材料にした光起電力装置は、薄膜、大
面積化が容易という特長を持ち、低コスト光起電力装置
として期待されている。
2. Description of the Related Art Conventionally, glow discharge decomposition of raw material gas and light C
Amorphous silicon (hereinafter a-S) formed by the VD method
Write i. The photovoltaic device using () as a main material has features that it can be easily formed into a thin film and has a large area, and is expected as a low-cost photovoltaic device.

【0003】この種の光起電力装置の構造としては、p
in接合を有するpin型a−Si光起電力装置が一般
的である。図4はこのような光起電力装置の構造を示
し、ガラス基板21上に、透明電極22、p型a−Si
層23、i型a−Si層24、n型a−Si層25、金
属電極26を順次積層することにより作成される。この
光起電力装置は、ガラス基板21を通して入射する光に
より光起電力が発生する。
[0003] The structure of this type of photovoltaic device includes p
A pin-type a-Si photovoltaic device having an in-junction is common. FIG. 4 shows the structure of such a photovoltaic device, in which a transparent electrode 22 and a p-type a-Si
It is formed by sequentially laminating a layer 23, an i-type a-Si layer 24, an n-type a-Si layer 25, and a metal electrode 26. In this photovoltaic device, photovoltaic power is generated by light incident through the glass substrate 21.

【0004】上記したa−Si光起電力装置は、光照射
後、光劣化が生じることが知られている。そこで、薄膜
で且つ光照射に対して安定性の高い材料として、微結晶
シリコンがあり、この微結晶シリコンを光活性層に用い
た光起電力装置が提案されている(例えば、特開平5−
10055号公報参照。)。この微結晶シリコンは微結
晶Si相とa−Si相とが混在する薄膜である。
It is known that the a-Si photovoltaic device described above undergoes photodegradation after light irradiation. Then, microcrystalline silicon is known as a material which is thin and has high stability to light irradiation, and a photovoltaic device using this microcrystalline silicon for a photoactive layer has been proposed (for example, Japanese Patent Application Laid-Open No. H05-205,052).
See No. 10055. ). This microcrystalline silicon is a thin film in which a microcrystalline Si phase and an a-Si phase are mixed.

【0005】[0005]

【発明が解決しようとする課題】上記したように、非晶
質シリコン(Si)系の半導体膜の持つ欠点である光劣
化を克服する技術として、微結晶シリコン(Si)が注
目されているが、微結晶シリコンは非晶質シリコンに比
べ吸収係数が小さい。このため、光活性層に用いようと
すると、2μmもしくはそれ以上の膜厚を要するため、
太陽電池の生産性を考えた場合、非常に速い成膜速度を
要求される。しかしながら、現状では良質な特性を維持
したままこのような成膜速度を達成することはできな
い。
As described above, microcrystalline silicon (Si) has been attracting attention as a technique for overcoming the photodegradation which is a disadvantage of the amorphous silicon (Si) based semiconductor film. Microcrystalline silicon has a smaller absorption coefficient than amorphous silicon. For this reason, a film thickness of 2 μm or more is required for use in a photoactive layer.
Considering the productivity of the solar cell, a very high deposition rate is required. However, at present, such a film formation rate cannot be achieved while maintaining good quality characteristics.

【0006】そこで、この発明者等は、微結晶シリコン
より光吸収係数が大きい微結晶シリコンゲルマニウム
(SiGe)を光活性層に用い、必要な光活性層の膜厚
を薄くすることで、従来の問題点を解決することを鋭意
検討した。問題解決には以下の2点が満足されなくては
ならない。
Therefore, the inventors of the present invention used microcrystalline silicon germanium (SiGe) having a larger light absorption coefficient than microcrystalline silicon for the photoactive layer and reduced the required film thickness of the photoactive layer to obtain a conventional photoactive layer. We devoted ourselves to solving the problems. To solve the problem, the following two points must be satisfied.

【0007】(1)活性層の膜厚を1μm以下にするた
めには少なくとも3倍程度の吸収係数が必要である。こ
のためには、微結晶シリコンゲルマニウム(SiGe)
の中のゲルマニウム(Ge)の組成比が20%以上であ
る必要がある。
(1) To reduce the thickness of the active layer to 1 μm or less, an absorption coefficient at least about three times is required. For this purpose, microcrystalline silicon germanium (SiGe)
The composition ratio of germanium (Ge) in the above needs to be 20% or more.

