JPS61244073A - Amorphous silicon photoelectric conversion element - Google Patents

Amorphous silicon photoelectric conversion element

Info

Publication number
JPS61244073A
JPS61244073A JP60084536A JP8453685A JPS61244073A JP S61244073 A JPS61244073 A JP S61244073A JP 60084536 A JP60084536 A JP 60084536A JP 8453685 A JP8453685 A JP 8453685A JP S61244073 A JPS61244073 A JP S61244073A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
amorphous silicon
atoms
conversion element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60084536A
Other languages
Japanese (ja)
Inventor
Katsumata Kumano
熊野 勝又
Koichi Haga
浩一 羽賀
Akishige Murakami
明繁 村上
Kenji Yamamoto
健司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RICHO OYO DENSHI KENKYUSHO KK
Ricoh Co Ltd
Original Assignee
RICHO OYO DENSHI KENKYUSHO KK
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RICHO OYO DENSHI KENKYUSHO KK, Ricoh Co Ltd filed Critical RICHO OYO DENSHI KENKYUSHO KK
Priority to JP60084536A priority Critical patent/JPS61244073A/en
Publication of JPS61244073A publication Critical patent/JPS61244073A/en
Priority to US07/309,688 priority patent/US5140397A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve photoelectric conversion characteristics and increase a sensitivity in a short wavelength region by a method wherein an a-Si layer contains oxygen atoms, nitrogen atoms and carbon atoms and at the same time is photoconductive in the region where an optical band gap is 2.0eV or higher. CONSTITUTION:An a-Si layer 103 of a photoelectric conversion element 100 consists of an a-Si basic body which contains at least one of hydrogen atoms, halogen atoms and deuterium atoms and further contains oxygen atoms, nitrogen atoms and carbon atoms. This a-Si layer 103 is produced by a glow discharge decomposition of mixture gas of hydride, deuteride or halogenide of silicon and carbon dioxide and nitrogen. The a-Si layer produced with this method is photoconductive in the region where an optical band gap is 2.0eV or higher. With this constitution, a sensitivity in a short wavelength region can be increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光エネルギーを電気エネルギーに、あるいは
光の情報を電気的情報に変換する光電変換素子に関し、
特に、短波長増感のアモルファスシリコン光電変換素子
に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a photoelectric conversion element that converts optical energy into electrical energy or optical information into electrical information.
In particular, it relates to short wavelength sensitized amorphous silicon photoelectric conversion elements.

(従来の技術) アモルファスシリコン(以下a−8iと記す)を用いた
光電変換素子には、サンドイッチ型−とコプレナー型の
2つの型式がある。このうちコプレナー型は、サンドイ
ッチ型と比較して応答速度が遅いので、高速の光電変換
素子を目的とする場合、通常、サンドインチ型が使用さ
れる。
(Prior Art) There are two types of photoelectric conversion elements using amorphous silicon (hereinafter referred to as a-8i): a sandwich type and a coplanar type. Among these, the coplanar type has a slower response speed than the sandwich type, so the sandwich type is usually used when a high-speed photoelectric conversion element is desired.

一般に、光電変換素子に用いられる、不純物を添加して
いない水素化アモルファスシリコンC以下a−Si:H
と記す)は、光学的バンドギャップが約1.7 eVで
ある。そのため、a−8i:Hの分光感度は約6000
鳳付近にピークを持つことになる。
Hydrogenated amorphous silicon C or less a-Si:H, which is generally used in photoelectric conversion elements and does not contain any impurities.
) has an optical bandgap of approximately 1.7 eV. Therefore, the spectral sensitivity of a-8i:H is approximately 6000
It will have a peak near Otori.

600nm以下の短波長光を利用する目的で、短波長側
に増感を持たせるための材料として、従来、炭素原子を
a−3i:Hにドーピングし、光学的バンドギャップを
炭素原子によって1.9〜2.4 eVに広げたa−8
i:C:Hが用いられている。
Conventionally, for the purpose of utilizing short wavelength light of 600 nm or less, a-3i:H is doped with carbon atoms as a material to provide sensitization on the short wavelength side, and the optical band gap is increased to 1. a-8 expanded to 9-2.4 eV
i:C:H is used.

