JPS6030166A - Mos integrated circuit device - Google Patents

Mos integrated circuit device

Info

Publication number
JPS6030166A
JPS6030166A JP13797483A JP13797483A JPS6030166A JP S6030166 A JPS6030166 A JP S6030166A JP 13797483 A JP13797483 A JP 13797483A JP 13797483 A JP13797483 A JP 13797483A JP S6030166 A JPS6030166 A JP S6030166A
Authority
JP
Japan
Prior art keywords
type
region
well
wells
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13797483A
Other languages
Japanese (ja)
Inventor
Toru Tsujiide
辻出 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13797483A priority Critical patent/JPS6030166A/en
Publication of JPS6030166A publication Critical patent/JPS6030166A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0925Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising an N-well only in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To perform static electricity resisting countermeasure with simple structure without adding a special manufacturing process at manufacture of an MOS integrated circuit device by a method wherein deep wells are provided underlapping the impurity introduced region of an input part to be applied with a high voltage. CONSTITUTION:N type wells 202 having deep junctions are formed at the same time with formation of an N type well 202' for a P type MOSFET of inside circuit. A gate electrode 205 is formed, and arsenic ions are implanted to form the shallow N type region 206 of an input protecting part, and a contact region 206'. The N type diffusion layer 206 is provided lapping over the N type wells 202, and made shallower than the N type wells 202. An insulating film 208 is provided, an Al wiring 210 is formed, one edge thereof is made to come in contact with the N type region 206, and another edge is connected to an input terminal. A high voltage is applied to the input terminal, heat development is generated at the contact part between the Al wiring and the N type region 206, and even when Al diffuses in Si to invade deeper than junction of the N type region 206, because there existing the deep N type wells 202, destruction of junction is not generated.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明にMO8型集積回路装置に関し、特に異常電圧に
よる破壊を防止する入力保護回路の入力部金儲えたMO
8型集積回路装置に関する。
[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] The present invention relates to an MO8 type integrated circuit device, and in particular to an input section of an input protection circuit for preventing destruction due to abnormal voltage.
The present invention relates to an 8-type integrated circuit device.

〔従来技術〕[Prior art]

MO8型トランジスタのゲート絶縁膜はきわめて薄い為
、ゲート電極に印加される電圧が過大になると破壊され
易い欠点金有している。特に装置に組み込まれる前に゛
人体等に帯電した静電気により破壊される頻度が高い。
Since the gate insulating film of the MO8 type transistor is extremely thin, it has the drawback that it is easily destroyed if the voltage applied to the gate electrode becomes excessive. In particular, there is a high frequency of destruction due to static electricity charged on the human body, etc., before being incorporated into equipment.

つまシ、酸化膜の耐圧は50〜100Vでめシ、普通に
誘起される静屯戒圧数KV〜十数ICVの静電気放電に
より・簡単に破壊されるか、又破壊に至らないまでも耐
圧劣化を引き起す。
The withstand voltage of the oxide film is 50 to 100 V, but it is easily destroyed by electrostatic discharge of normally induced static pressure of several KV to several dozen ICV, or even if it does not lead to destruction, the withstand voltage is low. cause deterioration.

このような問題を解決する為に、種々の入力。In order to solve such problems, various inputs are required.

出力保護回路が報告されている。Output protection circuits have been reported.

二股に、保護回路は基板とは逆導電型の不純物合金む拡
散層と、放電の機能を有した回路との組会せにより構成
される。又これらの保護回路はボンディングバッドと保
護されるべきトランジスタ間に設置される設計手法が採
用されておシ、ボンディングパッドから延在するアルミ
ニウム(A#)と拡散層を開口部を通して接続しなけれ
ばならない。
The protection circuit has two parts: a diffusion layer containing an impurity alloy having a conductivity type opposite to that of the substrate, and a circuit having a discharge function. In addition, these protection circuits are designed to be installed between the bonding pad and the transistor to be protected, and the aluminum (A#) extending from the bonding pad and the diffusion layer must be connected through an opening. No.

一方、近年の集積回路の高密度化、高速化の進行に伴な
い拡散層は浅くなってきている。すなわち、接合容量を
小さくでき、短チヤネルトランジスタが可能となること
から高速化が、又拡散層及びチャネル長が小さくなるこ
とから高集積化が可能となる。
On the other hand, as integrated circuits have become denser and faster in recent years, the diffusion layer has become shallower. That is, since the junction capacitance can be reduced and short channel transistors can be formed, higher speeds can be achieved, and since the diffusion layer and channel length can be reduced, higher integration can be achieved.