【0008】(2)この時の成膜速度が極端に遅いと上
記利点が生かされないため、ある程度の成膜速度、例え
ば2Å/秒を維持しなければならない。
(2) At this time, if the film forming speed is extremely low, the above advantage cannot be utilized, so that a certain film forming speed, for example, 2 ° / sec, must be maintained.

【0009】この発明は、上記事情に鑑みなされたもの
にして、膜厚の薄い微結晶シリコン系半導体薄膜を光活
性層に用いた光起電力装置を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and has as its object to provide a photovoltaic device using a thin microcrystalline silicon-based semiconductor thin film for a photoactive layer.

【0010】[0010]

【課題を解決するための手段】この発明は、ゲルマニウ
ムの組成比が20%以上50%以下の微結晶シリコンゲ
ルマニウムを光活性層として用い、且つその膜厚が1μ
m以下であることを特徴とする。
According to the present invention, microcrystalline silicon germanium having a composition ratio of germanium of 20% or more and 50% or less is used as a photoactive layer, and its film thickness is 1 μm.
m or less.

【0011】前記微結晶シリコンゲルマニウムは、プラ
ズマCVDで形成され、その際の成膜時の基板温度を2
00℃以上に設定するとよい。
The microcrystalline silicon germanium is formed by plasma CVD, and the substrate temperature at the time of film formation is 2
The temperature is preferably set to 00 ° C. or higher.

【0012】上記の構成によれば、膜厚の薄い微結晶シ
リコンゲルマニウムを光活性層に用いることができ、ス
ループットを大幅に向上させることができる。
According to the above structure, microcrystalline silicon germanium having a small thickness can be used for the photoactive layer, and the throughput can be greatly improved.

【0013】[0013]

【発明の実施の形態】以下、この発明の実施の形態につ
き図面を参照して説明する。この発明者等は上記した2
点を満足する条件を見出した。図1に従い膜厚が薄くて
も光活性層に用いることができる微結晶シリコンゲルマ
ニウム膜につきまず説明する。
Embodiments of the present invention will be described below with reference to the drawings. The present inventors have discussed the above 2
A condition that satisfies the point was found. First, a microcrystalline silicon germanium film that can be used for a photoactive layer even if the film thickness is small will be described with reference to FIG.

【0014】図1は、プラズマCVD法で微結晶シリコ
ンゲルマニウム(SiGe)膜を形成したときの非晶質
と微結晶の、水素希釈率(H2/SiH4+GeH4)と
ゲルマン流量比(GeH4/SiH4+GeH4)に関す
る境界を各成膜温度に対して示したものである。この成
膜は、13.56MHzの平行平板型RFプラズマCV
Dを用いており、投入力電力は200mW/cm2、圧力
は39.9Paである。
FIG. 1 shows a hydrogen dilution ratio (H 2 / SiH 4 + GeH 4 ) and a germane flow ratio (GeH) of amorphous and microcrystals when a microcrystalline silicon germanium (SiGe) film is formed by a plasma CVD method. 4 / SiH 4 + GeH 4 ) are shown for each film forming temperature. This film is formed by a 13.56 MHz parallel plate RF plasma CV.
D, the input power is 200 mW / cm 2 , and the pressure is 39.9 Pa.

【0015】通常微結晶シリコンを光活性層に用いた光
起電力素子は、2μm以上の膜厚を要するが、使用材料
量、スループット、素子の安定性等を考慮すると、0.
1〜0.7μmが適当である。このためには、微結晶シ
リコンゲルマニウムのGeの組成比を20〜50%の範
囲にすることが望ましい。図1より、この範囲で組成比
を制御するためには、少なくとも200℃以上の基板温
度が必要である。また、好ましくは250℃、さらに好
ましくは300℃にあげた方が高い成膜速度が得られ
る。
Normally, a photovoltaic element using microcrystalline silicon for the photoactive layer requires a film thickness of 2 μm or more. However, considering the amount of materials used, the throughput, the stability of the element, etc.
1 to 0.7 μm is appropriate. For this purpose, the Ge composition ratio of microcrystalline silicon germanium is desirably in the range of 20 to 50%. According to FIG. 1, in order to control the composition ratio in this range, a substrate temperature of at least 200 ° C. is required. A higher film forming rate can be obtained by raising the temperature to preferably 250 ° C., more preferably 300 ° C.