参考文献; (1) Andarson、 D、A、、5pear、
 W、E、: Electricaland opti
cal proparties of amorpho
ussilicon carbida、 5ilico
n n1tride andgarvanium ca
rbide prepared by tha glo
wdischarge techniqua、 Ph1
los、 Mag、、35 : 1(2) 5uss+
5ann、 R,S、# Ogdan+ R,: Ph
otolumi−nescence and opti
cal properties ofplasna−d
aposited  a+5orphous  5ix
C,−。
References; (1) Anderson, D.A., 5pear.
W, E,: Electricaland opti
cal properties of amorpho
ussilicon carbida, 5ilico
n n1tride and garvanium ca
rbide prepared by tha glo
wdischarge techniqua, Ph1
los, Mag,, 35: 1(2) 5uss+
5ann, R, S, # Ogdan+ R,: Ph
otolumi-nescence and opti
cal properties of plasna-d
aposited a+5orphous 5ix
C,-.

alloys、 Ph1los、 Mag、 B、 4
4 : 137(1981)(発明が解決しようとする
問題点) しかしながら炭素原子によって光学的バンドギ’rツブ
を広げたa−8i:C:Hはa−8i:Hと比較してダ
ングリングボンドが多く、局在準位密度が高い、そのた
め暗伝導では、活性型伝導の他にホッピング伝導を起こ
し易く、大きなσph/σ、を得ることが難しい、この
ことは光電変換素子にとって機能上問題となる。また、
光電変換素子の電極としてITOやSnO,のような透
明導電膜を用いる場合、a−8i:C:Hの炭素源とな
るCH4等がITOやSnO,の酸素M−i−を還元し
、Sn、 Inを生成させ、これがa−8i:C:H層
へ入り込んで光電変換特性の低下を来したり、さらに透
明導電膜の劣化を招くことになる。
alloys, Ph1los, Mag, B, 4
4: 137 (1981) (Problems to be Solved by the Invention) However, a-8i:C:H in which the optical band gap is widened by carbon atoms has a dangling bond compared to a-8i:H. In many cases, the density of localized levels is high. Therefore, in dark conduction, hopping conduction is likely to occur in addition to active conduction, and it is difficult to obtain a large σph/σ. This poses a functional problem for photoelectric conversion elements. . Also,
When using a transparent conductive film such as ITO or SnO as an electrode of a photoelectric conversion element, CH4, etc., which is the carbon source of a-8i:C:H, reduces the oxygen M-i- of ITO or SnO, and , In enters into the a-8i:C:H layer, resulting in deterioration of photoelectric conversion characteristics and further deterioration of the transparent conductive film.

又1.a −S i: C: Hは、成膜後のホトリソ
エツチングが困難であり、種々の形状の素子形成が難し
い、さらにSiH,とCH4の混合ガスでグロー放電法
によりa−Si:C:H膜を形成するには、SiH,よ
りCH,の方が分解効率が悪く高い高周波電力が必要と
なるため、膜中にイオン衝撃によるダメージが増加し、
良質な膜が得にくいなど。
Also 1. a-Si: C: H is difficult to perform photolithography after film formation, making it difficult to form elements of various shapes.Furthermore, a-Si:C: To form a H film, CH has a lower decomposition efficiency than SiH and requires higher high-frequency power, which increases damage caused by ion bombardment in the film.
For example, it is difficult to obtain a high-quality film.

膜作製上の問題点が多い。There are many problems in film fabrication.

そこで本発明は、成膜が容易でかつ加工性が高く、短波
長光に高感度を有する光電変換素子を提供するものであ
る。
Therefore, the present invention provides a photoelectric conversion element that is easy to form a film, has high processability, and has high sensitivity to short wavelength light.

(問題点を解決するための手段) a−5iを母体とし、これに構成原子として水素原子、
ハロゲン原子、重水素原子の少なくとも1種を含む単層
のa−8i層の両生面にそれぞれ電極を設けてなる光電
変換素子において、a−8i層を形成する際に、SiH
,と、グロー放電分解により酸素原子及び炭素原子を生
成する例えば二酸化炭素ガスと、二酸化炭素ガスの分解
を促進するとともに窒素原子を含有させるための例えば
N2ガスの混合ガスを使用し、a−8i膜中にそれらの
原子を含有させる。
(Means for solving the problem) A-5i is used as a matrix, and hydrogen atoms and hydrogen atoms are added to it as constituent atoms.
In a photoelectric conversion element in which electrodes are provided on both surfaces of a single a-8i layer containing at least one of halogen atoms and deuterium atoms, when forming the a-8i layer, SiH
A-8i These atoms are contained in the film.