しかしながら、保護回路を構成している拡散層とA4の
接続部においては入力端子に印加された高電圧が直接拡
散層にかかる為に、拡散層が極めて浅いと局所的な発熱
が起る。A石が直接拡散層と接している場合、この発熱
により合金反応が起り、接合は破壊される。
However, since the high voltage applied to the input terminal is applied directly to the diffusion layer at the connection between the diffusion layer and A4 constituting the protection circuit, local heat generation occurs if the diffusion layer is extremely shallow. When the A stone is in direct contact with the diffusion layer, this heat generation causes an alloy reaction and the bond is destroyed.

すなわち、境界部を介してA、I3がシリコy(St)
の中へ、又逆にSIがA石の中へ置換する形で反応が起
こるために発熱量が大きく、”tlが接合位してしまう
。すなわち突き抜は現像が起る。
That is, A and I3 are in silico y (St) through the boundary part.
Because a reaction occurs in which SI is substituted into A stone, or conversely, the amount of heat generated is large, and tl is bonded. In other words, development occurs in punching.

これを避ける為に、純粋なh−eだけでな(S+入〕の
A、I3ヲ用いたシA看配線の下に自己整合型にポリシ
リコン配線を設ける方法が考案されているが、上記の発
熱がかなりの温既になる為に、拡散層中の81も置換さ
れることが実際に報告されている。
In order to avoid this, a method has been devised in which a polysilicon wiring is provided in a self-aligned manner under the SiA wiring using not only pure h-e (S+ input) A and I3, but the method described above It has actually been reported that 81 in the diffusion layer is also replaced because the heat generated by the molecule becomes considerably warm.

この為、第1図に示すように、A!配線109と拡散層
106の間に拡散14の導電型と同一の不純物をドープ
したポリシリコン105 全介在させ拡散層光面から見
掛上人看を遠ざけると共に、上記ドーピングした不純物
kp型Si基板101中に拡散させ接合を深くする方法
が用いられている。
For this reason, as shown in Figure 1, A! A polysilicon 105 doped with the same conductivity type as the diffusion layer 14 is completely interposed between the wiring 109 and the diffusion layer 106 to keep the apparent conductivity away from the optical surface of the diffusion layer, and the doped impurity kp type Si substrate 101 A method is used to make the bond deeper by diffusing it into the inside.

102は接合が深く形成された拡散層である。102 is a diffusion layer in which a junction is formed deeply.

また103はフィールド酸化膜、107,108は絶縁
膜で通常絶縁膜107にはCVD−3iO2゜絶縁膜1
0Bとしてはリンガラス(PSG)膜などが用いられる
Further, 103 is a field oxide film, 107 and 108 are insulating films, and the normal insulating film 107 is a CVD-3iO2° insulating film 1.
As the 0B, a phosphorus glass (PSG) film or the like is used.

しかしながら、上記の構成とするためにはポリシリコン
の成長工程、および該ポリシリコンのパターニング工程
が必要になる。たとえこのポリシリコンが他の目的にも
用いられ必要不可決な場合でも、上記ポリシリコンを拡
散層に選択的に接触せしめる開口部を設ける為の工程全
付加せねばならないという、何れも特別工程を付加する
という欠点金有していた。
However, in order to obtain the above structure, a polysilicon growth process and a polysilicon patterning process are required. Even if this polysilicon is used for other purposes and is not necessary, a special process must be added in order to provide an opening that selectively brings the polysilicon into contact with the diffusion layer. It had the disadvantage of adding money.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記欠点全除去し、耐静電気対策t−
実施したMO8型集積回路装置全提供することにある。
The purpose of the present invention is to eliminate all the above-mentioned drawbacks and to take anti-static measures.
The purpose is to provide all the MO8 type integrated circuit devices implemented.

〔発明の構成〕[Structure of the invention]

本発明のMO8型集積回路装置は、−導電型の半導体基
板と、該半導体基板に設けられたMOB型内部回路と、
該MO8型内部回路が形成されている領域と入力端子と
の間の領域に設けられた逆導電型のウェルと、前記ウェ
ルに一部が重畳し。
The MO8 type integrated circuit device of the present invention includes a -conductivity type semiconductor substrate, an MOB type internal circuit provided on the semiconductor substrate,
A well of an opposite conductivity type provided in a region between the region where the MO8 type internal circuit is formed and the input terminal partially overlaps the well.

