JPS61222278A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS61222278A
JPS61222278A JP60064186A JP6418685A JPS61222278A JP S61222278 A JPS61222278 A JP S61222278A JP 60064186 A JP60064186 A JP 60064186A JP 6418685 A JP6418685 A JP 6418685A JP S61222278 A JPS61222278 A JP S61222278A
Authority
JP
Japan
Prior art keywords
layer
doped
doped layer
type determining
conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60064186A
Other languages
Japanese (ja)
Inventor
Kaneo Watanabe
渡邊 金雄
Yukio Nakajima
行雄 中嶋
Hisao Haku
白玖 久雄
Tsugufumi Matsuoka
松岡 継文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60064186A priority Critical patent/JPS61222278A/en
Publication of JPS61222278A publication Critical patent/JPS61222278A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To suppress the deteriorating phenomenon or photoelectric conversion efficiency due to long time projection of intense light, by providing a structure for a generating layer so that a low doped layer, in which conducting-type determining impurities are included by a slight amount less than a doped layer, is laminated on a non-doped layer, in which the conducting-type determining impurities are not included. CONSTITUTION:A semiconductor light active layer 3 comprises a generating layer 3g and different-conducting-type first and second doped layers 3d1 and 3d2. The generating layer 3g generates optical carriers of electrons and holes, which contribute to electric generation when light is imputted. The doped layers 3d1 and 3d2 hold the generating layer 3g in order to generate a junction electric field, which accelerates the movement of the optical carriers of the electrons and holes generated in the generating layer 3g to a back surface electrode 4 or a light receiving surface electrode 2. The layer 3g has a laminated structure, wherein a low doped layer 3gd, which includes slight conducting-type determining impurities less than the doped layers 3d1 and 3d2, is overlapped on a non-doped layer 3gn, which does not include the conducting-type determining impurities. Thus, the decrease in field intensity of the junction electric field can be corrected at the intermediate part of the thickness, and the deterioration in photoelectric conversion efficiency due to intense light projection can be suppressed.

Description

【発明の詳細な説明】 ピン 産業上の利用分野 本発明は光照射によシ光起電力を発生する光起電力装置
に関し1例えば太陽光発電等に利用される。
DETAILED DESCRIPTION OF THE INVENTION Pin Industrial Application Field The present invention relates to a photovoltaic device that generates photovoltaic force by irradiation with light, and is used, for example, in solar power generation.

初 従来の技術 この種光起電力装置の典型例として、光入射面を形成す
るガラス基板の一方の主面に順次受光面側の181電極
、pin接合型非晶質半導体膜及び背面側の第2電極を
積層したものが存在し1例えば特開昭57−95677
号公報にあっては、上記p 、i n接合型非晶質半導
体膜として、シリコン化合物ガスのプラズマ分解により
得られる非晶質シリコン(a−81)を用いること、更
には光入射側のp型層として非晶質シリコンカーバイド
(a−BixOl−1)を用いることを提案している。
First Prior Art As a typical example of this type of photovoltaic device, a 181 electrode on the light receiving surface side, a pin junction type amorphous semiconductor film, and a 181 electrode on the back side are sequentially formed on one main surface of a glass substrate forming the light incident surface. There is one in which two electrodes are laminated; for example, Japanese Patent Application Laid-Open No. 57-95677
In the publication, it is described that amorphous silicon (a-81) obtained by plasma decomposition of silicon compound gas is used as the p, in junction type amorphous semiconductor film, and that p It is proposed to use amorphous silicon carbide (a-BixOl-1) as the mold layer.

即ち、従来のpinホモ接合を形成する非晶質シリコン
のp型層に代って非晶質シリコンカーバイドを用いるこ
とによってpinへテロ接合を構成し、斯るp型層に於
ける光吸収損失を減少させる所謂窓効果を得1発電に寄
与する1型(真性)層或いは実質的な真性(ノンドープ
)層からなる発電層への光照射量を増大させ光電変換効
率の上昇を図っている。
That is, by using amorphous silicon carbide in place of the p-type layer of amorphous silicon that forms the conventional pin homojunction, a pin heterojunction is constructed, and the light absorption loss in the p-type layer is reduced. The aim is to increase the photoelectric conversion efficiency by increasing the amount of light irradiated onto the power generation layer consisting of a type 1 (intrinsic) layer or a substantially intrinsic (non-doped) layer that contributes to power generation by obtaining a so-called window effect that reduces the power generation.