(作 用) 上記のような酸素原子、窒素原子及び炭素原子の含有に
より局在準位密度の小さいa−8i層が形成され、光学
的バンドギャップが2.0eV以上の領域で、光導電性
を有する。また、σPゎ/σdが103以上と高い値を
示す、また上記のような混合ガスを使用してa−5i層
を形成するため、比較的低い高周波電力で成膜が可能で
あり、その膜はダングリングボンドが少なく、プラズマ
エツチングで容易にエツチングすることができ、種々の
形状の光電変換素子を作製することができる。また、酸
素原子、窒素原子及び炭素原子を含むことでち密な膜を
形成することができ、さらに耐熱性が向上する。
(Function) Due to the inclusion of oxygen atoms, nitrogen atoms, and carbon atoms as described above, an a-8i layer with a small local level density is formed, and in the region where the optical band gap is 2.0 eV or more, photoconductivity is achieved. has. In addition, since the a-5i layer has a high value of σPゎ/σd of 103 or more, and the above-mentioned mixed gas is used to form the a-5i layer, it is possible to form the film with relatively low high-frequency power. has few dangling bonds, can be easily etched by plasma etching, and can produce photoelectric conversion elements of various shapes. Furthermore, by containing oxygen atoms, nitrogen atoms, and carbon atoms, a dense film can be formed, and the heat resistance is further improved.

(実施例) 以下図面を参照しながら実施例を詳細に説明する。第1
図及び第2図は、それぞれ本発明のa−8i光電変換素
子の構成を示したものである。
(Example) Examples will be described in detail below with reference to the drawings. 1st
The figure and FIG. 2 each show the structure of the a-8i photoelectric conversion element of the present invention.

まず第1図に示す光電変換素子100は、支持基板とし
てのガラスあるいは透明高分子フィルム等の透明基板1
01の一方の面に下部電極102を設け、その上にa−
8i層103を積層し、さらに上部電極104を設けて
いる。この種のタイプのものは、光入射面として透明基
板101の他方の面105又は上部電極の表面106の
いずれかを選択することができる。
First, the photoelectric conversion element 100 shown in FIG.
A lower electrode 102 is provided on one side of 01, and a-
8i layers 103 are stacked, and an upper electrode 104 is further provided. In this type of device, either the other surface 105 of the transparent substrate 101 or the surface 106 of the upper electrode can be selected as the light incident surface.

第2図に示す光電変換素子200は、支持基板として、
Am、 Fe、 P41. Crなどの金属基板、ある
いはセラミック基板等の一方の面を導電処理した不透明
基板201が使用され、その上にa−5i層203を積
層し、さらに上部電極204を設けている8この種のタ
イプのものは、不透明基板201が下部電極を兼ねてい
る。また光入射面としては上部電極の表面206に限定
される。
The photoelectric conversion element 200 shown in FIG. 2 includes, as a support substrate,
Am, Fe, P41. 8. This type uses an opaque substrate 201 made of a metal substrate such as Cr or a ceramic substrate with one side conductively treated, and an A-5I layer 203 is laminated thereon, and an upper electrode 204 is further provided. In the latter, the opaque substrate 201 also serves as the lower electrode. Further, the light incident surface is limited to the surface 206 of the upper electrode.

光電変換素子100.200のa−5i層103.20
3は、a−Siを母体とし、これに水素原子、ハロゲン
原子、重水素原子の少なくとも1種を含むものに、さら
に酸素原子、窒素原子及び炭素原子を含有させたもので
ある。このa−8i層は、シリコンの水素化物、重水素
化物、あるいはハロゲン化物等のシリコン原材料ガスと
、二酸化炭素(以下CO2と記す)及び窒素(以下N8
と記す)の混合ガスのグロー放電分解で形成される。ま
た混合ガスとしては。
a-5i layer 103.20 of photoelectric conversion element 100.200
No. 3 has an a-Si base material containing at least one of a hydrogen atom, a halogen atom, and a deuterium atom, and further contains an oxygen atom, a nitrogen atom, and a carbon atom. This a-8i layer contains silicon raw material gas such as silicon hydride, deuteride, or halide, carbon dioxide (hereinafter referred to as CO2) and nitrogen (hereinafter referred to as N8
It is formed by glow discharge decomposition of a mixed gas (denoted as ). Also, as a mixed gas.

