JPS5884443A - Manufacture of semiconductor ic - Google Patents

Manufacture of semiconductor ic

Info

Publication number
JPS5884443A
JPS5884443A JP18246581A JP18246581A JPS5884443A JP S5884443 A JPS5884443 A JP S5884443A JP 18246581 A JP18246581 A JP 18246581A JP 18246581 A JP18246581 A JP 18246581A JP S5884443 A JPS5884443 A JP S5884443A
Authority
JP
Japan
Prior art keywords
region
type
formation
forming
resist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18246581A
Other languages
Japanese (ja)
Inventor
Takeshi Fukuda
猛 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18246581A priority Critical patent/JPS5884443A/en
Publication of JPS5884443A publication Critical patent/JPS5884443A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To unnecessitate a fine resist film pattern for a conventional base region formation resulting in the nearly complete elimination of defects of emitter collector short circuits, by patterning the large and simple resist film pattern in the earlier process before the formation of element isolation region. CONSTITUTION:After forming an n<+> type buried layer 12 on a p type Si substrate 11, an n type epitaxial layer 13 is grown. Next, the resist film 14 is patterned on the grown epitaxial layer 13, with it as a mask, P ions are implanted in high density from the upper surface, and succeedingly it is applied to a heat treatment resulting in the formation of an n<+> type region 15. The dosage is approx. 10<13>-10<14>/cm<2>, and this region occupies a wide region including the forming region for element isolation region and serves as a collector connection layer. The depth is set to approx. 2[mum]. Next, caustic potash (KoH) solution is used for etching it into a V-groove form, thereafter an SiO2 film 16 is formed on the internal surface, and the inside is filled with a polycrystalline Si 17 resulting in the formation of a V-groove element isolation region 18.

Description

【発明の詳細な説明】 本発明は半導体集積回路(IC)の製造方法のうち、特
にコレクタコンタクト領域およびペース領域の新規な形
成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor integrated circuit (IC), and particularly to a novel method for forming a collector contact region and a space region.

ICの製造方法K>いて、V溝状の素子間分離帯を形成
すれば絶縁分離となるため寄生容量が減少する利点があ
ることは良く知られており、汎用されている。このより
なV溝分離帯を形成し、バイボーフ形半導体素子を形成
する従来の製造方法を説明すると、その概略工程順図は
第1図ないし第8図に示す。
It is well known that forming a V-groove-shaped inter-element isolation band provides insulation isolation and has the advantage of reducing parasitic capacitance, and is widely used. A conventional manufacturing method for forming a V-groove separation band and forming a Bybov type semiconductor device will be described. A schematic process sequence diagram is shown in FIGS. 1 to 8.

即ち、第1図に示すようKp型シリコン(Sl)基板1
上にn小型埋没層2を形成し、n!!yエビ!キシャy
層8を成長した後、■溝状のエツチング溝を形成し、そ
の内面を二酸化シリコン(Si、O8)膜4を介して多
結晶シリコン5で埋めて、■溝状分離帯6にするう 次いで、第2図に示すようにその上面にレジスト膜7を
パターンユングして、硼素イオンを注入し、熱処理して
p型ベース領域8を形成する。次いで、第8図に示すよ
うに同様にリソグラフィ技術を用いて、n生型エミッタ
領域9とn十型コレクタコンタクト領埴10を形成する
That is, as shown in FIG.
Form n small buried layers 2 on top, and n! ! Y shrimp! Kishay
After growing the layer 8, ① groove-shaped etching grooves are formed, and the inner surface thereof is filled with polycrystalline silicon 5 through a silicon dioxide (Si, O8) film 4 to form ③ groove-shaped separation zones 6. As shown in FIG. 2, a resist film 7 is patterned on the upper surface thereof, boron ions are implanted, and a p-type base region 8 is formed by heat treatment. Next, as shown in FIG. 8, an n-type emitter region 9 and an n+ type collector contact region 10 are formed using the same lithography technique.

しかし、最近、工Cは高度に集積化し、#KRAMなど
のメ4リエCは高密度く形成される九め、パターンユン
グ不良の発生が多い。例えば、1起の製造工程において
、レジスト膜7をパターン二ングし、しシスト膜パター
ンがペース領域8に残存していると、そこには硼′素が
イオン注入されず、次いでエミッタ領域9とコレクタコ
ンタクト領域lOとを形成すれば、エミッタ・コレクタ
短絡がおこる。第4図はそれを図示したもので、第8図
の点線円形部分のみ示したエミッタ・コレクタ短絡の例
である、 ところで、このようなエミッタ・コレクタ短絡が生ずる
と、ICの致命的欠陥となり動作不能となるか、あるい
はエミッタコレクタリーク電流が増加する。本発明はこ
のような欠陥発生を解消させることを目的としてお抄、
その特徴は一導電型81基板上に贋対導電型エピタキン
ヤル層を成長した後、素子間分離帯形成領域を含む領域
に反対導電型高濃度不純物層を注入又は拡散してコレク
タ接続層を形成する工程と、次いでV溝状の素子間分離
帯を形成した後、全面に一導電型、不純物を注入又は拡
散して、ペース領域を形成する工程とを含む製造方法を
提案するもので、以下図面を参照して、一実施例により
詳しく説明する。
However, recently, memory cells such as #KRAM have become highly integrated, and memory cells such as #KRAM are formed with high density, resulting in many pattern defects. For example, in the first manufacturing process, if the resist film 7 is patterned and the resist film pattern remains in the paste region 8, boron ions will not be implanted there, and then the emitter region 9 and the resist film pattern will remain in the paste region 8. If a collector contact region IO is formed, an emitter-collector short circuit will occur. Figure 4 illustrates this, and is an example of an emitter-collector short circuit where only the dotted circular part in Figure 8 is shown.By the way, if such an emitter-collector short circuit occurs, it will be a fatal defect in the IC and will cause it to malfunction. or the emitter-collector leakage current increases. The present invention is aimed at eliminating the occurrence of such defects.
The feature is that after growing an epitaxial layer of the opposite conductivity type on an 81 substrate of one conductivity type, a high concentration impurity layer of the opposite conductivity type is implanted or diffused into the region including the isolation band formation region to form a collector connection layer. The present invention proposes a manufacturing method that includes a step of forming a V-groove-shaped isolation band between elements, and then injecting or diffusing impurities of one conductivity type over the entire surface to form a space region, as shown in the drawings below. An example will be described in more detail with reference to .

