JPS6028388B2 - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor deviceInfo
- Publication number
- JPS6028388B2 JPS6028388B2 JP15461176A JP15461176A JPS6028388B2 JP S6028388 B2 JPS6028388 B2 JP S6028388B2 JP 15461176 A JP15461176 A JP 15461176A JP 15461176 A JP15461176 A JP 15461176A JP S6028388 B2 JPS6028388 B2 JP S6028388B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- main surface
- epitaxial layer
- substrate
- silicon substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Element Separation (AREA)
- Semiconductor Integrated Circuits (AREA)
Description
【発明の詳細な説明】
本発明は、半導体装置、特にコレクタ埋込層を有する集
積回路装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to an integrated circuit device having a buried collector layer.
従来、コレクタ樫込み層或いは素子間分離層を形成し、
更には素子の電気的特性を向上させる目的で、高抵抗半
導体基板上に設けられたェピタキシャル層に素子を形成
する、所謂ェピタキシャル拡散法による集積回路装置の
構造は公知である。Conventionally, a collector layer or an inter-element isolation layer is formed,
Furthermore, the structure of an integrated circuit device using the so-called epitaxial diffusion method, in which an element is formed in an epitaxial layer provided on a high-resistance semiconductor substrate, is known for the purpose of improving the electrical characteristics of the element.
しかしながらこの構造によるとェピタキシャル層には、
結晶転位等の欠陥が高密度に発生し、更にはェピタキシ
ャル層表面に形成されたマゥント、ビット等の数ムm程
度の突起によるフオトマスクの損傷部がそのまま基板上
に転写されてしまう場合が少なくなく、そのため歩蟹り
向上を図ることは困難であった。本発明の目的は上記の
欠点を解消した集積回路装置を提供することである。However, according to this structure, the epitaxial layer has
Defects such as crystal dislocations occur at a high density, and damage to the photomask due to protrusions of several mm such as mounts and bits formed on the surface of the epitaxial layer is rarely transferred as is onto the substrate. Therefore, it was difficult to improve walking speed. SUMMARY OF THE INVENTION An object of the present invention is to provide an integrated circuit device that eliminates the above-mentioned drawbacks.
本発明においては、一主面にヱピタキシャル層を有する
半導体基板の他の主面層に素子が形成され、ェピタキシ
ャル層はコレクタ埋込み層を形成するためにのみ用いら
れることを特徴とする。The present invention is characterized in that an element is formed on the other main surface layer of a semiconductor substrate having an epitaxial layer on one main surface, and the epitaxial layer is used only for forming the collector buried layer.
次に図面を参照して説明する。第1図〜第5図は本発明
の一実施例を工程順に示す断面図で、先ず単結晶のn型
シリコン基板1の一主面2に形成した厚さ約1仏mの酸
化膜3の所定の部分を選択的に除去し、例えばアンチモ
ンの様なn型不純物を主面2から数山mの深さまで拡散
し、高不純物濃度のn十コレクタ埋込み層4を形成する
。前記不純物拡散時に厚さ約0.2〜0.3〃mの酸化
膜3′が前記n+拡散層4上に形成される(第1図)。
その後、前記酸化膜3′を除去すると、酸化膜3は厚さ
0.7〜0.8rmの厚さで残る。Next, a description will be given with reference to the drawings. 1 to 5 are cross-sectional views showing an embodiment of the present invention in the order of steps. First, an oxide film 3 with a thickness of approximately 1 French meter is formed on one principal surface 2 of a single-crystal n-type silicon substrate 1. A predetermined portion is selectively removed, and an n-type impurity such as antimony is diffused to a depth of several meters from the main surface 2 to form an n+ collector buried layer 4 with a high impurity concentration. During the impurity diffusion, an oxide film 3' having a thickness of about 0.2 to 0.3 m is formed on the n+ diffusion layer 4 (FIG. 1).
Thereafter, when the oxide film 3' is removed, the oxide film 3 remains with a thickness of 0.7 to 0.8 rm.