その外)こCO,とN、O,GoとN、O,Go、とN
o等があげられる。このようにして作製されたa−8i
層は、光学的バンドギャップが2.0eV以上の領域で
光導電性を有する。
Other) CO, and N, O, Go and N, O, Go, and N
Examples include o. a-8i produced in this way
The layer has photoconductivity in the region where the optical bandgap is 2.0 eV or higher.

光学的バンドギャップを決定しているのは主として酸素
原子であるが、窒素原子及び炭素原子を含むことにより
、例えばa−8i:Hの場合において、酸素原子、窒素
原子及び炭素原子と結合している水素原子のみならずS
iと結合している水素原子も安定になり、熱処理による
水素放出温度がより高温になってさらに耐熱性が向上し
、耐久性を有する光電変換素子が得られる。また窒素原
子を含むことで局在準位密度が小さくなり、光照射によ
る導電率の変化も小さくなる利点を有している。
Although it is mainly the oxygen atom that determines the optical band gap, by including nitrogen atoms and carbon atoms, for example in the case of a-8i:H, it is possible to combine with the oxygen atom, nitrogen atom, and carbon atom. Not only the hydrogen atoms in S
The hydrogen atoms bonded to i also become stable, and the temperature at which hydrogen is released by heat treatment becomes higher, further improving heat resistance and providing a durable photoelectric conversion element. Further, by including nitrogen atoms, the localized level density is reduced, and the change in conductivity due to light irradiation is also reduced.

第3図は、a−3i層103.203の分光感度特性を
示したものである。横軸は波長を、縦軸は光電流をそれ
ぞれ示す、第3図よりこのa−8i層が500n鵬付近
に光感度のピークを有しており、短波長増感がなされて
いることが判る。また光学的バンドギャップを変えるこ
とで光感度のピーク波長を変えることができる。
FIG. 3 shows the spectral sensitivity characteristics of the a-3i layer 103.203. The horizontal axis shows the wavelength, and the vertical axis shows the photocurrent. From Figure 3, it can be seen that this A-8i layer has a photosensitivity peak around 500n, indicating that short wavelength sensitization is achieved. . Furthermore, by changing the optical bandgap, the peak wavelength of photosensitivity can be changed.

第4図は、S x H4トCOx + N tとの混合
ガスを用いて形成されたa−8i層103.203の光
学的バンドギャップ及び光導電率σ0、暗導電率σ4を
示したものである。横軸は(CO,+N、)/SiH,
のガス流量比を、縦軸は導電率、光学的バンドギャップ
をそれぞれ示す、第4図によれば、光学的バンドギャッ
プは2.0〜2.5 aVの範囲にある。AMl(擬似
太陽光)100mW/a#を照射したときの光導電率σ
、hは(GO,+N、)/SiH,のガス流量比の増加
に伴い104より104(Ωam)−’へと減少する。
Figure 4 shows the optical bandgap, photoconductivity σ0, and dark conductivity σ4 of the a-8i layer 103.203 formed using a mixed gas of S x H4 and COx + Nt. be. The horizontal axis is (CO, +N,)/SiH,
According to FIG. 4, the vertical axis shows the conductivity and the optical bandgap, respectively. The optical bandgap is in the range of 2.0 to 2.5 aV. Photoconductivity σ when irradiated with AMl (simulated sunlight) 100 mW/a#
, h decrease from 104 to 104 (Ωam)-' as the gas flow rate ratio of (GO, +N, )/SiH increases.

一方、暗導電率σ4は10−12〜to−15(Ωa1
 )−”と変化するが、σ1./σdが103より大き
く、高いσ、。
On the other hand, the dark conductivity σ4 is 10-12~to-15(Ωa1
)-”, but σ1./σd is larger than 103, which is high σ.

/σ、を有していることが判る。これは、a−Si層の
酸素及び炭素源としてCo2を用い、さらにCO2の分
解促進及び窒素源としてのN2を加える二とで比較的低
い高周波電力で成膜できるので。
/σ. This is because the film can be formed with relatively low high-frequency power by using Co2 as an oxygen and carbon source for the a-Si layer and adding N2 to promote the decomposition of CO2 and as a nitrogen source.