然し乍ら、上記発電に寄与する発電層は強い光に長時間
基されると光電変換効率が低下する劣化現象を来すこと
が知られている。(例えば斯る劣化現象に関してはファ
ースト インターナショナル フォトボルタイック サ
イエンス アンドzypニア’Jング コンファレンス
 コウペ(tat  IntllrnlLtiOn&l
  phot、ovaxtaic  3cienee 
ana Iiingineering Qonfere
no@Kot+e) 11月13日〜16日 1984
年第213頁〜@216頁、ニス・ラダ他。
However, it is known that when the power generation layer that contributes to the power generation described above is exposed to strong light for a long time, it causes a deterioration phenomenon in which the photoelectric conversion efficiency decreases. (For example, regarding such deterioration phenomena, please refer to the First International Photovoltaic Science and
photo, ovaxtaic 3cienee
ana Iiingineering Qonfere
no@Kot+e) November 13th to 16th 1984
p.213-@216, Nis-Rada et al.

イ 「デラ辻、・インデユースト デグラデーションオプ 
ニーシリコン フィルムス アンド ソーラ セルズJ
 (E3− Tauda他r’l’he Light。
I “Dera Tsuji, Indeuest Degradation Op.”
Nisilicon Films and Solar Cells J
(E3- Tauda et al. he Light.

工n1uosa Degradition Of &−
81FLIms  and  5olar  0ell
s」)に詳しい。)(ハ)発明が解決しようとした問題
点 本発明光起電力装置は斯る強い光の長時間照射による光
電変換効率の劣化現象を解決しようとしたものである。
Degradation Of &-
81FLIms and 5olar 0ell
s”). ) (C) Problems to be Solved by the Invention The photovoltaic device of the present invention attempts to solve the phenomenon of deterioration of photoelectric conversion efficiency due to long-term irradiation with strong light.

に)問題点を解決するための手段 本発明光起電力装置は上述の光電変換効率の劣化現象を
解決するために、一導電型のドープ層と逆導電型のドー
プ層との間に、導電型決定不純物が上記ドープ層よシも
少ない低ドープ層と、導電型決定不純物を含まないノン
ドープ層と、1−少なくとも重畳したfJ層構造の発電
層を配置した構成にある。
(2) Means for Solving the Problems In order to solve the above-mentioned photovoltaic conversion efficiency deterioration phenomenon, the photovoltaic device of the present invention has a conductive layer between the doped layer of one conductivity type and the doped layer of the opposite conductivity type. The structure includes a low doped layer containing less type determining impurities than the doped layer, a non-doped layer containing no conductivity type determining impurities, and a power generation layer having an fJ layer structure overlapping at least one layer.

(ホ)作 用 上述の如く発電層を少なくとも2層構造とした−ことに
よって1両者のフェルミ準位を相違せしめ。
(E) Function As mentioned above, by making the power generation layer have at least a two-layer structure, the Fermi levels of the two layers are made different.

発電層の厚み方向途中での接合電界強度の弛張を防止す
る。
This prevents the junction electric field strength from loosening in the middle of the thickness direction of the power generation layer.

(へ)実施例 第1図は本発明光起電力装置の一実施例を示し。(f) Example FIG. 1 shows an embodiment of the photovoltaic device of the present invention.

(1)はガラス等の透光性且つ絶縁性の基板、(2)は
該基板(1)t−受光側とすべくインジウム(In)、
スズ(8n)等の透光性導電酸化物(TOO)であるI
n20iS、ITO,Bn02等から形成される受光面
電極、(3)は該受光面電極(2)上に形成され膜面に
平行なpin接合を備えた半導体光活性層。
(1) is a transparent and insulating substrate such as glass; (2) is indium (In) for the t-light receiving side of the substrate (1);
I which is a transparent conductive oxide (TOO) such as tin (8n)
A light-receiving surface electrode made of n20iS, ITO, Bn02, etc., and (3) a semiconductor photoactive layer formed on the light-receiving surface electrode (2) and having a pin junction parallel to the film surface.

