JP2680583B2 - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JP2680583B2
JP2680583B2 JP62283471A JP28347187A JP2680583B2 JP 2680583 B2 JP2680583 B2 JP 2680583B2 JP 62283471 A JP62283471 A JP 62283471A JP 28347187 A JP28347187 A JP 28347187A JP 2680583 B2 JP2680583 B2 JP 2680583B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
type
type semiconductor
atomic density
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62283471A
Other languages
Japanese (ja)
Other versions
JPH01125874A (en
Inventor
正幸 岩本
浩二 南
金雄 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62283471A priority Critical patent/JP2680583B2/en
Publication of JPH01125874A publication Critical patent/JPH01125874A/en
Application granted granted Critical
Publication of JP2680583B2 publication Critical patent/JP2680583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はp型又はn型半導体層等のドーピング層の光
学的禁制帯幅を広くすることなくドーピング層の光吸収
の低減を可能とした光起電力装置に関するものである。 〔従来技術〕 一般に太陽電池等の光起電力装置では光活性層への入
射光量を増大して光起電流を高める方法として、光入射
側に位置するp型又はn型半導体層等のドーピング層の
光学的禁制帯幅を広くし、ドーピング層での光吸収を低
減することが行われている(APPL.Phys.Lett39(3),2
37頁1 August1981)。 第6図は非晶質半導体からなる従来の光起電力装置を
示す断面構造図であり、ガラス製の透光性絶縁基板1上
に透明導電層2、p型の半導体層3、i型の半導体層
4、n型の半導体層5、裏面電極層6をこの順序に積層
して形成してある。 このような従来装置の形成条件の1例を示すと表1に
示す通りである。 〔発明が解決しようとする問題点〕 ところでこのような従来方法では光学的禁制帯幅を広
くするとドーピングによる高導電膜化が難しくなり、電
気的特性の低下を免れ得ないという問題があった。 本発明はかかる事情に鑑みなされたものであって、そ
の目的とするところはドーピング層の高導電性を損なう
ことなく、この層による光吸収を低減し、電気的特性の
向上を図れるようにした光起電力装置を提供するにあ
る。 〔問題点を解決するための手段〕 本発明に係る光起電力装置にあっては、p型又はn型
半導体層の少なくとも一層が、i型半導体層よりも原子
密度が小さく、且つ水素原子を除いた原子密度が0.5〜
4.5×1022cm-3である非晶質シリコンからなることを特
徴とする。 〔作用〕 本発明装置にあってはこれによってドーピング層自体
の導電性を損なうことなく、しかもこの層における光吸
収を低減し得る。 〔実施例1〕 以下本発明をその実施例を示す図面に基づき具体的に
説明する。 第1図は本発明に係る光起電力装置(以下本発明装置
という)を示す断面構造図であり、図中1はガラス製の
透光性絶縁基板、2は透明導電層を示している。透光性
絶縁基板1上に透明導電層2を積層形成した後、これに
電導型がp型の通常よりも低原子密度化した非晶質シリ
コンからなる半導体層(以下p型低原子密度半導体層と
いう)13、従来と同様の光活性層である電導型がi型の
半導体層4、同じく従来と同様の電導型がn型の半導体
層5、裏面電極層6をこの順序に積層形成して構成され
ている。 前記p型低原子密度半導体層13は水素雰囲気中での反
応性スパッタ法によって、またこの層以外の半導体層4,
5は容量結合型グロー放電を用いて形成する。 グロー放電を用いた場合はp型半導体層13の形成には
シラン(SiH4),メタン(CH4),及びジボラン(B
2H6)を原料として用い、またi型半導体層の形成には
シランを、更にn型半導体層5の形成にはシラン、ホス
フィン(PH3)を原料として用いている。 反応性スパッタのターゲットには1018cm-3のBをドー
プしたC−Si又は1018cm-3のPをドープしたC−Siを用
いる。p型低原子密度半導体層13,i型半導体層4,n型半
導体層5の他の形成条件は表2に示すとおりである。な
お基板としてガラス板を用い、p型の半導体層側を光の
入射側とした場合について説明する。 ちなみにp型低原子密度半導体層13の水素を除く原子
密度は3.9×1022cm-3、通常の非晶質シリコンからなる
i型半導体層4の水素を除く原子密度は5.0×1022c
m-3、n型半導体層5の水素を除く原子密度は5.0×1022
cm-3である。従って、上記p型低原子密度半導体層は、
i型半導体層よりも原子密度が小さく、且つ通常よりも
低原子密度化した非晶質シリコンからなる。 このような本発明の実施例1における電気的特性は表
3に示すとおりである。なお電極面積は1cm2である。従
来例は表1に示す条件で製造したものである。 表3から明らかな如く、転落電流、変換効率に大幅な
向上が認められる。 第2図はp型の半導体層の原子密度と短絡電流との関
係を示すグラフであり、横軸に原子密度(×1022cm-3
を、また縦軸に短絡電流(mA/cm2)をとって示してあ
る。 このグラフから明らかな如く0.5〜4.5×1022cm-3、望
ましくは1.0〜4.0×1022cm-3で短絡電流の大幅な向上が
図れることが解る。なお原子密度が5.0×1022cm-3以下
になると入射光量が増大しても光起電力特性の上昇は望
めない。 このように、本実施例の光起電力装置において変換効
率が向上した理由は次のように推察される。即ち、本実
施例においては、p型半導体層を、i型半導体層よりも
原子密度が小さく、且つ水素を除いた原子密度が0.5〜
4.5×1022cm-3、望ましくは1.0〜4.0×1022cm-3である
非晶質シリコンから構成している。前述した通り、通常
の非晶質シリコンの水素を除いた原子密度は5.0×1022c
m-3であるので、本実施例における上記p型半導体層
は、通常よりも原子密度が小さい非晶質シリコンから構
成されることとなる。従って、シリコン原子による光の
総吸収量が低減できるため、従来のように光学的禁止帯
幅を広げたことによる電気的特性の低下が生じることが
ないので、他の特性を低下させることなく短絡電流の向
上を図ることが可能となったものと推察される。 〔実施例2〕 第3図は本発明の他の実施例を示す断面構造図であ
り、導電型がn型の半導体層15を低原子密度化し、他の
p型半導体層3、i型半導体層4を含む他の層の原子密
度下は6図に示す従来装置と同じとした。なおn型の半
導体層15は非晶質シリコンからなり、その原子密度は3.
8×1022cm-3である。各半導体層の形成条件は表4に示
すとおりである。 このように実施例における電気的特性は表5に示すと
おりである。なお電極面積は1cm2である。 表5から明らかな如くn型の半導体層を低原子密度化
することによっても電気的特性の向上を図ることは可能
である。 なお、n型の半導体層の原子密度と短絡電流との関係
については具体的には示していないが第2図に示す如く
p型の半導体層の原子密度と短絡電流との関係と略同様
の関係が認められた。 ただこのn型の半導体層は光入射側から離れて位置す
るためその効果は実施例1に比較して若干小さい。 〔実施例3〕 第4図は本発明の更に他の実施例を示す断面構造図で
あり、電導型がp型とn型との各半導体層を共に低原子
密度化した非晶質シリコンとして作製した。p型低原子
密度半導体層13は第1図に示す〔実施例1〕のp型の半
導体層13と、またn型低原子密度半導体層15は第3図に
示す〔実施例2〕のn型の半導体層15と夫々形成条件及
び原子密度は実質的に同じである。 このような本発明の実施例3におけるその電気特性は
表6に示すとおりである。なお参照のため従来装置につ
いての電気的特性も併記してある。 〔実施例4〕 第5図は本発明の更に他の実施例を示す断面構造図で
あり、第4図に示す〔実施例3〕と同様にp型の半導体
層13とn型の半導体層15を夫々低原子密度化した非晶質
シリコンとすると共に、このp型低原子密度半導体層13
と透明導電層2との間に通常の原子密度を有するp型の
半導体層33を、またn型低原子密度半導体層25と裏面電
極層6との間にも通常の原子密度を有するn型の半導体
層35を夫々略100Åの厚さで介在せしめてある。 これはp型の半導体層23,n型の半導体層25を低原子密
度化することにより透明導電層2,裏面電極層6からIn,A
l等の拡散し易い金属がこれら半導体層内へ浸透するの
を防止するのを目的としたものであり、これによって熱
的安定性が高まることが確認された。 この実施例4の電気的特性は表7に示すとおりであ
る。なお、電極面積は1cm2である。 参考のため従来装置の電気的特性を併記してある。 実施例1〜3についても低原子密度層と透明導電層2
又は裏面電極層6との間には普通の原子密度を有するp
型又はn型の半導体層を介在させてもよいことは言うま
でもない。 〔効果〕 以上の如く本発明装置にあってはi型半導体層よりも
原子密度が小さく、且つ水素原子を除いた原子密度が0.
5〜4.5×1022cm-3、望ましくは1.0〜4.0×1022cm-3とす
ることで、通常よりも原子密度の小さい非晶質シリコン
からなる、光入射側に位置するp型及び/又はn型の半
導体等のドーピング層を有するから光学的禁制帯幅を広
くすることなく、高導電性を維持しつつ光吸収を低減出
来て電気的特性が向上するなど本発明は優れた効果を奏
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention makes it possible to reduce the light absorption of a doping layer such as a p-type or n-type semiconductor layer without widening the optical band gap. It relates to a photovoltaic device. [Prior Art] Generally, in a photovoltaic device such as a solar cell, as a method of increasing the amount of light incident on the photoactive layer and increasing the photovoltaic current, a doping layer such as a p-type or n-type semiconductor layer located on the light incident side is used. The optical bandgap of Al2O3 has been widened to reduce the optical absorption in the doping layer (APPL.Phys.Lett39 (3), 2