局在準位密度の小さいa−8i層が得られるためと考え
られる。
This is considered to be because an a-8i layer with a small localized level density is obtained.

また、炭素原子は分析により含有されていることが判っ
た。さらにN2を加えることで、co□とN、の励起準
位が近いためN8の励起エネルギーがCo2の励起に移
行し、CO,の分解に触媒として関与し、効率よく酸素
原子及び炭素原子を含有させることができる。また、酸
素原子、窒素原子及び炭素原子を含有させるには高周波
電力等を膜質の低下しない範囲で増加することにより容
易にできる。
Furthermore, analysis revealed that carbon atoms were contained. Furthermore, by adding N2, the excitation energy of N8 transfers to the excitation of Co2 because the excitation levels of co□ and N are close, and it participates in the decomposition of CO as a catalyst, efficiently containing oxygen and carbon atoms can be done. Furthermore, inclusion of oxygen atoms, nitrogen atoms, and carbon atoms can be easily achieved by increasing high frequency power or the like within a range that does not deteriorate the film quality.

a−5i層103.203は、Wi族原子、■族原子を
ドーピングし、それぞれp型、n型としても光電変換素
子として使用することができる。ドーピングする■族原
子としぞは、B 、 Any GaHIn、 Tl1等
が好適なものとして挙げられ、また■族原子としては、
P HAs、 sb、 Bi等が好適なものとして挙げ
られる。ドーピングする量としては1通常の場合10’
′” 〜10−”atomic%とするのが望ましい。
The a-5i layer 103.203 can be doped with Wi group atoms and ■group atoms, and can be used as a photoelectric conversion element as p-type and n-type, respectively. Preferred examples of the group II atoms to be doped include B, Any GaHIn, Tl1, etc., and the group III atoms include:
Preferred examples include PHAs, sb, Bi, and the like. The amount of doping is 1 in normal case 10'
''' to 10-'' atomic% is desirable.

a−3i層への不純物のドーピング方法としては、シリ
コンの水素化物、重水素化物あるいはハロゲン化物とG
o、、 N2を用いてグロー放電分解を行なう際に、■
族、■族等の不純物の水素化物、重水素化物あるいはハ
ロゲン化物(BzHs、BtDs。
As a method for doping impurities into the a-3i layer, silicon hydride, deuteride, or halide and G
o, When performing glow discharge decomposition using N2, ■
Hydride, deuteride, or halide of impurities such as group and group II (BzHs, BtDs.

BF3. PH,、PD、、 PF、等)を反応器内に
導入することによって達成される。不純物の含有量は、
反応器内へ導入する不純物の水素化物、重水素化物ある
いはハロゲン化物等のガス量を制御する等によって達成
される。
BF3. PH, PD, PF, etc.) into the reactor. The content of impurities is
This is achieved by controlling the amount of impurity gas such as hydride, deuteride or halide introduced into the reactor.

a−8i層103.203の膜厚は、使用する光の波長
等によって決定されるが、通常の場合0.1〜5μ閣、
好ましくは0.3〜2μmである。
The film thickness of the a-8i layer 103.203 is determined by the wavelength of the light used, etc., but is usually 0.1 to 5 μm.
Preferably it is 0.3 to 2 μm.

光電変換素子100の構成において、光を入射する面と
して透明基板101の面105あるいは上部電極104
の表面106が選択される。透明基板面105から光を
入射させる場合は、下部電極102はa−8i層103
との接合をショットキー接合とすることが望ましい、そ
の場合の下部電極は、Pt等の金属の蒸着あるいはスパ
ッタリング等により形成される。
In the configuration of the photoelectric conversion element 100, the surface 105 of the transparent substrate 101 or the upper electrode 104 serves as the surface on which light is incident.
surface 106 is selected. When light is incident from the transparent substrate surface 105, the lower electrode 102 is formed by the a-8i layer 103.
It is desirable to form a Schottky junction with the lower electrode, in which case the lower electrode is formed by vapor deposition or sputtering of a metal such as Pt.

