JPS595679A - Photoelectric transducer device - Google Patents

Photoelectric transducer device

Info

Publication number
JPS595679A
JPS595679A JP57114838A JP11483882A JPS595679A JP S595679 A JPS595679 A JP S595679A JP 57114838 A JP57114838 A JP 57114838A JP 11483882 A JP11483882 A JP 11483882A JP S595679 A JPS595679 A JP S595679A
Authority
JP
Japan
Prior art keywords
type
oxygen
sih4
layer
oxygen atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57114838A
Other languages
Japanese (ja)
Inventor
Takashi Hirao
孝 平尾
Masatoshi Kitagawa
雅俊 北川
Koshiro Mori
森 幸四郎
Shinichiro Ishihara
伸一郎 石原
Masaharu Ono
大野 雅晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57114838A priority Critical patent/JPS595679A/en
Publication of JPS595679A publication Critical patent/JPS595679A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a highly efficient photoelectric transducer device, by forming a-Si including oxygen atoms in the first doping layer which is to be formed on ITO (Indium Tin Oxide) or SnO2, thereafter forming the same conductive type a-Si, which does not include oxygen. CONSTITUTION:The concentration of B2H6, which is used for obtaining a P type by 20% SiH4 that is dilluted by an H2 base, is made to be 0.05-1% with respect SiH4. O2 is made to be 2-10vol% with respect to SiH4. This gas is made to act on a substrate at a temperature of 200 deg.C, and a P type a-Si layer with a thickness of 50Angstrom is formed. At this time, suppression effect of SiO or SiO2 is made conspicuous by mixing oxygen, and the increase in series resistance can be prevented when a solar battery is manufactured. The thickness of ordinary P type a-Si 10, in which oxygen atoms are not introduced, is 50Angstrom . The sum of the P type layer is 100Angstrom . In this way, the light absorbing loss is made to be about a half in comparison with the case only the ordinary P type a-Si is used. The P-I interface is not different from the ordinary element. The resistance can be made smaller than a single oxygen doped P type a-Si. The increase in the series resistance can be avoided.

Description

【発明の詳細な説明】 本発明は非晶質シリコン(以下a−8i)太陽電池及び
透明導電膜上にa−8iを形成する光電変換装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amorphous silicon (hereinafter referred to as a-8i) solar cell and a photoelectric conversion device in which a-8i is formed on a transparent conductive film.

従来、I T O(Indium Tin 0xide
 )をSnO2のような透明導電膜上にアモルファスS
i膜を形成した太陽電池がある。第1図はその一実施例
を示すものであり、1はガラス基板、2はITOのみ、
5nOzあるいはITOとSnO2の二層膜からなる透
明導電膜である。透明導電膜2上に100人程鹿のp形
のアモルファスSi膜を形成する。このp形層3はSi
H4とB2H6の混合ガスのグロー放電法で形成する。
Conventionally, ITO (Indium Tin Oxide)
) on a transparent conductive film such as SnO2.
There is a solar cell with an i-film formed thereon. Figure 1 shows an example of this, in which 1 is a glass substrate, 2 is ITO only,
It is a transparent conductive film made of 5nOz or a two-layer film of ITO and SnO2. About 100 p-type amorphous Si films are formed on the transparent conductive film 2. This p-type layer 3 is made of Si
It is formed by a glow discharge method using a mixed gas of H4 and B2H6.

しかる後を型あるいはt型に近いa−8i膜4を形成し
、n型のa −Si膜6を形成する。i型のa −Si
膜4はSiH4のグロー放電で形成され、膜6はSiH
4とPH,の混合ガスのグロー放電で形成される。6は
金属電極であり、例えばアルミニウムを真空蒸着するこ
とによって形成する。
Thereafter, an a-8i film 4 of type or nearly t-type is formed, and an a-Si film 6 of n-type is formed. i-type a-Si
Film 4 is formed by glow discharge of SiH4, and film 6 is formed by SiH4 glow discharge.
It is formed by glow discharge of a mixed gas of 4 and PH. Reference numeral 6 denotes a metal electrode, which is formed, for example, by vacuum evaporating aluminum.