37 pages 1 August 1981). FIG. 6 is a cross-sectional structural view showing a conventional photovoltaic device made of an amorphous semiconductor, which includes a transparent conductive layer 2, a p-type semiconductor layer 3, and an i-type on a transparent insulating substrate 1 made of glass. The semiconductor layer 4, the n-type semiconductor layer 5, and the back electrode layer 6 are laminated in this order. Table 1 shows an example of the forming conditions of such a conventional device. [Problems to be Solved by the Invention] However, in such a conventional method, when the optical band gap is widened, it is difficult to obtain a high conductive film by doping, and there is a problem that the deterioration of the electrical characteristics cannot be avoided. The present invention has been made in view of the above circumstances, and an object thereof is to reduce light absorption by the doping layer and improve electrical characteristics without impairing the high conductivity of the doping layer. In order to provide a photovoltaic device. [Means for Solving the Problems] In the photovoltaic device according to the present invention, at least one of the p-type and n-type semiconductor layers has a smaller atomic density than the i-type semiconductor layer and contains hydrogen atoms. Excluded atomic density is 0.5 ~
It is characterized by being made of amorphous silicon having a size of 4.5 × 10 22 cm -3 . [Function] In the device of the present invention, this can reduce light absorption in this layer without impairing the conductivity of the doping layer itself. Example 1 The present invention will be specifically described below with reference to the drawings showing an example thereof. FIG. 1 is a cross-sectional structural view showing a photovoltaic device according to the present invention (hereinafter referred to as the device of the present invention), in which 1 is a transparent insulating substrate made of glass and 2 is a transparent conductive layer. After the transparent conductive layer 2 is formed on the translucent insulating substrate 1, a semiconductor layer made of amorphous silicon whose conductivity type is p type and whose atomic density is lower than usual (hereinafter referred to as p type low atomic density semiconductor). Layer 13), a semiconductor layer 4 having a conductivity type of i-type, which is a photoactive layer similar to the conventional one, a semiconductor layer 5 having a conductivity type of the n-type similar to the conventional one, and a back electrode layer 6 are laminated in this order. Is configured. The p-type low atomic density semiconductor layer 13 is formed by the reactive sputtering method in a hydrogen atmosphere, and the semiconductor layers other than this layer 4,
5 is formed using a capacitively coupled glow discharge. When glow discharge is used, silane (SiH 4 ), methane (CH 4 ), and diborane (B
2 H 6 ) is used as a raw material, silane is used as a raw material for forming the i-type semiconductor layer, and silane and phosphine (PH 3 ) are used as raw materials for forming the n-type semiconductor layer 5. As a target for reactive sputtering, C-Si doped with 10 18 cm -3 B or C-Si doped with 10 18 cm -3 P is used. Other conditions for forming the p-type low atom density semiconductor layer 13, the i-type semiconductor layer 4, and the n-type semiconductor layer 5 are as shown in Table 2. A case where a glass plate is used as the substrate and the p-type semiconductor layer side is the light incident side will be described. Incidentally, the p-type low atomic density semiconductor layer 13 has an atomic density excluding hydrogen of 3.9 × 10 22 cm -3 , and the i-type semiconductor layer 4 of ordinary amorphous silicon has an atomic density of 5.0 × 10 22 c excluding hydrogen.
m -3 , the atomic density of the n-type semiconductor layer 5 excluding hydrogen is 5.0 × 10 22
cm -3 . Therefore, the p-type low atomic density semiconductor layer is
It is made of amorphous silicon whose atomic density is lower than that of the i-type semiconductor layer and whose atomic density is lower than usual. The electrical characteristics in Example 1 of the present invention are as shown in Table 3. The electrode area is 1 cm 2 . The conventional example is manufactured under the conditions shown in Table 1. As is clear from Table 3, a significant improvement in falling current and conversion efficiency is recognized. FIG. 2 is a graph showing the relationship between the atomic density of the p-type semiconductor layer and the short circuit current, with the horizontal axis representing the atomic density (× 10 22 cm -3 ).
And the vertical axis represents the short-circuit current (mA / cm 2 ). As is clear from this graph, it is understood that the short-circuit current can be greatly improved at 0.5 to 4.5 × 10 22 cm -3 , preferably 1.0 to 4.0 × 10 22 cm -3 . If the atomic density is 5.0 × 10 22 cm -3 or less, the photovoltaic characteristics cannot be expected to increase even if the amount of incident light increases. The reason why the conversion efficiency is improved in the photovoltaic device of this embodiment is presumed as follows. That is, in this embodiment, the p-type semiconductor layer has a smaller atomic density than the i-type semiconductor layer, and the atomic density excluding hydrogen is 0.5 to 0.5.