(4)は該光活性層(3)の背面側に設けられた背面電
極である。
(4) is a back electrode provided on the back side of the photoactive layer (3).

上記半導体光活性層(3)は、光入射があると発電(光
電変換)に寄与する電子及び正孔の光キャリアを発生す
る発電層(3g)と、この発電till(3g)にて発
生した電子及び正孔の光キャリアを各々背面電極(4)
或いは受光面電極(2)(移動を促進する接合電界を発
生すべく上記発電層(3g)を挾持する異種導電型の第
1.J2のドープ#(3a1)(312)と、からなシ
、更に上記発電層(5g)は上記ドープII(3a1)
(3az)よりも導電型決定不純物を少なく僅かに含有
した低ドープ層(3811)と、導電型決定不純物を含
まないノンドープ#(3gn)とを重畳した積層構造を
持つ。
The semiconductor photoactive layer (3) includes a power generation layer (3g) that generates photocarriers of electrons and holes that contribute to power generation (photoelectric conversion) when light is incident, and a power generation till (3g) that generates photocarriers of electrons and holes that contribute to power generation (photoelectric conversion). The photocarriers of electrons and holes are each connected to the back electrode (4).
Alternatively, the light-receiving surface electrode (2) (doped #1.J2 (3a1) (312) of different conductivity types that sandwich the power generation layer (3g) to generate a junction electric field that promotes movement; Further, the power generation layer (5g) is the dope II (3a1).
It has a laminated structure in which a lightly doped layer (3811) slightly containing less conductivity type determining impurities than (3az) and a non-doped layer (3gn) containing no conductivity type determining impurities are superimposed.

上記導電型決定不純物を僅かに含有した低ドープII(
3al)は同導電型の決定不純物を高ドープに含有した
第1或いは第2のドープl1l(3al)或いは(!1
(12)とノンドープ層(3gn)、との間に設けられ
ている。この実施例に於いては上記低ドープt11ga
)は1J117)l’−プll1(3a1)と接して設
けられており、このIJ!1のドープ11(3dl)と
同導電型の決定不純物を僅かに含んでいる。
Low dope II containing a small amount of the conductivity type determining impurity (
3al) is the first or second doped l1l (3al) or (!1
(12) and the non-doped layer (3gn). In this example, the above-mentioned lightly doped t11ga
) is provided in contact with 1J117)l'-pull1 (3a1), and this IJ! It slightly contains a determining impurity of the same conductivity type as the dope 11 (3dl) of No. 1.

第2図は初期値で規格化し九光電変換効率の劣化現象の
経時変化の赤道直下の太陽光スペクトル(AM−1)を
輻射するソーラシュミレータを利用して照射強度100
mW/−の強い光を直接照射したときの様子を示してい
る。実線は発電層(3g)が低ドープs(3al)とノ
ンドープa(3gへ)との2層構造からなる本発明実施
例の光起電力装置の劣化特性であり、破線は発電層がノ
ンドープ層のみからなる従来例の光起電力装置の劣化特
性である。本発明の光起電力装置に於ける半導体光活性
層(3)は15.56MHzの高周波(RF)プラズマ
OVD法により下記の条件によシ形成されている。
Figure 2 shows the change over time of the deterioration phenomenon of nine photoelectric conversion efficiency normalized by the initial value using a solar simulator that radiates the sunlight spectrum (AM-1) just below the equator.
This shows the situation when intense light of mW/- is directly irradiated. The solid line shows the deterioration characteristics of the photovoltaic device of the present invention in which the power generation layer (3g) has a two-layer structure of lightly doped s (3al) and non-doped a (to 3g), and the broken line shows the deterioration characteristics of the photovoltaic device in which the power generation layer is a non-doped layer. This is the deterioration characteristic of a conventional photovoltaic device consisting of The semiconductor photoactive layer (3) in the photovoltaic device of the present invention is formed by a 15.56 MHz radio frequency (RF) plasma OVD method under the following conditions.