かつ該ウェルよシも浅い逆導電型の領域と、前記ウェル
の上部に設けられた開口部と、該開口部に接し入力端子
に接続される少なくとも1つのアルミニウム配線とを含
んで構成される。
The well also includes a shallow region of the opposite conductivity type, an opening provided in the upper part of the well, and at least one aluminum wire in contact with the opening and connected to an input terminal.

〔実施例の説明〕[Explanation of Examples]

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第2図(a)〜(C)は本発明の第1の実施例及びその
製造方法全説明するため工程順に示した断面図である。
FIGS. 2(a) to 2(C) are sectional views shown in the order of steps to fully explain the first embodiment of the present invention and its manufacturing method.

この第1の実施例では本発明による入力部の保護をする
入力保護部と内部回路を構成するMO8厖索子の代表と
してのpチャンネルMO8)ランジスタ(以下p−MO
8FETと記す)とを同時に製造する場合について説明
する。
In this first embodiment, a p-channel MO8 transistor (hereinafter referred to as a p-MO8) transistor (hereinafter referred to as p-MO8) is representative of an input protection section and an internal circuit for protecting an input section according to the present invention.
8FET) will be manufactured at the same time.

まず、第2図(a)に示すように、p型SI基板201
に二つのnウェル202,202”e形成する。nウェ
ル202は本発明の入力保護部を形成するためのnウェ
ルであL”ウェル202′ は内部回路の代表としての
p−MOSFET用のnウェルでるる。nウェル202
は内部回路用nウェル202′と同時に作られるから探
い接合金有する。
First, as shown in FIG. 2(a), a p-type SI substrate 201
Two n-wells 202 and 202''e are formed in the n-well 202 and 202''e, respectively. Well de Ruru. n-well 202
The N-well 202' is fabricated at the same time as the internal circuit N-well 202' and has a probe bond.

nウェル202は入力端子と内部回路との間の領域に形
成する。次いで、通常の方法により、フィールド酸化膜
203.シリコン酸化膜204を形成する。
The n-well 202 is formed in a region between the input terminal and the internal circuit. Next, a field oxide film 203. is formed using a conventional method. A silicon oxide film 204 is formed.

次に、第2図(b)に示すように、p−MO8F’E’
I’用のゲート電極205をnウェル202′領域内の
シリコン酸化膜204の上の所定の位置に形成する。次
に、ヒ素(八8)全イオン注入して本発明の入力保護部
の浅いn型領域206を形成すると同時に内部回路のn
ウェル用コンタクト領域206′金形成する。n型拡散
層206はnウェル202′に重畳して設けられ、かつ
nウェル202′よシ浅いことが必要である。次に、ホ
ウ素(B)全イオン注入してp−MOSFETのp型ソ
ース・トンイン領域207 t−形成する。
Next, as shown in FIG. 2(b), p-MO8F'E'
A gate electrode 205 for I' is formed at a predetermined position on the silicon oxide film 204 in the n-well 202' region. Next, all ions of arsenic (88) are implanted to form the shallow n-type region 206 of the input protection part of the present invention, and at the same time, the n-type region 206 of the internal circuit is implanted.
Well contact region 206' is formed with gold. The n-type diffusion layer 206 is provided to overlap the n-well 202' and needs to be shallower than the n-well 202'. Next, all boron (B) ions are implanted to form a p-type source tunnel region 207t- of a p-MOSFET.

次に第2図(C)に示すように、絶縁膜208を設けて
開口し、A石配線209,210,211 を形成する
。A沼配線210はその一端が本発明の入力保護部の一
部をなすn型領域206に接触し、他端が入力端子(図
示せず)に接続する。AA配置渫20 ’iは図示して
いないがその他端が入力保護回路または内部回路に接続
する。Affl配線211は内部回路のnウェルの引出
し電極とな、り、VCC電源に接続される。
Next, as shown in FIG. 2(C), an insulating film 208 is provided and opened to form A-stone wirings 209, 210, 211. One end of the A-swamp wiring 210 contacts the n-type region 206 that forms part of the input protection section of the present invention, and the other end connects to an input terminal (not shown). Although not shown, the other end of the AA arrangement 20'i is connected to an input protection circuit or an internal circuit. The Affl wiring 211 serves as an extraction electrode of the n-well of the internal circuit, and is connected to the VCC power supply.