It is composed of amorphous silicon having a size of 4.5 × 10 22 cm -3 , preferably 1.0 to 4.0 × 10 22 cm -3 . As mentioned above, the atomic density of ordinary amorphous silicon excluding hydrogen is 5.0 × 10 22 c.
Since it is m −3 , the p-type semiconductor layer in this example is made of amorphous silicon having a smaller atomic density than usual. Therefore, since the total amount of light absorbed by silicon atoms can be reduced, there is no reduction in the electrical characteristics due to the widening of the optical bandgap unlike in the conventional case. It is presumed that it was possible to improve the current. [Embodiment 2] FIG. 3 is a cross-sectional structural view showing another embodiment of the present invention, in which the semiconductor layer 15 having an n-type conductivity is made to have a low atomic density, and another p-type semiconductor layer 3 and an i-type semiconductor are formed. The atomic densities of the other layers including the layer 4 were the same as those of the conventional device shown in FIG. The n-type semiconductor layer 15 is made of amorphous silicon and has an atomic density of 3.
It is 8 × 10 22 cm -3 . The conditions for forming each semiconductor layer are as shown in Table 4. Thus, the electrical characteristics in the examples are as shown in Table 5. The electrode area is 1 cm 2 . As is clear from Table 5, the electrical characteristics can be improved by reducing the atomic density of the n-type semiconductor layer. The relationship between the atomic density of the n-type semiconductor layer and the short-circuit current is not specifically shown, but as shown in FIG. 2, it is substantially the same as the relationship between the atomic density of the p-type semiconductor layer and the short-circuit current. Relationship was recognized. However, since this n-type semiconductor layer is located away from the light incident side, its effect is slightly smaller than that of the first embodiment. [Embodiment 3] FIG. 4 is a cross-sectional structural view showing still another embodiment of the present invention, in which p-type and n-type semiconductor layers of the conductivity type are both made to be low atomic density amorphous silicon. It was made. The p-type low atomic density semiconductor layer 13 is the p-type semiconductor layer 13 of [embodiment 1] shown in FIG. 1, and the n-type low atomic density semiconductor layer 15 is the n of [embodiment 2] shown in FIG. The formation conditions and the atom density are substantially the same as those of the semiconductor layer 15 of the mold. Table 6 shows the electrical characteristics of the third embodiment of the present invention. For reference, the electrical characteristics of the conventional device are also shown. [Embodiment 4] FIG. 5 is a sectional structural view showing still another embodiment of the present invention. Similar to [Embodiment 3] shown in FIG. 4, a p-type semiconductor layer 13 and an n-type semiconductor layer 13 are provided. Each of the p-type low atomic density semiconductor layers 13 is formed by using 15 as a low atomic density amorphous silicon.
Between the transparent conductive layer 2 and the transparent conductive layer 2, a p-type semiconductor layer 33 having a normal atomic density, and between the n-type low atomic density semiconductor layer 25 and the back electrode layer 6 are also an n-type having a normal atomic density. The semiconductor layers 35 of the above are respectively interposed with a thickness of approximately 100Å. This is because the p-type semiconductor layer 23 and the n-type semiconductor layer 25 are made to have a low atomic density, so that the In, A
It was confirmed that the purpose is to prevent a metal such as l that easily diffuses from penetrating into these semiconductor layers, and that this improves thermal stability. The electrical characteristics of this Example 4 are as shown in Table 7. The electrode area is 1 cm 2 . For reference, the electrical characteristics of the conventional device are also shown. Also in Examples 1 to 3, the low atomic density layer and the transparent conductive layer 2
Alternatively, p having a normal atomic density between the back electrode layer 6 and
It goes without saying that a type or n-type semiconductor layer may be interposed. [Effect] As described above, in the device of the present invention, the atomic density is smaller than that of the i-type semiconductor layer, and the atomic density excluding hydrogen atoms is 0.
By setting it to 5 to 4.5 × 10 22 cm -3 , preferably 1.0 to 4.0 × 10 22 cm -3 , p-type and / Alternatively, since the present invention has a doping layer of an n-type semiconductor or the like, the present invention has excellent effects such that light absorption can be reduced while maintaining high conductivity and electrical characteristics are improved without widening the optical band gap. It plays.