0 基板温度  150℃〜250℃ 0 ガス圧   CL3Torr 尚、比較対象となった従来例の光起電力装置は発電層と
してRFパワー20W、81EI4ガスを原料として膜
厚5000λに形成されたノンドープ層のみからなシ、
低ドープ層が存在しない以外は上記と同じ条件で形成さ
れた。
0 Substrate temperature 150°C to 250°C 0 Gas pressure CL3 Torr The conventional photovoltaic device used for comparison has an RF power of 20 W as a power generation layer, and a non-doped layer formed to a thickness of 5000λ using 81EI4 gas as a raw material. Nasi,
It was formed under the same conditions as above except that the lightly doped layer was not present.

斯る劣化特性の比較の結果1本発明光起電力装置の光電
変換効率はAM−1,100mW/−の強い光?10時
間照射しても初期値から約5−程度低下するだけに止ま
シ、従来例の15−低下に比較し゛て劣化割合がイに減
少することが確認されを用いて以下のように考察してい
る。即ち、第39囚のように発電層が1層構造の場合、
強い光力照射されていない初期状態にあっては発電層の
ポテンシャルはp型層からn型層に向って序々に減小傾
斜するものの1強い光の照射後にあっては周圧準位密度
の上昇を来し1発電層の途中のポテンシャルが降下する
結果1図中Wで示す範囲に於いて電界強度の低下(弛張
)を招く。従って、この従来の光起電力装置にあっては
、電界強度の低下する範囲(領域)に於いて光照射によ
シ発生した光キャリアの再結合が行なわれ、第1及び第
2のドープ脂(3a1)(3a2)t−介して受光面電
極(2)及び背面電極(4)にf−達する光キャリアの
量が減少し、光電変換効率の劣化原因となっていた。
Results of comparison of such deterioration characteristics 1. What is the photoelectric conversion efficiency of the photovoltaic device of the present invention under strong light of AM-1,100 mW/-? Even after 10 hours of irradiation, it was confirmed that the deterioration rate was only reduced by about 5% from the initial value, and compared to the 15% decrease in the conventional example, the deterioration rate was significantly reduced.Using this, the following discussion was made. ing. In other words, if the power generation layer has a single layer structure like prisoner 39,
In the initial state without strong light irradiation, the potential of the power generation layer gradually decreases from the p-type layer to the n-type layer, but after irradiation with strong light, the potential of the power generation layer decreases. As a result, the potential in the middle of one power generation layer decreases, resulting in a decrease in electric field strength (relaxation) in the range indicated by W in FIG. Therefore, in this conventional photovoltaic device, the photocarriers generated by light irradiation are recombined in the range (region) where the electric field strength decreases, and the first and second doped resins are recombined. (3a1) (3a2) The amount of photocarriers reaching the light-receiving surface electrode (2) and the back electrode (4) via t- was reduced, causing deterioration of photoelectric conversion efficiency.

と推論している。それに反して本発明光起電力装置にあ
っては、第39俤)に示す如く発電711(Ag)が2
層構造に分割されているために、低ドープ層(3g+1
)とノンドープ層(!ign)との界面に於ケるポテン
シャルは、夫々の膜中のポテンシャルが光照射によシ破
線に示すように降下しても。
I infer that. On the other hand, in the photovoltaic device of the present invention, the power generation 711 (Ag) is 2 as shown in Figure 39).
Because it is divided into layered structures, the lightly doped layer (3g+1
) and the non-doped layer (!ign) even if the potential in each film drops as shown by the broken line due to light irradiation.

この発電層(3g)の途中に於ける上記界面に於いてフ
ェルミ準位が異なるために移動しない。その結果、光キ
ャリアの移動を促進する接合電界は光照射により大きく
低下することはなく、上記界面にて補正され、光キャリ
アは受光面電極(2)及び背面電極(4)に到達すると
とになるのである。
Since the Fermi level is different at the interface in the middle of this power generation layer (3g), it does not move. As a result, the junction electric field that promotes the movement of photocarriers does not decrease significantly due to light irradiation, but is corrected at the interface, and the photocarriers reach the light-receiving surface electrode (2) and the back electrode (4). It will become.