この実施例では、浅いn型領域206全深いnウェル2
02に重畳させてあシ、Ap配置210を直接に浅いn
型領域206に接触させている。
In this embodiment, the shallow n-type region 206 is entirely deep n-well 2
02, and the Ap arrangement 210 is directly shallow n.
It is in contact with the mold area 206.

K1図に示した従来例と比ベポリシリコン105がない
ことが異っている。従って、入力端子に高電圧が印加さ
れて、AAとn型領域206との接触部に発熱が起り、
そのためA2がSI中へ拡散してn型領域206の接合
よシも深く侵入したとしても、即ちいわゆるAnの突き
抜けが起ったとしても深いn型ウェル202が存在する
から接合破壊は起らない。従来のポリシリコン105が
なくても静電破壊対策が達せられるのである。
The difference from the conventional example shown in Figure K1 is that there is no polysilicon 105. Therefore, a high voltage is applied to the input terminal, and heat is generated at the contact portion between AA and the n-type region 206.
Therefore, even if A2 diffuses into the SI and penetrates deeply into the junction of the n-type region 206, that is, even if so-called penetration of An occurs, the junction will not be destroyed because the deep n-type well 202 exists. . Measures against electrostatic discharge damage can be achieved even without the conventional polysilicon 105.

第3図は本発明の第2の実施例の断面図である。FIG. 3 is a sectional view of a second embodiment of the invention.

pfis1基板301にnウェル302全設け、通常の
方法によ)フィールド酸化膜303.クリコン酸化膜3
04を設けた後、nウェル302に重畳させてnウェル
302よシ浅いn型領域306を形成する。絶縁膜30
8 t−設けた後、開口してA彫配鵡309,310を
形成する。図示していないがA、8配線310の他端は
入力端子に接続し、AA配線309の他端は入力保護回
路あるいは内部回路に接続する。nウェル302を入力
端子と内部回路との間の領域に形成することは第1の実
施例と同じである。また、浅いn型領域306の接合破
壊に対する保護効果も第1の実施例と同じである。
N-well 302 is completely formed on pfis1 substrate 301, and field oxide film 303. Crycon oxide film 3
04, an n-type region 306 that is shallower than the n-well 302 is formed so as to overlap the n-well 302. Insulating film 30
8 After providing T-, it is opened to form A carvings 309 and 310. Although not shown, the other end of the A, 8 wiring 310 is connected to an input terminal, and the other end of the AA wiring 309 is connected to an input protection circuit or an internal circuit. Forming the n-well 302 in the region between the input terminal and the internal circuit is the same as in the first embodiment. Furthermore, the protective effect of the shallow n-type region 306 against junction breakdown is also the same as in the first embodiment.

第4図(a)、 (b)は本発明の第3の実施例の断面
図及び等価回路図である。
FIGS. 4(a) and 4(b) are a sectional view and an equivalent circuit diagram of a third embodiment of the present invention.

この実施例は本発明を入力保護回路に実施したものであ
る。
In this embodiment, the present invention is implemented in an input protection circuit.

第1.第2の実施例と同様にp型S1基板401にnウ
ェル402.フィールド酸化膜403.シリコン酸化膜
4°04を設ける。シリコン酸化膜404の上にポリシ
コンでゲート電極405と抵抗406と全形成する。ゲ
ート電極405でマスクとしAsのイオン注入によln
型ソース・ドレイン領域407’lr形成する。ここで
ドレイン領域がつエル402と重畳して本発咀p入力保
護部を形成する。即ち、この実施例は入力保護回路用の
nチャタネ9MO8FETに本発明を実施したものであ
る。
1st. As in the second embodiment, a p-type S1 substrate 401 and an n-well 402. Field oxide film 403. A silicon oxide film 4°04 is provided. A gate electrode 405 and a resistor 406 are entirely formed using polysilicon on the silicon oxide film 404. Using the gate electrode 405 as a mask, ln is implanted by As ion implantation.
Type source/drain regions 407'lr are formed. Here, the drain region overlaps the well 402 to form the main p-input protection section. That is, in this embodiment, the present invention is implemented in an n-channel 9MO8FET for an input protection circuit.

次に、絶縁膜308を設け、開口してへ!配線409.
410,411 t”形成する。図示していないがA4
配!410の他端は入力端子に接続し、AA配線409
の他端は内部回路に接続する。
Next, an insulating film 308 is provided and opened! Wiring 409.
410,411 t". Although not shown, A4
Delivery! The other end of 410 is connected to the input terminal, and the AA wiring 409
The other end is connected to the internal circuit.