【図面の簡単な説明】 第1図は本発明の実施例1の断面構造図、第2図はp型
の半導体層の原子密度と短絡電流との関係を示すグラ
フ、第3図は本発明の実施例2の断面構造図、第4図は
本発明の実施例3の断面構造図、第5図は本発明の実施
例4の断面構造図、第6図は従来装置の断面構造図であ
る。 1……透光性絶縁基板、2……透明導電層 3……p型の半導体層 4……i型の半導体層、5……n型の半導体層 6……裏面電極層、13……低原子密度化したp型の半導
体層、15……低原子密度化したn型の半導体層 23……低原子密度化したp型の半導体層 25……低原子密度化したn型の半導体層 33……通常の原子密度を有するp型の半導体層 35……通常の原子密度を有するn型の半導体層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional structural view of Embodiment 1 of the present invention, FIG. 2 is a graph showing the relationship between the atomic density of a p-type semiconductor layer and a short circuit current, and FIG. 3 is the present invention. FIG. 4 is a sectional structural view of Embodiment 3 of the present invention, FIG. 5 is a sectional structural view of Embodiment 4 of the present invention, and FIG. 6 is a sectional structural view of a conventional device. is there. DESCRIPTION OF SYMBOLS 1 ... Translucent insulating substrate, 2 ... Transparent conductive layer 3 ... P-type semiconductor layer 4 ... i-type semiconductor layer, 5 ... N-type semiconductor layer 6 ... Back electrode layer, 13 ... P-type semiconductor layer with low atomic density, 15 ... n-type semiconductor layer with low atomic density 23 ... p-type semiconductor layer with low atomic density 25 ... n-type semiconductor layer with low atomic density 33 ... p-type semiconductor layer having normal atom density 35 ... n-type semiconductor layer having normal atom density