下部電極の膜厚としては、光の透過を考慮して通常50
〜300人、好ましくは50〜ioo人である。
The thickness of the lower electrode is usually 50 mm in consideration of light transmission.
-300 people, preferably 50-ioo people.

また、下部電極102とa−5i層103との接合を、
ショットキー接合の代りにITO,Sn○1等の透明導
電膜を用いてペテロ接合としてもよい、透明導電膜を用
いた場合、a−8i層103を形成する際にグロー放電
分解により酸素原子を発生するガスを混合するため、透
明導電膜のITOやSnO,の酸素原子の還元が抑制さ
れ、透明導電膜の劣化を抑えることができ、光電変換特
性の低下は起こらない。
In addition, the bond between the lower electrode 102 and the a-5i layer 103 is
Instead of a Schottky junction, a transparent conductive film such as ITO or Sn○1 may be used to create a Peter junction. When a transparent conductive film is used, oxygen atoms are removed by glow discharge decomposition when forming the a-8i layer 103. Since the generated gases are mixed, the reduction of oxygen atoms in ITO and SnO in the transparent conductive film is suppressed, and deterioration of the transparent conductive film can be suppressed, and no deterioration of photoelectric conversion characteristics occurs.

上部電極104としては、AI、Ni、Orなどの金属
膜を用いるのが望ましい、これらの金属膜は蒸着あるい
はスパッタリング等により形成される。
As the upper electrode 104, it is desirable to use a metal film such as AI, Ni, Or, etc. These metal films are formed by vapor deposition, sputtering, or the like.

光電変換素子100に上部電極の表面106から光を入
射する場合は、前述とは逆に、下部電極102をA1等
の金属膜で形成し、上部電極104としてショットキー
接合を形成するPt、Au、Pd等の金属薄膜か、ペテ
ロ接合を形成するITO等の透明導電膜を用いるとよい
When light enters the photoelectric conversion element 100 from the surface 106 of the upper electrode, contrary to the above, the lower electrode 102 is formed of a metal film such as A1, and the upper electrode 104 is formed of a metal film such as Pt or Au that forms a Schottky junction. , a metal thin film such as Pd, or a transparent conductive film such as ITO that forms a Peter junction.

また、光電変換素子200においては、光は上部電極表
面206からのみ入射するので、上部電極204は、光
の透過を考慮してショットキー接合、あるいはへテロ接
合を形成する金属薄膜あるいは透明導電膜とすることが
望ましい。
In addition, in the photoelectric conversion element 200, since light enters only from the upper electrode surface 206, the upper electrode 204 is a metal thin film or a transparent conductive film that forms a Schottky junction or a heterojunction in consideration of light transmission. It is desirable to do so.

次に、実施例をあげて具体的に説明する。Next, a specific explanation will be given by giving examples.

実施例1 ガラス基板(100■X100111.t=1.011
1)上に下部電極としてITO膜を800人形成し、そ
の上に、7■X7mの開口を有するSUSマスクを被せ
て酸素原子、窒素原子及び炭素原子を含有するa−8i
層をグロー放電分解により約5000人堆積した。
Example 1 Glass substrate (100×100111.t=1.011
1) Form an ITO film on top of 800 layers as a lower electrode, and cover it with a SUS mask with an opening of 7 cm x 7 m to form an a-8i film containing oxygen atoms, nitrogen atoms, and carbon atoms.
Approximately 5000 layers were deposited by glow discharge decomposition.

a−5i層の作製条件は以下の通りである。The conditions for producing the a-5i layer are as follows.

作製方法  プラズマCVD法 原料ガス  SiH,in Hl 10%100s10
05c、    100%25−25−1O0sc、 
    100%25−IQOscc+wCo、/N、
     1 基板温度  250℃ 反応器内圧力1 、 OT orr 高周波出力 15W a−8i層上に上部電極としてAu膜を蒸着により約5
000人形成した。
Production method: Plasma CVD method Raw material gas: SiH, in Hl 10%100s10
05c, 100% 25-25-1O0sc,
100%25-IQOscc+wCo,/N,
1 Substrate temperature 250°C Reactor internal pressure 1, OT orr High frequency output 15W An Au film is deposited as an upper electrode on the a-8i layer to form a
000 people formed.