【0016】この発明で得られた微結晶シリコンゲルマ
ニウム(SiGe)膜は20Å以上の粒径のSi、G
e、SiGe結晶粒と非晶質部からなり、非晶質部分の
比率は10%未満である。光吸収係数はそれぞれ800
nmで5000cm-1、900nmで1500cm-1
1000nmで800cm-1以上であり、これは微結晶
シリコンの値の3倍以上である。
The microcrystalline silicon germanium (SiGe) film obtained by the present invention has a Si, G
e, composed of SiGe crystal grains and an amorphous portion, the ratio of the amorphous portion being less than 10%. The light absorption coefficient is 800
5000cm -1 in nm, 1500cm -1 at 900nm,
At 1000 nm, it is 800 cm -1 or more, which is three times or more the value of microcrystalline silicon.

【0017】図2は上記した微結晶シリコンゲルマニウ
ム(SiGe)膜を光活性層に用いたこの発明の実施形
態にかかる光起電力素子を示す断面図である。
FIG. 2 is a sectional view showing a photovoltaic device according to an embodiment of the present invention using the above-mentioned microcrystalline silicon germanium (SiGe) film as a photoactive layer.

【0018】図2に示すように、ガラス、金属などから
なる支持基板1上に、銀(Ag)などの高反射金属膜2
が形成される。なお、基板1表面には光閉じ込め効果を
備えるために、エッチングなどにより微小の凹凸が形成
されている。この凹凸は高反射金属膜2表面に設けても
よい。そして、高反射金属膜2上に膜厚500ÅのZn
Oからなる透明導電膜3が設けられる。この透明導電膜
3は次に形成されるn型微結晶シリコン膜4と高反射金
属膜2との合金化反応等を阻止する。
As shown in FIG. 2, a highly reflective metal film 2 such as silver (Ag) is formed on a support substrate 1 made of glass, metal or the like.
Is formed. Note that minute irregularities are formed on the surface of the substrate 1 by etching or the like in order to provide a light confinement effect. The irregularities may be provided on the surface of the highly reflective metal film 2. Then, a Zn film having a thickness of 500 ° is formed on the high reflection metal film 2.
A transparent conductive film 3 made of O is provided. The transparent conductive film 3 prevents an alloying reaction between the n-type microcrystalline silicon film 4 to be formed next and the highly reflective metal film 2 and the like.

【0019】この透明導電膜3上に、膜厚300Åのn
型微結晶Si層4、膜厚5000Åのこの発明にかかる
i型微結晶SiGe層5及び膜厚300Åのp型微結晶
Si層5が順次積層形成されている。そして、p型微結
晶Si層6上に膜厚500ÅのZnOからなる表面透明
電極7が設けられている。さらに、透明電極7上に銀な
どからなる櫛形電極8が設けられる。光は透明電極7側
から入射する。
On this transparent conductive film 3, a 300-nm thick n
A microcrystalline Si layer 4, an i-type microcrystalline SiGe layer 5 of 5000 nm in thickness according to the present invention, and a p-type microcrystalline Si layer 5 of 300 μm in thickness are sequentially laminated. On the p-type microcrystalline Si layer 6, a surface transparent electrode 7 made of ZnO having a thickness of 500 ° is provided. Further, a comb-shaped electrode 8 made of silver or the like is provided on the transparent electrode 7. Light enters from the transparent electrode 7 side.

【0020】上記したZnO膜はスパッター法、n型微
結晶Si層4とp型微結晶Si層6は13.56MHz
の平行平板型RFプラズマCVDにより形成されてい
る。尚、微結晶SiGe層5以外の部分は特に作成法の
指定はなく、この発明の効果が得られるものであれば何
でも良い。また、透明導電膜3、7はZnO膜以外のS
nO2膜、ITOでも良い。
The above ZnO film is formed by sputtering, and the n-type microcrystalline Si layer 4 and the p-type microcrystalline Si layer 6 are formed at 13.56 MHz.
Is formed by the parallel plate type RF plasma CVD. It should be noted that, except for the microcrystalline SiGe layer 5, there is no particular designation of the preparation method, and any material can be used as long as the effects of the present invention can be obtained. Further, the transparent conductive films 3 and 7 are made of S other than ZnO film.
An nO 2 film or ITO may be used.