Claims (1)

(57)【特許請求の範囲】 1.pin型又はnip型構造の半導体層を有する光起電力装
置において、p型又はn型半導体層の少なくとも一層
が、i型半導体層よりも原子密度が小さく、且つ水素原
子を除いた原子密度が0.5〜4.5×1022cm-3である非晶質
シリコンからなることを特徴とする光起電力装置。 2.前記p型又はn型半導体層の少なくとも一層の水素
原子を除いた原子密度は1.0〜4.0×1022cm-3である特許
請求の範囲第1項記載の光起電力装置。 3.前記p型又はn型半導体層と電流取出し用電極との
間に前記p型又はn型半導体層の原子密度よりも高い原
子密度を有するp型又はn型半導体層が介在する特許請
求の範囲第1項記載の光起電力装置。
(57) [Claims] In a photovoltaic device having a pin-type or nip-type semiconductor layer, at least one of the p-type or n-type semiconductor layers has an atomic density lower than that of the i-type semiconductor layer and an atomic density excluding hydrogen atoms of 0.5. A photovoltaic device, characterized by comprising amorphous silicon having a size of 4.5 × 10 22 cm -3 . 2. The photovoltaic device according to claim 1, wherein an atomic density of at least one layer of the p-type or n-type semiconductor layer excluding hydrogen atoms is 1.0 to 4.0 × 10 22 cm −3 . 3. A p-type or n-type semiconductor layer having an atomic density higher than that of the p-type or n-type semiconductor layer is interposed between the p-type or n-type semiconductor layer and the current extraction electrode. The photovoltaic device according to item 1.
JP62283471A 1987-11-10 1987-11-10 Photovoltaic device Expired - Lifetime JP2680583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62283471A JP2680583B2 (en) 1987-11-10 1987-11-10 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62283471A JP2680583B2 (en) 1987-11-10 1987-11-10 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPH01125874A JPH01125874A (en) 1989-05-18
JP2680583B2 true JP2680583B2 (en) 1997-11-19