このような構成の太陽電池においては光はガラス1側か
ら入射させる。ところが9層3はよく知られているよう
に直列抵抗を下げる為にボロン濃度を大きくすると光学
的禁止帯幅が小さく々り光吸収損失が犬きくなる。その
為にボロン濃度を少なくして光学的禁止帯幅を大きく維
持するようにしている。しかしこれによってポロンの活
性化工ネルギーが大きくなり開放電圧の減少、直列抵抗
の増大による損失等が生ずるがボロン濃度が大のときよ
りもまだ特性がよい為妥協的に低濃度のボロンドーピン
グを用いている。1 最近カーボン(例えばCH4)をSiH4やB2H6と
ともに導入し、光学的禁止帯幅を大きくしだp形層を用
いて高効率の太陽電池を開発した例が報告されている。
In a solar cell having such a configuration, light is made to enter from the glass 1 side. However, as is well known in the 9-layer 3, when the boron concentration is increased in order to lower the series resistance, the optical forbidden band width becomes smaller and the light absorption loss increases. For this reason, the boron concentration is reduced to maintain a large optical band gap. However, this increases the activation energy of poron, causing loss due to a decrease in open-circuit voltage and an increase in series resistance, but since the characteristics are still better than when the boron concentration is high, a low concentration of boron doping is used as a compromise. There is. 1 Recently, it has been reported that a highly efficient solar cell was developed by introducing carbon (for example, CH4) together with SiH4 and B2H6 to increase the optical band gap and use a p-type layer.

すなわち、第1図における3をp形のa−8iC:Hに
しだものである。このように光学的禁止帯幅の大きいa
 −SiC: Hを用いてp層での光吸収率を大幅に減
らすことにより高効率化を達成している。またカーボン
添加によるものと同様にp層の光学的禁止帯幅の増大は
酸素原子の添加によっても達成できる。
That is, 3 in FIG. 1 is replaced with p-type a-8iC:H. In this way, a with a large optical band gap
-SiC: High efficiency is achieved by significantly reducing the light absorption rate in the p layer using H. Further, in the same way as by adding carbon, the optical band gap of the p layer can also be increased by adding oxygen atoms.

しかしながら、これら不純物の添加によ−〕てp形とし
ての価電子制御は可能であり、しかも光学的禁止帯幅の
増大による光吸収ロスの減少という効果が大きいが、や
はり抵抗として相対的に大きくあまり厚くすると直列抵
抗となり太陽電池特性を劣下させる。またITOや5n
02のような基板1−に特開口a59−5679  (
2) 例えばH2で稀釈されたSiH4を高周波グロー放電法
で形成すると、I TOあるいはSnO2とp形a−8
i界面付近にSiOあるいはSiO2の組成をもつ物質
が形成され、さらにIn ’p Snがpi及びpi界
面まであられれる事が見出だされている(1982年春
季応物:松下)。SiQあるいはS102  は素子の
直列抵抗になると考えられ、またInやSnはpあるい
はpL  界面でキャリヤの再結合準位になり好1しく
ないものと考えられる。オージェ分析により前記SiO
あるいはSin、、の形成、InやSnの移動は堆積温
度160〜300’Cでも見出される事が示された。
However, by adding these impurities, it is possible to control the valence electrons as a p-type, and it has a great effect of reducing light absorption loss by increasing the optical band gap, but the resistance is still relatively large. If it is too thick, it will create series resistance and deteriorate the solar cell characteristics. Also ITO and 5n
Special opening A59-5679 (
2) For example, when SiH4 diluted with H2 is formed by a high frequency glow discharge method, ITO or SnO2 and p-type a-8
It has been found that a substance having a composition of SiO or SiO2 is formed near the i interface, and that In'p Sn is further deposited up to the pi and pi interfaces (1982 Spring Research: Matsushita). SiQ or S102 is considered to become a series resistance of the element, and In and Sn are considered to be undesirable as they become a carrier recombination level at the p or pL interface. The SiO
It has also been shown that the formation of Sin and the movement of In and Sn can be observed even at deposition temperatures of 160 to 300'C.

本発明は上記問題点を解決した高効率な光電変換装置を
提供する事を目的とするものである。
An object of the present invention is to provide a highly efficient photoelectric conversion device that solves the above problems.

以下本発明に基づく太陽電池の一実施例を第2図に従っ
て説明する。第2図において、7はガラス、8は例えば
I T O、SnO2の一層構造あるいはITOと5n
02  の二層構造の導電層である。9は酸素原子を導
入したp形のa−8iであり、次のようにして形成する
。すなわち、H2ベースで稀釈した20%Si亀置p形
装するための82H6をSiH4に対し0.05〜1%
の濃度とし、02 をSiH4に対し2〜10v01%
にしたガスを温度200’Cの基板に作用させ60人の
p型a−8i層を形成する。
An embodiment of the solar cell according to the present invention will be described below with reference to FIG. In Figure 2, 7 is glass, 8 is ITO, a single layer structure of SnO2, or ITO and 5n.
02 conductive layer with a two-layer structure. 9 is a p-type a-8i into which oxygen atoms are introduced, and is formed as follows. That is, 82H6 for 20% Si Kameki p-type device diluted with H2 base is 0.05 to 1% to SiH4.
The concentration of 02 is 2~10v01% for SiH4.
A p-type A-8i layer of 60 layers was formed by applying the gas to the substrate at a temperature of 200'C.

