JPH01123471A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01123471A
JPH01123471A JP28133987A JP28133987A JPH01123471A JP H01123471 A JPH01123471 A JP H01123471A JP 28133987 A JP28133987 A JP 28133987A JP 28133987 A JP28133987 A JP 28133987A JP H01123471 A JPH01123471 A JP H01123471A
Authority
JP
Japan
Prior art keywords
film
conductivity type
mask
type
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28133987A
Other languages
Japanese (ja)
Inventor
Tsutomu Yoshida
力 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP28133987A priority Critical patent/JPH01123471A/en
Publication of JPH01123471A publication Critical patent/JPH01123471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To avoid the inversion of a substrate independently of implantation ion concentration and driving conditions, by performing As ion implantation using a resist mask, and exfoliating and eliminating the resist mask before As ion driving process. CONSTITUTION:A three-layer film consisting of a thermal oxide film 2, a silicon nitride film 3 and a CVDSiO2 film 4 is formed on a P-type silicon substrate 1. By using a resist pattern 5 as a mask, an NSG 4 is etched and subjected to patterning. When N-type impurity atom like As is ion-implanted, the resist pattern 5 serves as a mask, and the N-type impurity is implanted only in a desired buried diffusion region of the P-type silicon substrate 1. The resist pattern 5 is exfoliated, an SiN film 3 is etched by using the NSG film 4 as a mask. The P-type silicon substrate 1 is oxidized, and an oxide film 2a is selectively formed on an impurity region 6, by oxidation at a comparatively low temperature. Driving at a high temperature is performed, and successively the oxide films 2, 2a, and the NSG film 4 are totally exfoliated and eliminated in order.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体装置の製造方法に関し、特にバイポーラ
型トランジスタとMOS型トランジスタとが同一基板上
に形成されたBiMOS型半導体装置におけるバイポー
ラ型トランジヌタ部のjlコレクタ拡散技術に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a method for manufacturing a semiconductor device, and in particular to a bipolar transistor section in a BiMOS semiconductor device in which a bipolar transistor and a MOS transistor are formed on the same substrate. Regarding the jl collector diffusion technique.

〈従来技術〉 従来、バイポーラ型半導体集積回路装置のn型不純物と
してアンチモン(Sb)元素或いはn型不純物拡散源と
してSbGが用いられている。ところがバイポーラ型M
OS)ランジスタeMo S型トランジスタと同一基板
上に従来のMOS型トランジスタの製造装置を用いて製
造する場合、従来のMO8型トランジスタの製造プロセ
スにSbG或いはsbはほとんど使用されないため、M
O8型トランジスタ製造装置のAs等のN型不純物ドラ
イブ炉でSbG層からのsbの拡散を行なう等装置を兼
用して、使用装置の増加を防いでいる。
<Prior Art> Conventionally, antimony (Sb) element has been used as an n-type impurity in bipolar semiconductor integrated circuit devices, or SbG has been used as an n-type impurity diffusion source. However, bipolar type M
OS) When manufacturing transistor eMo transistors on the same substrate as S-type transistors using conventional MOS-type transistor manufacturing equipment, SbG or sb is rarely used in the conventional MO8-type transistor manufacturing process, so M
An increase in the number of devices used is prevented by using the O8 type transistor manufacturing equipment's N-type impurity drive furnace such as As to diffuse sb from the SbG layer.

ところが従来のMOS型トランジスタ製造装置のN型不
純物ドライブ炉をSbGドライブ炉に兼用すると、sb
の外方拡散−よシ、前記N型不純物ドライブ炉が汚染さ
れ、MO8型トランジスタに悪影響を及ぼす。そこで、
sbに変わりn −c hMO8型O8ンジスタのソー
ス・ドレイン拡散不純物であるAs・’iイオン注入し
て、N型埋込拡散層を形成する事が検討されている。
However, if the N-type impurity drive furnace of the conventional MOS transistor manufacturing equipment is also used as the SbG drive furnace, the sb
The out-diffusion of the N-type impurity drives contaminates the N-type impurity drive reactor and adversely affects the MO8 type transistor. Therefore,
It is being considered to form an N-type buried diffusion layer by implanting As·'i ions, which are source/drain diffusion impurities of n-ch MO8 type O8 transistors, instead of sb.