Family

ID=17665977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62283471A Expired - Lifetime JP2680583B2 (en) 1987-11-10 1987-11-10 Photovoltaic device

Country Status (1)

Country Link
JP (1) JP2680583B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246682A (en) * 1984-05-22 1985-12-06 Hitachi Maxell Ltd Photoelectric conversion element and manufacture thereof

Also Published As

Publication number Publication date
JPH01125874A (en) 1989-05-18

Similar Documents

Publication Publication Date Title
JP2740284B2 (en) Photovoltaic element
CA1113594A (en) Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal schottky barrier
US4094704A (en) Dual electrically insulated solar cells
KR101139443B1 (en) Hetero-junction solar cell and fabrication method thereof
EP0213622A2 (en) Amorphous photovoltaic elements
JP5424800B2 (en) Heterojunction photovoltaic cell with dual doping and method of manufacturing the same
EP0099720B1 (en) Photovoltaic device
US4926230A (en) Multiple junction solar power generation cells
JPH0693519B2 (en) Amorphous photoelectric conversion device
JP2680583B2 (en) Photovoltaic device
JPH0658970B2 (en) Semiconductor device
JP2896793B2 (en) Method for manufacturing photovoltaic device
JP4187328B2 (en) Photovoltaic element manufacturing method
JPH05275725A (en) Photovoltaic device and its manufacture
JPS6225275B2 (en)
JP2002016271A (en) Thin-film photoelectric conversion element
JP2632740B2 (en) Amorphous semiconductor solar cell
JPS61135167A (en) Thin-film solar cell
JPS6143872B2 (en)
JPH0586677B2 (en)
JP2680577B2 (en) Photovoltaic device
JPS62165374A (en) Amorphous photovoltaic element
JP3616495B2 (en) Amorphous silicon film and solar cell using the same
JP3291435B2 (en) Photovoltaic element
JPH0612839B2 (en) Amorphous photovoltaic device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11