【0021】そして、この発明の特徴とするi型微結晶
SiGe層5は次のように形成する。
The i-type microcrystalline SiGe layer 5 characteristic of the present invention is formed as follows.

【0022】微結晶SiGe層5は13.56MHzの
平行平板RFプラズマCVDにより、投入電力は200
mW/cm2、圧力は39.9Pa、基板温度300℃、
2/SiH4+GeH4=30、GeH4/SiH4+G
eH4=0.23の条件で形成した。
The microcrystalline SiGe layer 5 is formed by parallel plate RF plasma CVD at 13.56 MHz, and the input power is 200
mW / cm 2, pressure 39.9 Pa, substrate temperature 300 ° C.
H 2 / SiH 4 + GeH 4 = 30, GeH 4 / SiH 4 + G
It was formed under the condition of eH 4 = 0.23.

【0023】上記条件で作成すると、Ge組成比は30
%、成膜速度2.5Å/秒である。また、光吸収係数は
微結晶シリコンの約4倍のものが得られ、膜厚は微結晶
シリコンの場合の1/4である5000Åとした。
Under the above conditions, the Ge composition ratio is 30
%, And a film formation rate of 2.5 ° / sec. The light absorption coefficient was about four times that of microcrystalline silicon, and the film thickness was 5000 °, which is 1/4 that of microcrystalline silicon.

【0024】上記した実施形態にかかる光起電力素子
は、AM−1.5、100mW/cm光照射下で、短絡
電流25mA/cm2、開放電圧0.46V、曲線因子
0.7、変換効率8%を示した。これは活性層以外を同
条件で形成した微結晶Si光起電力素子と同等の値であ
り、1/4の光活性層膜厚で同じ特性が得られたことに
なる。
The photovoltaic device according to the above-described embodiment has a short-circuit current of 25 mA / cm 2 , an open-circuit voltage of 0.46 V, a fill factor of 0.7 and a conversion of 100 mW / cm 2 under AM-1.5. The efficiency was 8%. This is a value equivalent to that of a microcrystalline Si photovoltaic element formed under the same conditions except for the active layer, and the same characteristics were obtained with a photoactive layer thickness of 1/4.

【0025】次に、この発明の第2の実施形態を図3に
示す。図3は、この発明の他の実施の形態にかかる光起
電力装置を示す断面図である。尚、上記した実施の形態
と同じ部分には、同じ符号を付し、説明を省略する。こ
の実施の形態は、nip構造の半導体層を数段階積層し
た構造を持つ。すなわち、支持基板1上に高反射金属膜
2、透明導電膜3を設け、その上にn型微結晶Si層4
(4a)、i型半導体層5(5a)、p型半導体層6
(6a)をこの順序で数段階積層形成している。
Next, a second embodiment of the present invention is shown in FIG. FIG. 3 is a sectional view showing a photovoltaic device according to another embodiment of the present invention. The same parts as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted. This embodiment has a structure in which semiconductor layers having a nip structure are stacked in several stages. That is, a highly reflective metal film 2 and a transparent conductive film 3 are provided on a support substrate 1, and an n-type microcrystalline Si layer 4 is formed thereon.
(4a), i-type semiconductor layer 5 (5a), p-type semiconductor layer 6
(6a) is laminated in several steps in this order.

【0026】図3に示す実施形態は、図2に示す実施形
態の光起電力素子の入射側にn型微結晶Si層4a、i
型非晶質Si層5a、p型非晶質SiC層6aの光起電
力素子を積層した構造である。p型非晶質SiC層6a
とi型非晶質Si層5aは13.56MHzの平行平板
型RFプラズマCVDで形成されている。それ以外は上
記した実施形態と同じである。
In the embodiment shown in FIG. 3, an n-type microcrystalline Si layer 4a, i is provided on the incident side of the photovoltaic element of the embodiment shown in FIG.
This is a structure in which photovoltaic elements of a p-type amorphous Si layer 5a and a p-type amorphous SiC layer 6a are stacked. p-type amorphous SiC layer 6a
And the i-type amorphous Si layer 5a are formed by 13.56 MHz parallel plate RF plasma CVD. Otherwise, the configuration is the same as the above-described embodiment.