ここで、ソース・ドレイン拡散領域形成技術を転用し、
Asイオン注入のマスクとして比較的厚い酸化膜を使用
する場合、N型埋込コレクタを形成するのに要する不純
物濃度が比較的濃く、ドライブ条件がかなりきついため
、酸化膜表面に注入されたAs原子が後のドライブ工程
中酸化膜をつきぬけて半導体基板に到達し、基板表面を
反転させるという問題がある。また、イオン注入のマス
クとしてホトレジストを使用する湯釜、露出した半導体
基板表面に直接イオン注入することになり、注入イオン
分布の不均一性や表面のダメージが生じる。
Here, we repurposed the source/drain diffusion region formation technology,
When a relatively thick oxide film is used as a mask for As ion implantation, the impurity concentration required to form an N-type buried collector is relatively high and the drive conditions are quite severe, so As atoms implanted into the oxide film surface are There is a problem in that during the subsequent drive step, the oxide passes through the oxide film and reaches the semiconductor substrate, inverting the surface of the substrate. In addition, a hot water bath using photoresist as an ion implantation mask and ion implantation directly into the exposed surface of the semiconductor substrate cause non-uniform distribution of implanted ions and damage to the surface.

このようにバイポーラ型トランジスタのN型埋込コレク
タを形成する際、N型不純物としてAs原子を用い、M
OS型トランジスタ製造装置を使用して前記As原子の
イオン注入、拡散を行なってモ、バイポーラ型トランジ
スタのN型埋込コレクタとして信頼を得るに充分なもの
は製造できないという問題がある。
When forming the N-type buried collector of a bipolar transistor in this way, As atoms are used as the N-type impurity, and M
There is a problem in that even if an OS type transistor manufacturing apparatus is used to perform the ion implantation and diffusion of As atoms, it is not possible to manufacture a reliable N-type buried collector for a bipolar transistor.

〈問題点を解決するための手段〉 本発明は上述する問題点を解決するためになされたもの
で、同一半導体基板にバイポーラ型トランジスタとMO
S型トランジスタとが形成され念半導体装置の製造方法
において、 第1導電型半導体基板に第2導電型不純物埋込みコレク
タを形成する際、 前記第1導電型半導体基板に半導体熱酸化膜とシリコン
窒化膜とを順次形成する工程と、前記第1導電型半導体
基板の所望イオン注入領域を露出させたホトレジストパ
ターンを前記シリコン窒化膜五に形成し、前記第1導電
型半導体基板全面に第2導電型不純物イオンを注入する
工程と、 前記ホトレジストパターン及び前記所望イ、tン注入領
域上のシリコン窒化膜を順次除去する工程と、 前記第1導電型半導体基板を比較的低温と比較的高温の
二段階に分けて選択酸化し、同時に第2導電型不純物埋
込コレクタを形成する工程とを備えてなる半導体装置の
製造方法を提供するものである。
<Means for Solving the Problems> The present invention has been made to solve the above-mentioned problems.
In the method for manufacturing a semiconductor device in which an S-type transistor is formed, when forming a second conductivity type impurity-embedded collector in a first conductivity type semiconductor substrate, a semiconductor thermal oxide film and a silicon nitride film are formed in the first conductivity type semiconductor substrate. forming a photoresist pattern on the silicon nitride film 5 exposing a desired ion-implanted region of the first conductivity type semiconductor substrate, and doping a second conductivity type impurity over the entire surface of the first conductivity type semiconductor substrate. implanting ions; sequentially removing the silicon nitride film on the photoresist pattern and the desired ion-implanted region; and heating the first conductivity type semiconductor substrate in two stages, one at a relatively low temperature and one at a relatively high temperature. The present invention provides a method for manufacturing a semiconductor device comprising the steps of performing selective oxidation separately and simultaneously forming a second conductivity type impurity-buried collector.