このようにして作製された光電変換素子のa−8i層1
03の特性は、前記の通りであり、光電変換素子として
良好な結果が得られた。
a-8i layer 1 of the photoelectric conversion element thus produced
The characteristics of 03 were as described above, and good results were obtained as a photoelectric conversion element.

実施例2 ITOの代りに、ショットキー接合とするためptを約
100人魚着し、実施例1と同様に光電変換素子を作製
した。これらの素子においても良好な結果が得られた。
Example 2 A photoelectric conversion element was produced in the same manner as in Example 1, except that about 100 pieces of PT were used instead of ITO to form a Schottky junction. Good results were also obtained with these devices.

実施例3 SiH,の代りに重水素化物SiD*tハロゲン化物S
iF、を用いて同様の光電変換素子を作製した。
Example 3 Deuteride SiD*thalide S instead of SiH
A similar photoelectric conversion element was fabricated using iF.

これらの素子においても良好な結果が得られた。Good results were also obtained with these devices.

(発明の効果) 以上説明したように、本発明によれば、光学的バンドギ
ャップが2.0eV以上の領域で光導電性を有し、かつ
σ2./σm > 103と高い値を示すとともに、優
れた光電変換特性と短波長増感を有する光電変換素子を
実現することができる。
(Effects of the Invention) As explained above, according to the present invention, the optical band gap has photoconductivity in a region of 2.0 eV or more, and σ2. A photoelectric conversion element exhibiting a high value of /σm > 103 and having excellent photoelectric conversion characteristics and short wavelength sensitization can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ本発明の光電変換素子の
構成図、第3図は、同分光特性図、第4図は1本発明に
おける酸素原子、窒素原子及び炭素原子を含むa−8i
膜の(Go、+N2)/SiH4のガス流量比と光学的
バンドギャップ及び光導電率σ25、暗導電率σ4の関
係を示す図である。 100 、200・・・光電変換素子、 101・・・
透明基板、102・・・下部電極、 103,203−
  a −S i層、104.204・・・上部電極、
 201・・・不透明基板。 特許出願人 株式会社  リ  コ −リコ一応用電子
研究所株式会社 k(nm+
FIGS. 1 and 2 are block diagrams of the photoelectric conversion element of the present invention, FIG. 3 is a spectral characteristic diagram thereof, and FIG. 4 is an a- 8i
FIG. 3 is a diagram showing the relationship between the gas flow rate ratio of (Go, +N2)/SiH4 and the optical band gap, photoconductivity σ25, and dark conductivity σ4 of the film. 100, 200... photoelectric conversion element, 101...
Transparent substrate, 102... lower electrode, 103, 203-
a-Si layer, 104.204... upper electrode,
201... Opaque substrate. Patent applicant Rico Co., Ltd. - Rico Applied Electronics Research Institute Co., Ltd. (nm+

Claims (5)