AA配線409はゲート電極405とソース電極とを短
絡し、第3図(b)に示すように接地される。
The AA wiring 409 short-circuits the gate electrode 405 and the source electrode and is grounded as shown in FIG. 3(b).

入力は、入力端子からAA配線410.抵抗406全通
ってMOSFETのドレイン領域に入る。ここで、入力
が高電圧であった場合、第1の実施例で説明したような
ドレイン領域207の接合破壊が起ることがあるが、た
とえ接合破壊が起っても深いnウェル402が存在する
のでSi基板との短絡を生じない。
The input is from the input terminal to the AA wiring 410. It passes through the entire resistor 406 and enters the drain region of the MOSFET. Here, if the input voltage is high, junction breakdown of the drain region 207 may occur as explained in the first embodiment, but even if junction breakdown occurs, the deep n-well 402 still exists. Therefore, no short circuit with the Si substrate occurs.

以上三つの実施例で説明したように、高電圧が印加され
る入力部の不純物導入領域に深いウェル全重畳して設け
たので、従来のようなポリシリコンを設ける必要がなく
、入力部の短絡を防ぐ仁とができる。しかもウェルは内
部回路のウェルと同時に形成できるので特別の工程を付
加する必要はない。
As explained in the above three embodiments, since the deep well is provided completely overlapping the impurity doped region of the input section where high voltage is applied, there is no need to provide polysilicon as in the conventional case, and short-circuiting of the input section is avoided. You can prevent this from happening. Furthermore, since the well can be formed at the same time as the well of the internal circuit, there is no need to add a special process.

上記三つの実施例は、S+基板がp型の場合で説明した
が、n型であってもすべての導vL型を逆にすれば同様
に実施できることは明らかでらシ、同様の効果を得るこ
とができる。
The above three embodiments have been explained in the case where the S+ substrate is p-type, but it is clear that even if the S+ substrate is p-type, it can be implemented in the same way by reversing all the conductive vL types, and the same effect can be obtained. be able to.

〔発明の効果〕〔Effect of the invention〕

以上説明したとお勺、本発明によれば、特別な製造工程
全付加することなしに簡単な構造で耐静電気対策の施こ
されたMO8型集積回路装置全容易に得ることができる
As described above, according to the present invention, an MO8 type integrated circuit device having a simple structure and anti-static measures can be easily obtained without adding any special manufacturing steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のCMO8型集積画集積回路装置の断面図
、第2図(a)〜(C)は本発明の一実施例の構造並び
にその製造方法全説明する為の工程順に示した断面図、
第3図は本発明の第2の実施例の要部断面図、第4図(
a)(b)は本発明の第3の実施例の断面図及び等価回
路図である。 の拡散層、1o3・・・・・・フィールド酸化膜、1o
5・・・・・・ポリシリコン、1o6・・団・浅1い接
合の拡散層、107−= ・・・絶縁膜(CVD−81
02)、108−”・・・リンガラス(P2O)膜、1
o9・・・・・・AJ配線、201°°゛・・・p型S
i基板、202. 202’ ・−・−・−nウェル、
2o3・・団・フィールド酸化L 204・・・、・・
・シリコン酸化膜、2o5・・・・・・ゲート電極、2
06・・・・・・n型領域、206′・旧・・n型コン
タクト領域、207・・・・・・ソース・ドレイン領域
、208・・・・・・絶縁膜、209,210.211
・・団・A看配線、301・・・・・・p型SI基板、
3o2・・・・・・nウェ/l/、303・・川・フィ
ールド酸化HL 3o4・・・・・・シリコン酸化膜、
3o6・・・・・・n型領域、309゜310・・・・
・・Ap配線、401・・・・・・p型Si基板、40
2・・・・・・nウェル、4o3・・・・・・フィール
ド酸化膜、404・・・・・・シリコン酸化膜、405
・・・用ゲート4極、406・・・・・・抵抗、4o7
・・・・・・ソース・ドレイン領域、408・・・・・
・絶縁膜、409,410゜411・・・・・・A1配
a1414・・・・・・開口部。 第1 回 第2回
FIG. 1 is a cross-sectional view of a conventional CMO8 type integrated circuit device, and FIGS. 2(a) to (C) are cross-sectional views showing the structure of an embodiment of the present invention and its manufacturing method in the order of steps. figure,
FIG. 3 is a sectional view of the main part of the second embodiment of the present invention, and FIG. 4 (
a) and (b) are a sectional view and an equivalent circuit diagram of a third embodiment of the present invention. diffusion layer, 1o3... field oxide film, 1o
5...Polysilicon, 1o6...group/shallow junction diffusion layer, 107-=...insulating film (CVD-81
02), 108-”...Phosphorous glass (P2O) film, 1
o9...AJ wiring, 201°°゛...p type S
i-board, 202. 202' ・-・-・-n well,
2o3... group field oxidation L 204...,...
・Silicon oxide film, 2o5...Gate electrode, 2
06...n-type region, 206'-old...n-type contact region, 207...source/drain region, 208...insulating film, 209,210.211
... Group A wiring, 301 ... p-type SI board,
3o2...n wa/l/, 303...river/field oxidation HL 3o4...silicon oxide film,
3o6...N-type region, 309°310...
...Ap wiring, 401...P-type Si substrate, 40
2...N well, 4o3...Field oxide film, 404...Silicon oxide film, 405
4-pole gate for...406...Resistance, 4o7
...Source/drain region, 408...
- Insulating film, 409, 410° 411... A1 arrangement a1414... Opening. 1st 2nd