〈作用〉 上述の如く、バイポーラ型トランジスタのN型埋込拡散
領域形成技術としてMOS型トランジスタ製造に用いる
As等のN型不純物を転用し、同時にMOS型トランジ
スタ製造装置を用いる際、Asイオン注入をレジストマ
スク分用いて行ない、Asイオンドライブ工程以前に前
記レジストマスクを剥離除去することにより、注入イオ
ンの濃度及びドライブ条件に係らず、基板が反転するこ
とはなくなる。また、Asイオン注入時に基板上に窒化
膜と酸化膜との2層膜を通して行なうことによシ、イオ
ンは均一に注入され、基板表面のダメージを防ぐことが
可能となる。
<Function> As mentioned above, N-type impurities such as As used in MOS transistor manufacturing can be used as a technology for forming N-type buried diffusion regions of bipolar transistors, and at the same time, when using a MOS transistor manufacturing equipment, As ion implantation can be used. By using a resist mask and peeling and removing the resist mask before the As ion drive step, the substrate will not be inverted regardless of the implanted ion concentration and drive conditions. Furthermore, by implanting As ions through a two-layer film of a nitride film and an oxide film on the substrate, the ions can be uniformly implanted and damage to the substrate surface can be prevented.

〈実施例〉 以下、本発明の実施例を図面を用いて説明するが、本発
明はこれに限定されるものではない。
<Examples> Examples of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto.

第1図(a)〜(i)は本発明の一実施例を示す断面図
である。
FIGS. 1(a) to 1(i) are cross-sectional views showing one embodiment of the present invention.

先ず第1図(a)の如(、P型シリコン基板1に100
〜500Aの膜厚の熱酸化膜2を形成し、つづいて約1
00〜200A程度の薄いシリコン窒化膜3をLPCV
D装置により均一性よく形成的900℃でアニールする
。これで、N5G4/S i N3/S i 022 
 の三層膜がウェハ1全面に形成される。
First, as shown in FIG. 1(a), a 100%
A thermal oxide film 2 with a thickness of ~500A is formed, followed by a
LPCV thin silicon nitride film 3 of about 00 to 200A
Formatively annealed at 900° C. with good uniformity using device D. Now, N5G4/S i N3/S i 022
A three-layer film is formed on the entire surface of the wafer 1.

続いて第1図(c)の如く、N埋込拡散層形成用パター
ンにて埋込拡散をしない領域にレジストパターン5を形
成した後、第1図(d)の如くレジストターン5iマス
クとシ、バッファフッ酸等の通常の酸化膜エッチャント
を使用して下地SiN層3との選択比を取りながら上記
NSC膜4をエツチングしてパターニングする。その後
As等のN型不純物原子をイオン注入すると、レジスト
パターン5がマスクとなってP型シリコン基板1の所望
埋込拡散領域にのみN型不純物が注入される。続いて第
1図(e)の如く酸素プラズマや硫酸過水等を用いてイ
オン注入されたレジストパターン5を剥離する。その後
、熱リン酸等を用いてNSC膜4をマスクとし、下地S
iO□膜2との選択比を取りなからSiN膜3をエツチ
ングしてパターニングする。
Next, as shown in FIG. 1(c), a resist pattern 5 is formed in the area where buried diffusion is not performed using the N buried diffusion layer forming pattern, and then a resist turn 5i mask and a resist pattern 5 are formed as shown in FIG. 1(d). The NSC film 4 is etched and patterned using an ordinary oxide film etchant such as buffered hydrofluoric acid while maintaining a selectivity with respect to the underlying SiN layer 3. Thereafter, when N-type impurity atoms such as As are ion-implanted, the N-type impurity is implanted only into the desired buried diffusion region of the P-type silicon substrate 1 using the resist pattern 5 as a mask. Subsequently, as shown in FIG. 1(e), the ion-implanted resist pattern 5 is removed using oxygen plasma, sulfuric acid peroxide, or the like. After that, the NSC film 4 is used as a mask using hot phosphoric acid, etc., and the base S
The SiN film 3 is etched and patterned while maintaining a selectivity with respect to the iO□ film 2.