次いで、硝酸−弗酸系のエッチング液で、露出している
n+拡散層4のシリコン基板面を1〜2Amエッチング
した後、酸化膜3を全面除去すると、シリコン基板1上
のn+拡散層4上の表面2′は主面2より1〜2仏m程
度引つこんでいるので、シIJコン表面2と2′の境界
において、n+拡散層4のパターンステップ4′が形成
される(第2図)。続いて、シリコン基板表面2および
2′を高温の塩化水素ガス処理した後、該表面上に、四
塩化シリコン(SIC14)の水素還元法あるいはシラ
ン(Si比)の熱分解法により、200〜300仏mの
厚さのP型シリコンェピタキシヤル層5を形成する。こ
の工程において、第2図に設けたパターンステップ4′
は塩化水素ガスによる処理によって消えることはなく、
そのままェピタキシヤル層5の一主面6上の4′と対応
する位置にパターンステップ5′が形成される。次に、
n型シリコン基板1の他の主面7を弗酸−硝酸系の薬品
によるエッチング液か、あるいは、フレオンガスと酸素
の混合ガスのガスプラズマにより、エッチングし、更に
機械的に精密研磨して、n型シリコン基板1を数〜数十
ムm程度の所望の厚さにまで薄くする(第3図)。次に
、n型シリコン基板の前記他の主面7′における所定の
部分からP型不純物を、P型ェピタキシャル層5に達す
るまで拡散して、素子間分離層8,8′および8^を形
成する(第4図)。Next, the silicon substrate surface of the exposed n+ diffusion layer 4 is etched by 1 to 2 Am with a nitric acid-hydrofluoric acid based etching solution, and the oxide film 3 is completely removed, thereby removing the n+ diffusion layer 4 on the silicon substrate 1. Since the surface 2' is recessed from the main surface 2 by about 1 to 2 meters, a pattern step 4' of the n+ diffusion layer 4 is formed at the boundary between the silicon surfaces 2 and 2' (see Fig. 2). ). Subsequently, the silicon substrate surfaces 2 and 2' are treated with high-temperature hydrogen chloride gas, and then 200 to 300 A P-type silicone epitaxial layer 5 having a thickness of 1.5 m is formed. In this process, the pattern step 4' shown in FIG.
does not disappear by treatment with hydrogen chloride gas,
A pattern step 5' is then formed on the main surface 6 of the epitaxial layer 5 at a position corresponding to 4'. next,
The other main surface 7 of the n-type silicon substrate 1 is etched using an etching solution using a hydrofluoric acid-nitric acid type chemical or gas plasma of a mixed gas of freon gas and oxygen, and then mechanically precision polished to form an n-type silicon substrate 1. The mold silicon substrate 1 is thinned to a desired thickness of several to several tens of mm (FIG. 3). Next, the P-type impurity is diffused from a predetermined portion of the other main surface 7' of the n-type silicon substrate until it reaches the P-type epitaxial layer 5, thereby forming the element isolation layers 8, 8' and 8^. form (Figure 4).
この時、素子間分離層8,8′および8″とn+コレク
タ埋込み層4との位置合わせは、マスキングの際、光源
に波長0.7〜0.9rmの赤色光または近赤外光を用
いれば、n型シリコン基板1およびP型ェピタキシャル
層5を通して、ェピタキシヤル層表面6上のn十埋込み
層4によるパターンステップ5′を容易に見ることがで
きるので問題はない。最後にn型シリコン基板1の前記
他の主面7′にP型不純物層9,9′およびn型不純物
層10,10′を順次形成してP型抵抗層およびnpn
トランジスタ等の素子を形成して完成する(第5図)。At this time, the alignment between the element isolation layers 8, 8' and 8'' and the n+ collector buried layer 4 is achieved by using red light or near-infrared light with a wavelength of 0.7 to 0.9 rm as a light source during masking. For example, there is no problem because the pattern step 5' formed by the n+ buried layer 4 on the epitaxial layer surface 6 can be easily seen through the n-type silicon substrate 1 and the p-type epitaxial layer 5.Finally, the n-type silicon substrate P-type impurity layers 9, 9' and n-type impurity layers 10, 10' are sequentially formed on the other main surface 7' of 1 to form a P-type resistance layer and an npn
The process is completed by forming elements such as transistors (Fig. 5).
本発明によれば、一主面上にェピタキシヤル層が形成さ
れた半導体基板の他の主面に、トランジスタ、抵抗等の
全ての素子が形成されているので、従釆のェピタキシャ
ル層に拡散法により素子が形成されている集積回路装置
に比較して、結晶欠陥やェピタキシヤル層表面のマウン
ト、ビットなどの突起物によりフオトマスクが損傷され
ることに起因するチップの不良や全くないために、歩留
りは著しく向上する。According to the present invention, since all the elements such as transistors and resistors are formed on the other main surface of the semiconductor substrate on which the epitaxial layer is formed on one main surface, the diffusion method is applied to the secondary epitaxial layer. Compared to integrated circuit devices in which elements are formed using the same method, the yield is lower due to the fact that there are no chip defects caused by damage to the photomask due to crystal defects, mounts on the surface of the epitaxial layer, or protrusions such as bits. Significantly improved.
また従来と同じくコレクタ埋込み層が形成されているた
め、高周波高出力というトランジスタの電気的特性を損
うことは全くない。Furthermore, since a buried collector layer is formed as in the conventional case, the electrical characteristics of the transistor, such as high frequency and high output, are not impaired at all.
この様に本発明は、一主面上にェピタキシャル層が形成
された半導体基板の他の主表面に素子群を形成すること
により、歩蟹りの高い集積回路装置を提供するものとし
て極めて有効である。As described above, the present invention is extremely effective in providing an integrated circuit device with high reliability by forming an element group on the other main surface of a semiconductor substrate having an epitaxial layer formed on one main surface. It is.