このとき酸素を混入する事によって前述のSiOあるい
はSi02 の抑制効果が顕著で、従って太陽電池を作
ったときその直列抵抗の増大が防げる。
By mixing oxygen at this time, the above-mentioned effect of suppressing SiO or Si02 is remarkable, and therefore, when a solar cell is produced, an increase in series resistance can be prevented.

1oは酸素原子を導入しない通常のp形>−8iであり
その厚さは50人とする。つまりp形層の厚みとしては
合計100人となる。このようにする事により光吸収ロ
スとしては通常のp形a−5iのみを用いる場合に比べ
半分程度にする事ができるとともにpi  界面は通常
素子と変らず抵抗も単独の酸素ドープp形a−8iより
も小さくすることができ直列抵抗の増大を避けることも
可能となる。
1o is a normal p-type>-8i without introducing oxygen atoms, and its thickness is assumed to be 50. In other words, the total thickness of the p-type layer is 100. By doing this, the optical absorption loss can be reduced to about half compared to the case where only normal p-type a-5i is used, and the pi interface is no different from that of a normal element, and the resistance is also the same as that of a single oxygen-doped p-type a-5i. 8i, and it is also possible to avoid an increase in series resistance.

(この場合のB2H6濃度を仮定している)。(Assuming the B2H6 concentration in this case).

11は真性あるいは真性に近いt形a−8iで通常価電
子制御不純物を導入しないかしても極めての 僅久量導入した高抵抗層である。たとえばH2稀釈の2
0%SiH4を高周波グロー放電法で形成する。
Reference numeral 11 denotes a high-resistance layer of intrinsic or near-intrinsic T-type a-8i, in which a valence electron control impurity is usually introduced, if not in an extremely small amount. For example, H2 dilution 2
0% SiH4 is formed using a high frequency glow discharge method.

厚みとしては例えば5ooo〜1σ000人とする。1
2はn形のa−8iである。14は重鎖で例えばAノ 
を真空蒸着する。
The thickness is, for example, 500 to 1σ000 people. 1
2 is n-type a-8i. 14 is a heavy chain, for example A
vacuum evaporated.

なお、上記実施例においては、ITO−?5n02の上
にまずp形a−5iを堆積する例について述べたが、ま
ず酸素を含むn形のWb−8iを堆積しその後酸素を含
まないn形孔−8i 、 i形a −8i 、 p形a
−8iという順に形成した素子を作ってもよいことはい
うまでもない1 以上のように本発明はITOあるいはSnO2上に形成
すべき最初のドーピング層に酸素原子を含ませたa−5
iを形成し、その後酸素を含まない同−導電形h−3i
を形成する所に大きな特長を有するものである。すなわ
ち、本発明はITOや5n02のような基板上にSiH
4とB2H6の混合ガスに加えて酸素あるいは少なくと
も酸素を含む化合物を混合レトSiを堆積する事によシ
、SiOやSin、、のような物質の発生を抑制すると
共に酸素により光学的禁止帯幅の増大しだp層を用いる
ことにより光吸収ロスを減少させ、続いて酸素を導入し
ないp形a−8i、i形a−8i、n形a−5iを形成
することにより高性能な太陽電池を形成できる。
In addition, in the above embodiment, ITO-? We have described an example in which p-type a-5i is first deposited on 5n02. First, n-type Wb-8i containing oxygen is deposited, and then n-type pore-8i, i-type a-8i, p which does not contain oxygen is deposited. shape a
It goes without saying that an element formed in the order of -8i may be produced.
i and then the same conductivity type h-3i which does not contain oxygen
It has a great feature in that it forms a . That is, the present invention provides SiH on a substrate such as ITO or 5n02.
By depositing a mixture of oxygen or at least a compound containing oxygen in addition to a mixed gas of 4 and B2H6, the generation of substances such as SiO and Sin can be suppressed, and the optical band gap can be improved by oxygen. High-performance solar cells can be achieved by reducing light absorption loss by using an increased p-layer and subsequently forming p-type a-8i, i-type a-8i, and n-type a-5i that do not introduce oxygen. can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の一実施例の光電変換装置の構成図、第2
図は本発明の一実施例の光電変換装置の構成図である。 7・・・・・・ガラス、8・・・・・・光導電層、9・
・・・・・p型a −8i 、 10 ・−−−−−p
型L−8i、11・・川・1型a−5i、12・山・・
電極。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第2図
Fig. 1 is a configuration diagram of a photoelectric conversion device according to a conventional example;
The figure is a configuration diagram of a photoelectric conversion device according to an embodiment of the present invention. 7...Glass, 8...Photoconductive layer, 9.
...p type a -8i, 10 ・------p
Type L-8i, 11... River, Type 1 a-5i, 12... Mountain...
electrode. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に透明導電膜を配し、前記透明導電膜上に
酸素原子を導入した非晶質シリコン膜、酸素を導入しな
い非晶質シリコン膜を順次形成した光電変換装置。
(1) A photoelectric conversion device in which a transparent conductive film is disposed on a substrate, and an amorphous silicon film to which oxygen atoms are introduced and an amorphous silicon film to which no oxygen is introduced are sequentially formed on the transparent conductive film.
(2)前記透明導電膜上に酸素原子を導入した前記導電
形弁晶質シリコン膜、酸素原子を導入しない前記導電形
弁晶質シリコン膜、真性もしくは真性に近い非晶質シリ
コン膜、前記導電形と反対の導電形弁晶質シリコン膜、
電極を順次配した特許請求の範囲第1項に記載の光電変
換装置。
(2) The conductive type valvus silicon film with oxygen atoms introduced onto the transparent conductive film, the conductive type valvus crystalline silicon film without introducing oxygen atoms, the intrinsic or near-intrinsic amorphous silicon film, the conductive type valvate silicon film with oxygen atoms introduced thereon; Valve crystalline silicon film of conductivity type opposite to shape,
The photoelectric conversion device according to claim 1, wherein the electrodes are sequentially arranged.
JP57114838A 1982-07-01 1982-07-01 Photoelectric transducer device Pending JPS595679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57114838A JPS595679A (en) 1982-07-01 1982-07-01 Photoelectric transducer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57114838A JPS595679A (en) 1982-07-01 1982-07-01 Photoelectric transducer device