次に第1図(f)の如く、酸化膜の粘性流動の起こり易
い水蒸気中でP型シリコン基板1を酸化する。
Next, as shown in FIG. 1(f), the P-type silicon substrate 1 is oxidized in water vapor where viscous flow of the oxide film is likely to occur.

この時先にイオン注入されたN型不純物が酸化膜2中を
拡散して外方拡散によりシリコン基板1から抜は出ざな
いよう、比較的低温で酸化を行なって不純物拡散領域6
に3000A程度の酸化膜2aを選択的に形成する。そ
の後、第1図(g)の如く適当な接合深さxjを得る為
高温でドライブすると、不純物拡散領域6は約300O
Aの膜厚の酸化膜2aで覆われているため、不純物の外
方拡散による表面濃度の低下や拡散炉の汚染を避ける事
が出来る。次に第1図(b)の如く酸化膜2.2a、N
SG膜4はバッファフッ酸等を用い、SiN膜3は熱リ
ン酸等を用いて上層から順次全面剥離除去する。
At this time, oxidation is performed at a relatively low temperature to prevent the previously implanted N-type impurity from diffusing into the oxide film 2 and being extracted from the silicon substrate 1 due to outward diffusion.
Then, an oxide film 2a of about 3000 Å is selectively formed. Thereafter, as shown in FIG. 1(g), driving is performed at high temperature to obtain an appropriate junction depth xj, and the impurity diffusion region 6 becomes approximately 300°.
Since it is covered with the oxide film 2a having a thickness of A, it is possible to avoid a decrease in surface concentration due to outward diffusion of impurities and contamination of the diffusion furnace. Next, as shown in FIG. 1(b), the oxide film 2.2a, N
The SG film 4 is removed using buffered hydrofluoric acid or the like, and the SiN film 3 is removed from the top layer sequentially using hot phosphoric acid or the like.

この時、不純物拡散領域6上に選択酸化膜2aが形成さ
れていたため、該酸化膜2aを除去するとシリコン基板
1表面には段差が形成される。この段差は後工程のアイ
ソレート或いはNウェル用の拡散工程時にアライメント
マークとして用いることができる。
At this time, since the selective oxide film 2a was formed on the impurity diffusion region 6, when the oxide film 2a is removed, a step is formed on the surface of the silicon substrate 1. This step can be used as an alignment mark during the subsequent isolation or N-well diffusion process.

次に第1図(i)の如〈従来公知の技術を用いてP型シ
リコン7をエピタキシャル成長させる。
Next, as shown in FIG. 1(i), P-type silicon 7 is epitaxially grown using a conventionally known technique.

第2図は上記本実施例を用いて実際にバイポーラ型トラ
ンジスタとMOS型トランジスタ’に同一基板上に形成
した例である。上記P型シリコン7ON型不純物拡紋領
域7上にNウェル拡散を行ない、該Nウェル拡散領域8
にバイポーラトランジスタ9或いはP−chMOS)ラ
ンジスタ10を形成し、P型シリコン7に材−chMO
S)ランジスタ11を従来公知の技術を用いて形成する
FIG. 2 shows an example in which a bipolar transistor and a MOS transistor' are actually formed on the same substrate using this embodiment. N-well diffusion is performed on the P-type silicon 7ON-type impurity diffusion region 7, and the N-well diffusion region 8
A bipolar transistor 9 or P-chMOS) transistor 10 is formed on the P-type silicon 7, and a material-chMOS transistor 10 is formed on the P-type silicon 7.
S) Forming the transistor 11 using a conventionally known technique.