1%4図は本発明光起電力装置の低ドープ層(3gd)
に於ける導電型決定不純物のドープ量と光電変換効率の
劣化割合との関係を示しており、縦軸の光電変換効率は
上記AM−1,100mW/−の光を照射した後の劣化
割合を示している。同図から明らか壜如く、低ドープl
ie(3ga)としてp型決定不純物であるボロン@を
含むジボラン(B2Ir6)を用いた場合、−f−/ 
t?y(81H4)とのガス組成比B 2 H6/ 8
 i H4にして約10−5〜10−5.即ち110p
pm〜11000ppに於いて初期値から15%低下す
る従来例に較べ劣化割合が少なく、特にiooppm近
、傍が効果的であることが判明した。
Figure 1%4 shows the lightly doped layer (3gd) of the photovoltaic device of the present invention.
It shows the relationship between the doping amount of conductivity type determining impurities and the deterioration rate of photoelectric conversion efficiency in the photoelectric conversion efficiency. It shows. From the same figure, it is clear that the bottle is low-doped.
When diborane (B2Ir6) containing boron @, which is a p-type determining impurity, is used as ie (3ga), -f-/
T? Gas composition ratio B 2 H6/ 8 with y (81H4)
i H4 is about 10-5 to 10-5. That is, 110p
It has been found that the rate of deterioration is lower than that of the conventional example, which is 15% lower than the initial value at pm to 11,000 ppm, and is particularly effective near iooppm.

一方、n型決定不純物であるリン■を含むフォスフイン
(pus)を用いた場合、81H4とのガス組成比P 
II S / 8 L H4にして約10 〜10”−
’、即ち、tppm 〜ioooppmに於いて従来例
に較べ劣化割合が少なくなり、特に1oppm近傍が効
果的である。
On the other hand, when using phosphine (pus) containing phosphorus, which is an n-type determining impurity, the gas composition ratio P with 81H4 is
II S/8L H4 approximately 10~10”-
', that is, in tppm to ioooppm, the deterioration rate is lower than in the conventional example, and is particularly effective near 1 oppm.

第5図は光電変換効率の劣化割合と、B2Ha/8ii
i4−1(1m)Hのガス組成比により作成された低ド
ープ層(3gd)の膜厚との関係を説明するためのもの
であって、3000Aまでの膜厚範囲に於いて従来例よ
り効果があることを示している。
Figure 5 shows the deterioration rate of photoelectric conversion efficiency and B2Ha/8ii
This is to explain the relationship with the film thickness of the low doped layer (3gd) created with the gas composition ratio of i4-1 (1m)H, and it is more effective than the conventional example in the film thickness range up to 3000A. It shows that there is.

以上の実施例にあっては1発電It(3g)はP塑成い
はn型の導電型決定不純物の何れか一方を同導電型の第
1.R2のドープ膓(3(11)(342)の含有量よ
シも少なくドープした低ドープ層(3ga)と、ドープ
していないノンドープ層(sgn)との2層構造であっ
たが、ノンドーブ層(3gn)の両面に異種lt型の低
ドーグ層を夫々配置した3層構造や導電型決定不純物を
ドープしいない状態で形成されたノンドープI!t(3
gn)が特公昭59−29157号公報のように僅かに
n型の性質を呈するために、そのn型性を−型決定不純
物を僅かにドープすることにより真の真性(1型)に近
づけた低ドープ層(la)とノンドープjll(3gn
)との211構造や、史にこの1型補償をすべくp型決
定不純物が僅かにドープされた第1の低ドープ層と同導
電型であるp型決定不調物を同導電型のドープI@1(
3a1)或いは(112)より少なくドープした$2の
低ドープ層とを積層した3層構造等であっても良い。
In the above embodiment, one power generation It (3 g) is obtained by converting either P plastic or n-type conductivity type determining impurity into the first one of the same conductivity type. It had a two-layer structure consisting of a lightly doped layer (3 ga) doped with a lower content of R2 (3(11)(342)) and an undoped non-doped layer (sgn), but the non-doped layer A three-layer structure in which different types of lt-type low dope layers are placed on both sides of (3gn), and a non-doped I!t (3gn) structure formed without doping with conductivity type determining impurities
In order for gn) to exhibit slightly n-type properties as in Japanese Patent Publication No. 59-29157, its n-type properties were brought close to the true intrinsic type (type 1) by doping a small amount of type-determining impurities. Low doped layer (la) and non-doped jll (3gn
) and the first lightly doped layer slightly doped with a p-type determining impurity to compensate for type 1. @1(
3a1) or (112) or a three-layer structure in which a low doped layer of $2 doped with less than (112) is laminated.