【0027】上記した第2の実施形態では、第1の実施
形態と同測定条件下で、短絡電流12mA/cm2、開放
電圧1.30V、曲線因子0.71、変換効率11%を
示した。これも微結晶SiGe活性層を微結晶Siにし
た以外は同条件で形成した光起電力素子と同等の値であ
り、本発明の効果が示された。
In the second embodiment, the short-circuit current is 12 mA / cm 2 , the open-circuit voltage is 1.30 V, the fill factor is 0.71, and the conversion efficiency is 11% under the same measurement conditions as in the first embodiment. . This is also a value equivalent to that of the photovoltaic element formed under the same conditions except that the microcrystalline SiGe active layer is made of microcrystalline Si, and the effect of the present invention was shown.

【0028】[0028]

【発明の効果】以上説明したように、この発明によれ
ば、膜厚の薄い微結晶シリコンゲルマニウムを光活性層
に用いることができ、スループットを大幅に向上させる
ことができる。
As described above, according to the present invention, microcrystalline silicon germanium having a small thickness can be used for the photoactive layer, and the throughput can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】プラズマCVDで微結晶シリコンゲルマニウム
(SiGe)膜を形成したときの非晶質と微結晶の、水
素希釈率(H2/SiH4+GeH4)とゲルマン流量比
(GeH4/SiH4+GeH4)に関する境界を各成膜
温度に対して示す特性図である。
FIG. 1 shows a hydrogen dilution ratio (H 2 / SiH 4 + GeH 4 ) and a germane flow ratio (GeH 4 / SiH 4 ) of amorphous and microcrystal when a microcrystalline silicon germanium (SiGe) film is formed by plasma CVD. FIG. 9 is a characteristic diagram showing a boundary regarding + GeH 4 ) with respect to each film forming temperature.

【図2】この発明の第1の実施形態にかかる光起電力素
子を示す断面図である。
FIG. 2 is a sectional view showing a photovoltaic device according to the first embodiment of the present invention.

【図3】この発明の第2の実施形態にかかる光起電力素
子を示す断面図である。
FIG. 3 is a sectional view showing a photovoltaic device according to a second embodiment of the present invention.

【図4】従来の光起電力素子の構造を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing a structure of a conventional photovoltaic element.

【符号の説明】[Explanation of symbols]

1 支持基板 2 高反射金属膜 3 透明導電膜 4 n型微結晶Si層 5 i型微結晶SiGe層 6 p型微結晶Si層 7 表面透明電極 8 櫛形電極 REFERENCE SIGNS LIST 1 support substrate 2 highly reflective metal film 3 transparent conductive film 4 n-type microcrystalline Si layer 5 i-type microcrystalline SiGe layer 6 p-type microcrystalline Si layer 7 surface transparent electrode 8 comb-shaped electrode

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年7月19日(2001.7.1
9)
[Submission date] July 19, 2001 (2001.7.1)
9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】上記したa−Si光起電力装置は、光照射
後、光劣化が生じることが知られている。そこで、薄膜
で且つ光照射に対して安定性の高い材料として、微結晶
シリコンがあり、この微結晶シリコンを光活性層に用い
た光起電力装置が提案されている。この微結晶シリコン
は微結晶Si相とa−Si相とが混在する薄膜である。
It is known that the a-Si photovoltaic device described above undergoes photodegradation after light irradiation. Therefore, microcrystalline silicon is a material having a thin film and high stability to light irradiation, and a photovoltaic device using this microcrystalline silicon for a photoactive layer has been proposed . This microcrystalline silicon is a thin film in which a microcrystalline Si phase and an a-Si phase are mixed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ゲルマニウムの組成比が20%以上50
%以下の微結晶シリコンゲルマニウムを光活性層として
用い、且つその膜厚が1μm以下であることを特徴とす
る光起電力装置。
1. The composition ratio of germanium is not less than 20% and not more than 50%.
% Of microcrystalline silicon germanium used as a photoactive layer and has a thickness of 1 μm or less.
【請求項2】 前記微結晶シリコンゲルマニウムは、プ
ラズマCVDで形成され、その際の成膜時の基板温度を
200℃以上に設定することを特徴とする請求項1に記
載の光起電力装置。
2. The photovoltaic device according to claim 1, wherein the microcrystalline silicon germanium is formed by plasma CVD, and a substrate temperature at the time of film formation is set to 200 ° C. or higher.
JP2000090562A 2000-03-29 2000-03-29 Phtovoltaic device Pending JP2001284619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090562A JP2001284619A (en) 2000-03-29 2000-03-29 Phtovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090562A JP2001284619A (en) 2000-03-29 2000-03-29 Phtovoltaic device