上記本実施例においてN型不純物イオン注入時にP型シ
リコン基板1上に形成したSiO+2゜及びSiN3の
膜厚をそれぞれ100〜500A及び100〜200λ
と記載したが、本発明はこれに限定されるものではなく
、5iO22とSiN3の膜厚の和が従来のMOS)ラ
ンジスタ製造エターニングして行なわルる選択酸化時に
SiNパターンが充分マスクとなり得る厚みであルばそ
れを適用してもよい。
In this embodiment, the film thicknesses of SiO+2° and SiN3 formed on the P-type silicon substrate 1 during N-type impurity ion implantation were 100 to 500A and 100 to 200λ, respectively.
However, the present invention is not limited to this, and the sum of the film thicknesses of 5iO22 and SiN3 is a thickness that allows the SiN pattern to sufficiently serve as a mask during selective oxidation performed by etching to manufacture conventional MOS transistors. If so, you can apply it.

ぼた、上記の本実施例で窒化膜3をエツチング除去する
際のマスクとしてNSC膜4を使用したが、下地の酸化
膜2との選択比の大きいドライエツチング方法を使用し
た場合はレジストマスク5でエツチング出来る為NSC
膜4は不要となる。
However, in this embodiment, the NSC film 4 was used as a mask when removing the nitride film 3 by etching, but if a dry etching method with a high selectivity with respect to the underlying oxide film 2 was used, the resist mask 5 would be used. NSC because it can be etched with
Membrane 4 becomes unnecessary.

上述の如く、イオン注入後レジストマスクe[去する事
によ)、マスク中に注入された不純物原子が、後のドラ
イブ工程でマスク中を拡散し、基板表面1で達して表面
をN型層に反転したり、外方拡散によるオートド−1や
炉の汚染を避ける事が出来る。またN型不純物を薄い窒
化膜と酸化膜を通してイオン注入する事により、チャン
ネリングによる不純物分布のばらつきを除去できる。更
にイオン注入後の酸化膜形成及びドライブ時に低温条件
と高温条件■二段階にすることにより、外方拡散による
表面濃度の低下や炉の汚染を避ける事が出来る。
As mentioned above, after ion implantation, the impurity atoms implanted into the resist mask e (by removing it) diffuse through the mask in the subsequent drive process, reach the substrate surface 1, and form an N-type layer on the surface. It is possible to avoid contamination of the autodor 1 and the furnace due to out-diffusion. Furthermore, by ion-implanting N-type impurities through a thin nitride film and oxide film, variations in impurity distribution due to channeling can be eliminated. Furthermore, by applying two stages of low temperature and high temperature conditions during oxide film formation and driving after ion implantation, it is possible to avoid a decrease in surface concentration due to outward diffusion and contamination of the furnace.

〈発明の効果〉 以上詳述したごとく、本発明によ几ば従来のMOS型ト
ランジスタの製造工程文び製造装置に線影響を及ぼす事
なく、従来のMOS型トランジスタ製造装置ヲ利用して
バイポーラ型トランジスタとMOS型トランジスタとを
同一基板に形成した半導体装置を製造出来る。
<Effects of the Invention> As detailed above, according to the present invention, bipolar type transistors can be manufactured using conventional MOS transistor manufacturing equipment without affecting the manufacturing process and manufacturing equipment of conventional MOS transistors. A semiconductor device in which a transistor and a MOS transistor are formed on the same substrate can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(i)は本発明の一実施例を示す断面図
、第2図は本発明の一実施例の使用例を示す断面図であ
る。 1、 P型Si基板  2.2a熱酸化膜  3.シリ
コン窒化1漠  4.NSG膜  5.レジストパター
ン  6. N型不純物拡散領域  7. P型Siエ
ピタキシャル層 代理人 弁理士  杉 山 毅 至(他1名)@1図 7PでソJゴ/工げ14騰1
FIGS. 1(a) to (i) are cross-sectional views showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing an example of use of the embodiment of the present invention. 1. P-type Si substrate 2.2a thermal oxide film 3. Silicon nitride 1 4. NSG film 5. Resist pattern 6. N-type impurity diffusion region 7. P-type Si epitaxial layer agent Patent attorney Takeshi Sugiyama (and 1 other person) @1 Figure 7P Sojgo/Kuge 14Ten 1

Claims (1)