(ト)  発明の効果 本発明光起電力装置は以上の説明から明らかな如く、光
照射により発電に寄与する光キャリアを発生する発電層
を、導電型決定不純物を僅かに含有した低ドープ層と、
導電型決定不純物を含まないノンドープ層と、の少なく
とも積層構造としたので1発電層の厚み方向の途中にフ
ェルミ準位の異なる界面が形成され接合電界の電界強度
の低下をその厚み途中で補正することができ1強い光照
射による光電変換効率の劣化を抑圧することができる。
(G) Effects of the Invention As is clear from the above description, the photovoltaic device of the present invention uses a power generation layer that generates photocarriers that contribute to power generation upon irradiation with light as a lightly doped layer containing a small amount of conductivity type-determining impurities. ,
Since it has a laminated structure of at least a non-doped layer that does not contain impurities that determine the conductivity type, an interface with a different Fermi level is formed in the middle of the thickness of one power generation layer, and the decrease in the electric field strength of the junction electric field is corrected in the middle of the thickness. 1. Deterioration of photoelectric conversion efficiency due to strong light irradiation can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明光起電力装置の典型例を示す模式的断面
図、第2図は本発明実施例と従来例と光電変換効率の経
時変化を示す劣化特性図、第39囚は従来例の劣化現象
を説明するための模式的バンド構造図、第39俤)は本
発明実施例の劣化現象の抑圧を説明するための模式的バ
ンド構造図、第4図は光電変換効率の劣化割合と導電型
決定不純物のドープ量との関係を示す劣化特性図、第5
図は光電変換効率の劣化割合と低ドープ層との膜厚の関
係を示す劣化特性図、を夫々示している。 (1)・・・基板、(3)・・・半導体光活性層、(5
a’1)(3a2)・・・第1・iJ2のドープ層、(
3g)・・・発電層、(3ga)・・・低ドープ層、(
3gn)・・・ノンドープ層。   ・ 第2図 第3図     (A)
Fig. 1 is a schematic cross-sectional view showing a typical example of the photovoltaic device of the present invention, Fig. 2 is a deterioration characteristic diagram showing an example of the present invention, a conventional example, and a change in photoelectric conversion efficiency over time, and Fig. 39 is a conventional example. Fig. 39 is a schematic band structure diagram for explaining the deterioration phenomenon of the present invention, and Fig. 4 is a schematic band structure diagram for explaining the suppression of the deterioration phenomenon in the embodiment of the present invention. Deterioration characteristic diagram showing the relationship with the doping amount of conductivity type determining impurity, No. 5
The figures each show a deterioration characteristic diagram showing the relationship between the deterioration rate of photoelectric conversion efficiency and the film thickness of the lightly doped layer. (1)...Substrate, (3)...Semiconductor photoactive layer, (5
a'1) (3a2)...first iJ2 doped layer, (
3g)...Power generation layer, (3ga)...Low doped layer, (
3gn)...Non-doped layer.・Figure 2Figure 3 (A)

Claims (3)