Publications (1)

Publication Number Publication Date
JP2001284619A true JP2001284619A (en) 2001-10-12

Family

ID=18606155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090562A Pending JP2001284619A (en) 2000-03-29 2000-03-29 Phtovoltaic device

Country Status (1)

Country Link
JP (1) JP2001284619A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075052B2 (en) 2002-10-08 2006-07-11 Sanyo Electric Co., Ltd. Photoelectric conversion device
JP2006216624A (en) * 2005-02-01 2006-08-17 Mitsubishi Heavy Ind Ltd Solar cell and its production process
WO2007114432A1 (en) * 2006-04-03 2007-10-11 Mitsubishi Heavy Industries, Ltd. Photoelectric converter device and process for producing the same
WO2010064455A1 (en) * 2008-12-05 2010-06-10 三菱重工業株式会社 Photoelectric conversion device
JP2011181768A (en) * 2010-03-02 2011-09-15 National Institute Of Advanced Industrial Science & Technology Method for manufacturing photoelectric conversion device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075052B2 (en) 2002-10-08 2006-07-11 Sanyo Electric Co., Ltd. Photoelectric conversion device
JP2006216624A (en) * 2005-02-01 2006-08-17 Mitsubishi Heavy Ind Ltd Solar cell and its production process
WO2007114432A1 (en) * 2006-04-03 2007-10-11 Mitsubishi Heavy Industries, Ltd. Photoelectric converter device and process for producing the same
JP2007281018A (en) * 2006-04-03 2007-10-25 Mitsubishi Heavy Ind Ltd Photoelectric conversion device, and its manufacturing method
WO2010064455A1 (en) * 2008-12-05 2010-06-10 三菱重工業株式会社 Photoelectric conversion device
JP2010135636A (en) * 2008-12-05 2010-06-17 Mitsubishi Heavy Ind Ltd Photoelectric conversion device
JP2011181768A (en) * 2010-03-02 2011-09-15 National Institute Of Advanced Industrial Science & Technology Method for manufacturing photoelectric conversion device

Similar Documents

Publication Publication Date Title
JPS6249672A (en) Amorphous photovoltaic element
JPH0370183A (en) Photovoltaic element
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
US6521883B2 (en) Photovoltaic device
JP2004260014A (en) Multilayer type thin film photoelectric converter
US20140120655A1 (en) Enhancing efficiency in solar cells by adjusting deposition power
US20100229934A1 (en) Solar cell and method for the same
JP2002009312A (en) Method for manufacturing non-single crystal thin-film solar battery
JP2002208715A (en) Photovoltaic element and its manufacturing method
JP2001284619A (en) Phtovoltaic device
JP4110718B2 (en) Manufacturing method of multi-junction thin film solar cell
EP0051980A1 (en) Photovoltaic device and photoelectrochemical cell electrode
JP4033517B2 (en) Silicon-based thin film photoelectric conversion device
JP2002016271A (en) Thin-film photoelectric conversion element
JPS62209871A (en) Manufacture of photovoltaic device
JP2002033499A (en) Photovoltaic device
JP2669834B2 (en) Stacked photovoltaic device
JP3197674B2 (en) Photovoltaic device
JP4289768B2 (en) Photovoltaic device
JPH0685291A (en) Semiconductor device and its manufacture
JPH0282655A (en) Manufacture of photovolatic device
JPS6384076A (en) Photovoltaic element
JPS6152992B2 (en)
EP2571055B1 (en) Thin film solar cell module
JP4124309B2 (en) Photovoltaic device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513