【特許請求の範囲】[Claims] (1)アモルファスシリコンを母体とし、構成原子とし
て水素原子、ハロゲン原子、重水素原子の少なくとも1
種を含む単層のアモルファスシリコン層の両主面にそれ
ぞれ電極を設けてなる光電変換素子において、前記アモ
ルファスシリコン層が酸素原子、窒素原子及び炭素原子
を含み、かつ光学的バンドギャップが2.0eV以上の
領域で、光導電性を有することを特徴とするアモルファ
スシリコン光電変換素子。
(1) Amorphous silicon is used as the base material, and at least one constituent atom is a hydrogen atom, a halogen atom, or a deuterium atom.
In a photoelectric conversion element in which electrodes are provided on both principal surfaces of a single-layer amorphous silicon layer containing seeds, the amorphous silicon layer contains oxygen atoms, nitrogen atoms, and carbon atoms, and has an optical band gap of 2.0 eV. An amorphous silicon photoelectric conversion element characterized by having photoconductivity in the above region.
(2)前記アモルファスシリコン層がIII族原子及びV
族原子を含むことを特徴とする特許請求の範囲第(1)
項記載のアモルファスシリコン光電変換素子。
(2) The amorphous silicon layer contains group III atoms and V atoms.
Claim No. (1) characterized in that it contains a group atom.
The amorphous silicon photoelectric conversion element described in .
(3)前記アモルファスシリコン層のσ_p_h/σ_
dが、AM1(擬似太陽光)100mW/cm^2入射
時にσ_p_h/σ_d>10^3であることを特徴と
する特許請求の範囲第(1)項記載のアモルファスシリ
コン光電変換素子。
(3) σ_p_h/σ_ of the amorphous silicon layer
The amorphous silicon photoelectric conversion element according to claim 1, wherein d is σ_p_h/σ_d>10^3 when AM1 (simulated sunlight) is incident at 100 mW/cm^2.
(4)前記アモルファスシリコン層の一方の主面とこれ
に接する電極との接合がショットキー接合であることを
特徴とする特許請求の範囲第(1)項記載のアモルファ
スシリコン光電変換素子。
(4) The amorphous silicon photoelectric conversion element according to claim (1), wherein a junction between one main surface of the amorphous silicon layer and an electrode in contact therewith is a Schottky junction.
(5)前記アモルファスシリコン層の一方の主面とこれ
に接する電極との接合がヘテロ接合であることを特徴と
する特許請求の範囲第(1)項記載のアモルファスシリ
コン光電変換素子。
(5) The amorphous silicon photoelectric conversion element according to claim (1), wherein a junction between one main surface of the amorphous silicon layer and an electrode in contact therewith is a heterojunction.
JP60084536A 1985-03-14 1985-04-22 Amorphous silicon photoelectric conversion element Pending JPS61244073A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60084536A JPS61244073A (en) 1985-04-22 1985-04-22 Amorphous silicon photoelectric conversion element
US07/309,688 US5140397A (en) 1985-03-14 1989-02-10 Amorphous silicon photoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60084536A JPS61244073A (en) 1985-04-22 1985-04-22 Amorphous silicon photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPS61244073A true JPS61244073A (en) 1986-10-30

Family

ID=13833362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60084536A Pending JPS61244073A (en) 1985-03-14 1985-04-22 Amorphous silicon photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS61244073A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128477A (en) * 1987-11-12 1989-05-22 Ricoh Co Ltd Amorphous silicon photosensor
JPH01168075A (en) * 1987-12-23 1989-07-03 Ricoh Co Ltd Optical sensor comprising amorphous silicon
JPH0342879A (en) * 1989-07-11 1991-02-25 Yamatake Honeywell Co Ltd Manufacture of photodetector
US5693957A (en) * 1994-06-14 1997-12-02 Sanyo Electric Co., Ltd. Photovoltaic element and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128477A (en) * 1987-11-12 1989-05-22 Ricoh Co Ltd Amorphous silicon photosensor
JPH01168075A (en) * 1987-12-23 1989-07-03 Ricoh Co Ltd Optical sensor comprising amorphous silicon
JPH0342879A (en) * 1989-07-11 1991-02-25 Yamatake Honeywell Co Ltd Manufacture of photodetector
US5693957A (en) * 1994-06-14 1997-12-02 Sanyo Electric Co., Ltd. Photovoltaic element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPS6249672A (en) Amorphous photovoltaic element
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JPS61244073A (en) Amorphous silicon photoelectric conversion element
JPH0658971B2 (en) Photovoltaic device manufacturing method
JP3245962B2 (en) Manufacturing method of thin film solar cell
JP2775460B2 (en) Manufacturing method of amorphous solar cell
JPS61236171A (en) Amorphous silicon photoelectric conversion element
JPH0312973A (en) Amorphous thin film solar cell
JPS61244072A (en) Amorphous silicon photoelectric conversion element
JPS61218177A (en) Amorphous silicon photoelectric conversion element
JPS61242085A (en) Amorphous silicon photoelectric conversion element
JPS60210825A (en) Solar battery
JPH0282655A (en) Manufacture of photovolatic device
JP3123816B2 (en) Method for producing amorphous silicon carbide layer and photovoltaic device using the same
JP2002280584A (en) Hybrid thin film photoelectric converter and manufacturing method therefor
JPS60163429A (en) Manufacture of amorphous silicon solar cell
JP3268053B2 (en) Photovoltaic element
JP2810495B2 (en) Photovoltaic element
JP2609873B2 (en) Photovoltaic device
JPS63244888A (en) Semiconductor device
JPH0456170A (en) Manufacture of thin-film solar cell
JP2002033499A (en) Photovoltaic device
JPS6236878A (en) Manufacture of photovoltaic device
JPH03184381A (en) Pin type optical sensor
JP2000196122A (en) Photovolatic element