Claims (2)

【特許請求の範囲】[Claims] (1)−導電型の半導体基板と、該半導体基板に設けら
れたMO8型内部回路と、該MO8型内部回路が形成さ
れている領域と入力端子との間の領域に設けられた逆導
電型のウェルと、前記ウェルに一部が重畳し、かつ該ウ
ェルよりも浅い逆導電型の領域と、前記ウェルの上部に
設けられた開口部と、該開口部に接し前記入力端子に接
続される少なくとも1つのアルミニウム配線とを含むこ
とを特徴とするMO8型集積回路装置。
(1) - A conductive type semiconductor substrate, an MO8 type internal circuit provided on the semiconductor substrate, and an opposite conductive type provided in a region between the area where the MO8 type internal circuit is formed and the input terminal. a well, a region of the opposite conductivity type that partially overlaps the well and is shallower than the well, an opening provided at the top of the well, and a region in contact with the opening and connected to the input terminal. An MO8 type integrated circuit device, characterized in that it includes at least one aluminum wiring.
(2) ウェルがMO8型内部回路のウェルと同一導電
型で同一接合深さ會有する特許請求の範囲第(1)項記
載のMo 8 m集積回路装置。
(2) The Mo 8 m integrated circuit device according to claim 1, wherein the well has the same conductivity type and the same junction depth as the well of the MO 8 internal circuit.
JP13797483A 1983-07-28 1983-07-28 Mos integrated circuit device Pending JPS6030166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13797483A JPS6030166A (en) 1983-07-28 1983-07-28 Mos integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13797483A JPS6030166A (en) 1983-07-28 1983-07-28 Mos integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6030166A true JPS6030166A (en) 1985-02-15

Family

ID=15211088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13797483A Pending JPS6030166A (en) 1983-07-28 1983-07-28 Mos integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6030166A (en)

Similar Documents

Publication Publication Date Title
US6060750A (en) Semiconductor device having SOI-MOSFET
EP0189914A2 (en) Semiconductor integrated circuit device and method of manufacturing the same
KR920003676B1 (en) Semiconductor device
JPH09115999A (en) Semiconductor integrated circuit device
JP2626229B2 (en) Semiconductor input protection device
JP3456242B2 (en) Semiconductor device and manufacturing method thereof
JP2001284540A (en) Semiconductor device and its manufacturing method
US3518750A (en) Method of manufacturing a misfet
US6833594B2 (en) Semiconductor integrated circuit device and manufacture method therefore
JPH11307651A (en) Semiconductor integrated circuit
JPS63244874A (en) Input protective circuit
JPH06349852A (en) Mos type field-effect transistor
JP2748938B2 (en) Semiconductor integrated circuit device
US3936862A (en) MISFET and method of manufacture
JPS6030166A (en) Mos integrated circuit device
JPH01194349A (en) Semiconductor device
JP2948256B2 (en) Method for manufacturing semiconductor memory device
JP2826024B2 (en) Method for manufacturing MOS transistor
JP3271435B2 (en) Semiconductor integrated circuit device
KR960016483B1 (en) Semiconductor integrated circuit device & method for manufacturing the same
JPS61207051A (en) Semiconductor device
JPS627710B2 (en)
JP3038744B2 (en) CMOS type semiconductor integrated circuit device
JPH0235778A (en) Semiconductor device
JP3221677B2 (en) Semiconductor device