【特許請求の範囲】[Claims] (1)一導電型のドープ層と逆導電型のドープ層との間
に発電に寄与する光キャリアを発生する非晶質シリコン
系の発電層を配置し、上記発電層は導電型決定不純物を
上記ドープ層よりも少なく僅かに含有した低ドープ層と
、導電型決定不純物を含まないノンドープ層と、を少な
くと重畳した積層構造であることを特徴とした光起電力
装置。
(1) An amorphous silicon-based power generation layer that generates photocarriers that contribute to power generation is arranged between a doped layer of one conductivity type and a doped layer of the opposite conductivity type, and the power generation layer is free of impurities that determine the conductivity type. A photovoltaic device characterized in that it has a laminated structure in which a lightly doped layer containing a slightly smaller amount than the doped layer and a non-doped layer containing no conductivity type determining impurity are overlapped at least.
(2)上記低ドープ層に僅かに含有される導電型決定不
純物は約10ppm〜1000ppmのp型決定不純物
であることを特徴とした特許請求の範囲第1項記載の光
起電力装置。
(2) The photovoltaic device according to claim 1, wherein the conductivity type determining impurity slightly contained in the lightly doped layer is about 10 ppm to 1000 ppm of the p type determining impurity.
(3)上記低ドープ層に僅かに含有される導電型決定不
純物は約1ppm〜1000ppmのn型決定不純物で
あることを特徴とした特許請求の範囲第1項記載の光起
電力装置。
(3) The photovoltaic device according to claim 1, wherein the conductivity type determining impurity slightly contained in the lightly doped layer is about 1 ppm to 1000 ppm of an n type determining impurity.
JP60064186A 1985-03-28 1985-03-28 Photovoltaic device Pending JPS61222278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60064186A JPS61222278A (en) 1985-03-28 1985-03-28 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60064186A JPS61222278A (en) 1985-03-28 1985-03-28 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPS61222278A true JPS61222278A (en) 1986-10-02

Family

ID=13250775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60064186A Pending JPS61222278A (en) 1985-03-28 1985-03-28 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS61222278A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129676A (en) * 1986-11-20 1988-06-02 Kanegafuchi Chem Ind Co Ltd Optoelectronic device
JPH01164072A (en) * 1987-12-19 1989-06-28 Sanyo Electric Co Ltd Amorphous silicon solar cell
JPH0232569A (en) * 1988-07-22 1990-02-02 Mitsubishi Electric Corp Amorphous solar cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150876A (en) * 1980-04-24 1981-11-21 Sanyo Electric Co Ltd Photovoltaic device
JPS5867073A (en) * 1981-10-19 1983-04-21 Agency Of Ind Science & Technol Solar battery
JPS5914679A (en) * 1982-07-16 1984-01-25 Toshiba Corp Photovoltaic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150876A (en) * 1980-04-24 1981-11-21 Sanyo Electric Co Ltd Photovoltaic device
JPS5867073A (en) * 1981-10-19 1983-04-21 Agency Of Ind Science & Technol Solar battery
JPS5914679A (en) * 1982-07-16 1984-01-25 Toshiba Corp Photovoltaic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129676A (en) * 1986-11-20 1988-06-02 Kanegafuchi Chem Ind Co Ltd Optoelectronic device
JPH01164072A (en) * 1987-12-19 1989-06-28 Sanyo Electric Co Ltd Amorphous silicon solar cell
JPH0232569A (en) * 1988-07-22 1990-02-02 Mitsubishi Electric Corp Amorphous solar cell

Similar Documents

Publication Publication Date Title
US4281208A (en) Photovoltaic device and method of manufacturing thereof
JP2846651B2 (en) Photovoltaic device
US8222517B2 (en) Thin film solar cell
JP6334871B2 (en) Solar cell module
JPS61222277A (en) Photovoltaic device and manufacture thereof
JPS61222278A (en) Photovoltaic device
JP3025392B2 (en) Thin film solar cell and manufacturing method
US4857115A (en) Photovoltaic device
JP2896793B2 (en) Method for manufacturing photovoltaic device
US20110220177A1 (en) Tandem photovoltaic device with dual function semiconductor layer
US4672148A (en) Thin-film solar cells
JP4187328B2 (en) Photovoltaic element manufacturing method
JP6285713B2 (en) Crystalline silicon solar cell and solar cell module
US20100212739A1 (en) Solar cell and method of manufacturing the same
JP3245962B2 (en) Manufacturing method of thin film solar cell
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
RU2569164C2 (en) Thin-film solar cell
JPH073876B2 (en) Photovoltaic device
JPH06244440A (en) Solar battery
JP2630657B2 (en) Manufacturing method of integrated multilayer amorphous solar cell
JP3358164B2 (en) Method for manufacturing photovoltaic device
JPH01194370A (en) Optical power generation device
JPH0799777B2 (en) Amorphous semiconductor device
JPS6154680A (en) Thin-film solar cell
JPS63318166A (en) Photovoltaic device