第1図〜第5図は本発明の一実施例を工程順に示す断面
図である。
1…・・・n型シリコン基板、2・・・・・・n型シリ
コン基板の一主面、2′・・・・・・n+コレクタ埋込
み層の表面、3,3′…・・・酸化膜、4・・・・・・
n+コレク夕埋込み層、5……P型ェピタキシャル層、
4′,5′……n十コレクタ埋込み層4のパターンステ
ップ、6……P型ェピタキシヤル5の表面、7,7′…
・・・n型シリコン基板の他の主面、8,8′,8へ・
・・・・素子間分離層、9,9′・・・・・・P型不純
物層、10,10′・・…・n型不純物層。
符丁図
Z図
冬ろ図
群4図
豹づ図1 to 5 are cross-sectional views showing an embodiment of the present invention in the order of steps. 1... N-type silicon substrate, 2... One main surface of n-type silicon substrate, 2'... Surface of n+ collector buried layer, 3, 3'... Oxidation Membrane, 4...
n+ collector buried layer, 5...P type epitaxial layer,
4', 5'... Pattern step of n+ collector buried layer 4, 6... Surface of P-type epitaxial layer 5, 7, 7'...
...to the other main surfaces of the n-type silicon substrate, 8, 8', 8.
. . . Inter-element isolation layer, 9, 9' . . . P-type impurity layer, 10, 10' . . . N-type impurity layer. Code map Z map Winter map group 4 Leopard map
Claims (1)
物を導入して埋込層を形成するとともに前記埋込層の表
面を少し除去して段差を形成する工程と、前記基板の一
主表面に反対導電型のエピタキシヤル層を形成する工程
と、前記基板の段差に基づいて形成された前記エピタキ
シヤル層表面の段差を位置合わせ用マークとして前記基
板の他の主面の所定箇所から反対導電型の不純物を導入
して前記エピタキシヤル層に到達する素子間分離層を形
成する工程と、前記基板の他の主面に素子群を形成する
工程を含むことを特徴とする半導体装置の製造方法。1. A step of introducing an impurity of the same conductivity type into one main surface of a semiconductor substrate of one conductivity type to form a buried layer and removing a small portion of the surface of the buried layer to form a step; forming an epitaxial layer of opposite conductivity type on the main surface, and using a step on the surface of the epitaxial layer formed based on the step of the substrate as an alignment mark from a predetermined location on the other main surface of the substrate; A semiconductor device comprising the steps of: forming an inter-element isolation layer that reaches the epitaxial layer by introducing impurities of opposite conductivity type; and forming an element group on the other main surface of the substrate. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15461176A JPS6028388B2 (en) | 1976-12-21 | 1976-12-21 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15461176A JPS6028388B2 (en) | 1976-12-21 | 1976-12-21 | Manufacturing method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5377478A JPS5377478A (en) | 1978-07-08 |
JPS6028388B2 true JPS6028388B2 (en) | 1985-07-04 |
Family
ID=15587959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15461176A Expired JPS6028388B2 (en) | 1976-12-21 | 1976-12-21 | Manufacturing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6028388B2 (en) |
-
1976
- 1976-12-21 JP JP15461176A patent/JPS6028388B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5377478A (en) | 1978-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3534236A (en) | Semiconductor integrated circuit structure | |
US3423651A (en) | Microcircuit with complementary dielectrically isolated mesa-type active elements | |
JPS6081839A (en) | Manufacture of semiconductor device | |
US3471922A (en) | Monolithic integrated circuitry with dielectric isolated functional regions | |
JPS6028388B2 (en) | Manufacturing method of semiconductor device | |
JPS5873132A (en) | Semiconductor device using polyimide for isolating insulation and method of producing same | |
JPH02105438A (en) | Measurement of film thickness of epitaxial growth layer | |
JPS5912020B2 (en) | Manufacturing method of semiconductor device | |
JPS6010748A (en) | Manufacture of semiconductor device | |
JPS60167348A (en) | Manufacture of semiconductor device | |
JP2554635B2 (en) | Method for manufacturing semiconductor device | |
JPS6322065B2 (en) | ||
JPS5884443A (en) | Manufacture of semiconductor ic | |
JPS598348A (en) | Fabrication of semiconductor device | |
JPH01123471A (en) | Manufacture of semiconductor device | |
JPS5950087B2 (en) | Manufacturing method of semiconductor device | |
JPH07153972A (en) | Manufacture of semiconductor device | |
JPH0140502B2 (en) | ||
JPS60123040A (en) | Manufacture of semiconductor device | |
JPS62281323A (en) | Manufacture of semiconductor device | |
JPS607395B2 (en) | Insulated gate integrated circuit | |
JPS6123670B2 (en) | ||
JPS61112331A (en) | Manufacture of semiconductor device | |
JPS6043653B2 (en) | Manufacturing method of semiconductor device | |
JPS55113379A (en) | Method of fabrication for semiconductor pressure- sensitive element |