【特許請求の範囲】[Claims] 1.同一半導体基板にバイポーラ型トランジスタとMO
S型トランジスタとが形成された半導体装置の製造方法
において、 第1導電型半導体基板に第2導電型不純物イオンを注入
し、該注入イオンの拡散を行なってバイポーラ型トラン
ジスタの第2導電型不純物埋込コレクタを形成する際、 前記第1導電型半導体基板上に半導体熱酸化膜とシリコ
ン窒化膜とを順次形成する工程と、前記第1導電型半導
体基板の所望イオン注入領域を露出させたホトレジスト
パターンを前記シリコン窒化膜上に形成し、前記第1導
電型半導体基板全面に第2導電型不純物イオンを注入す
る工程と、 前記ホトレジストパターン及び前記所望イオン注入領域
上のシリコン窒化膜を順次除去する工程と、 前記第1導電型半導体基板を比較的低温と比較的高温の
二段階に分けて選択酸化し、同時に第2導電型不純物埋
込コレクタを形成する工程とを備えてなることを特徴と
する半導体装置の製造方法。
1. Bipolar transistor and MO on the same semiconductor substrate
In a method of manufacturing a semiconductor device in which an S-type transistor is formed, impurity ions of a second conductivity type are implanted into a semiconductor substrate of a first conductivity type, and the implanted ions are diffused to fill the second conductivity type impurity of a bipolar transistor. When forming the integrated collector, a step of sequentially forming a semiconductor thermal oxide film and a silicon nitride film on the first conductivity type semiconductor substrate, and a photoresist pattern exposing a desired ion implantation region of the first conductivity type semiconductor substrate. forming on the silicon nitride film and implanting second conductivity type impurity ions into the entire surface of the first conductivity type semiconductor substrate; and sequentially removing the silicon nitride film on the photoresist pattern and the desired ion implantation region. and selectively oxidizing the first conductivity type semiconductor substrate in two stages, one at a relatively low temperature and the other at a relatively high temperature, and simultaneously forming a second conductivity type impurity-embedded collector. A method for manufacturing a semiconductor device.
JP28133987A 1987-11-06 1987-11-06 Manufacture of semiconductor device Pending JPH01123471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28133987A JPH01123471A (en) 1987-11-06 1987-11-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28133987A JPH01123471A (en) 1987-11-06 1987-11-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01123471A true JPH01123471A (en) 1989-05-16

Family

ID=17637728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28133987A Pending JPH01123471A (en) 1987-11-06 1987-11-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01123471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338506A (en) * 1993-05-28 1994-12-06 Nec Corp Semiconductor substrate and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338506A (en) * 1993-05-28 1994-12-06 Nec Corp Semiconductor substrate and manufacture thereof

Similar Documents

Publication Publication Date Title
JPH0312785B2 (en)
JPH0516173B2 (en)
JPH01123471A (en) Manufacture of semiconductor device
JPS5817655A (en) Manufacture of semiconductor device
JP2002164537A (en) Semiconductor device and its manufacturing method
JPH03101250A (en) Manufacture of semiconductor device
JPH0316150A (en) Manufacture of semiconductor element
JPH088262A (en) Manufacture of semiconductor device
JPS6115579B2 (en)
JPH07321193A (en) Manufacture of semiconductor device
JP2630524B2 (en) Method for manufacturing semiconductor device
JPH04216651A (en) Manufacture of semiconductor device
JPS60133740A (en) Manufacture of semiconductor device
JP2674964B2 (en) Method for manufacturing semiconductor device
JPH0555204A (en) Manufacture of semiconductor device
JPH06188259A (en) Manufacture of semiconductor device
JP2594697B2 (en) Method for manufacturing semiconductor device
JPS62131538A (en) Manufacture of semiconductor device
JPS58175843A (en) Manufacture of semiconductor integrated circuit
JPH04237168A (en) Manufacture of mis type semiconductor device
JPS5951573A (en) Insulated gate type field-effect semiconductor device and its manufacture
JPH0227813B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPS61214472A (en) Manufacture of semiconductor element
JPS63280437A (en) Formation of isolation region of semiconductor device
JPH01238058A (en) Manufacture of high-speed bipolar transistor