Publications (1)

Publication Number Publication Date
JPS595679A true JPS595679A (en) 1984-01-12

Family

ID=14647961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57114838A Pending JPS595679A (en) 1982-07-01 1982-07-01 Photoelectric transducer device

Country Status (1)

Country Link
JP (1) JPS595679A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128477A (en) * 1987-11-12 1989-05-22 Ricoh Co Ltd Amorphous silicon photosensor
JPH01168075A (en) * 1987-12-23 1989-07-03 Ricoh Co Ltd Optical sensor comprising amorphous silicon
WO2016147565A1 (en) * 2015-03-16 2016-09-22 パナソニックIpマネジメント株式会社 Solar battery cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142680A (en) * 1980-04-07 1981-11-07 Matsushita Electric Ind Co Ltd Photoconductive semiconductor device
JPS56150876A (en) * 1980-04-24 1981-11-21 Sanyo Electric Co Ltd Photovoltaic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142680A (en) * 1980-04-07 1981-11-07 Matsushita Electric Ind Co Ltd Photoconductive semiconductor device
JPS56150876A (en) * 1980-04-24 1981-11-21 Sanyo Electric Co Ltd Photovoltaic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128477A (en) * 1987-11-12 1989-05-22 Ricoh Co Ltd Amorphous silicon photosensor
JPH01168075A (en) * 1987-12-23 1989-07-03 Ricoh Co Ltd Optical sensor comprising amorphous silicon
WO2016147565A1 (en) * 2015-03-16 2016-09-22 パナソニックIpマネジメント株式会社 Solar battery cell
JPWO2016147565A1 (en) * 2015-03-16 2017-12-07 パナソニックIpマネジメント株式会社 Solar cells

Similar Documents

Publication Publication Date Title
US5646050A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
US4718947A (en) Superlattice doped layers for amorphous silicon photovoltaic cells
EP0523919A1 (en) Multijunction photovoltaic device and fabrication method
JPS6249672A (en) Amorphous photovoltaic element
US20050092357A1 (en) Hybrid window layer for photovoltaic cells
US4396793A (en) Compensated amorphous silicon solar cell
JPH065774B2 (en) Solar cell
WO2005109526A1 (en) Thin film photoelectric converter
JP3248227B2 (en) Thin film solar cell and method of manufacturing the same
JPS595679A (en) Photoelectric transducer device
JPH0122991B2 (en)
JP4110718B2 (en) Manufacturing method of multi-junction thin film solar cell
JPH11274527A (en) Photovoltaic device
JP2948236B2 (en) Photovoltaic device
JPS6152992B2 (en)
JP2020505786A (en) Single-type, tandem-type, and heterojunction-type solar cell devices and methods for forming the same
JP2744680B2 (en) Manufacturing method of thin film solar cell
JPH04290274A (en) Photoelectric transducer
JP2822358B2 (en) Manufacturing method of thin film solar cell
JPS59101879A (en) Thin film solar battery
KR101100109B1 (en) Method for Manufacturing Photovoltaic Device
JP4124309B2 (en) Photovoltaic device manufacturing method
JPH0685291A (en) Semiconductor device and its manufacture
JPH03165068A (en) Amorphous photoconductive cell
JPH0571195B2 (en)