第6図ないし第8図は本発明にか−る製造方法の工程順
断面図を示しており、先づ第5図に示すようにp型S1
基板ll上にn十型埋没層12を形成した後、n型エビ
タキVヤル層18を成長させる。n型エピタキシャル層
は膜厚2〜3〔μm〕であるが、埋没層12の上では、
高温成長によって這い上り拡散がおこる。次にこのよう
に成長し九エピタキシャμ層13の上にレジスト膜14
をパターンユングして、これをマスクとし、上面より燐
イオンを高濃度に注入し、続いて熱処理してn生型領域
15を形成する。ドーズ量は1013〜101シー程度
で、との領域は素子間分離帯形成領域を含む広い領域を
占め、コレクタ接続層となるものである。且つ深さは2
〔μ肩〕程度にする。
6 to 8 show step-by-step sectional views of the manufacturing method according to the present invention. First, as shown in FIG.
After forming the n-type buried layer 12 on the substrate 11, an n-type epitaxial layer 18 is grown. The n-type epitaxial layer has a thickness of 2 to 3 [μm], but on the buried layer 12,
High-temperature growth causes creeping and diffusion. Next, a resist film 14 is grown on top of the epitaxial μ layer 13 grown in this manner.
Using this as a mask, phosphorus ions are implanted from the upper surface at a high concentration, followed by heat treatment to form the n-type region 15. The dose amount is about 10<13> to 10<1 >C, and the region occupies a wide area including the isolation band formation region and becomes a collector connection layer. and the depth is 2
Make it about [μ shoulder] level.

次いで、第6図に示すように苛性力IJ (KoH)溶
液を用いてV溝状にエツチングした後、内面に8108
膜16を生成し、内部を多結晶シリーン17で埋めて、
■溝状素子間分離帯18を形成するが、これは従来と同
様の公知の形成法による。また、この素子間分離帯は上
記したようにn生型領域16内に形成するが、それは比
較的大きくパターンユングしたn生型領域15を部分的
に除去して、コレクタ接続層を小さくし、高密度化する
ことを意図したものである。
Next, as shown in FIG. 6, a caustic IJ (KoH) solution was used to etch a V-groove shape, and then 8108 was etched on the inner surface.
A film 16 is generated, the inside is filled with polycrystalline silicon 17,
(2) The groove-shaped inter-element isolation zone 18 is formed by a known forming method similar to the conventional method. In addition, this inter-element separation band is formed in the n-type region 16 as described above, but it is done by partially removing the n-type region 15, which has a relatively large pattern, and reducing the size of the collector connection layer. It is intended for high density.

次いで、第7図に示すように上面より全面に硼素イオン
を注入して、続いで熱処理し、膜厚5000−600O
Aのp型ベース領域19を形成する。その場合、n生型
領域15は高濃度層に形成しているため、注入されたp
型の硼素は相殺されて、なおn生型領域となり、内部で
はn型エピタキシャル層3(コレクタ領域)と接続して
いるが、表面は露出しているから、コレクタ接続層の彷
きをする。
Next, as shown in FIG. 7, boron ions are implanted into the entire surface from the top surface, followed by heat treatment to form a film with a thickness of 5000-6000.
A p-type base region 19 is formed. In that case, since the n-type region 15 is formed in a highly doped layer, the p-type implanted region 15 is
The type boron is canceled out, and it becomes an n-type region, which is internally connected to the n-type epitaxial layer 3 (collector region), but since the surface is exposed, it functions as a collector connection layer.

次いで、第8図に示すように、レジスト膜(図示してい
ない)を用いて、燐イオンを注入し、n+型エミッタ領
埴20を形成するが、この際同時に従来と同様にコレク
タ・コンタクト領域21をコレクタ接続層lb内にも形
成する。これはコンタクト抵抗を低下させる目的である
。尚、これらのエミッタ領域20およびコレクタコンタ
クト領域21の深さは8000〜4000人である。
Next, as shown in FIG. 8, phosphorus ions are implanted using a resist film (not shown) to form an n+ type emitter region 20, but at the same time, the collector contact region is implanted as in the conventional method. 21 is also formed in the collector connection layer lb. This is for the purpose of reducing contact resistance. Note that the depth of these emitter regions 20 and collector contact regions 21 is 8,000 to 4,000 depths.

以上の実施例の製造方法から明らかなように、本発明は
大形で単純なレジスト膜14のパターンを素子間分離帯
形成前の初期の工程においてパターンユングする方法で
、全9高精度なパターンでなくても良く、従来のペース
領域形成用の微細なレジスト膜7パターンは不要になる
。そのため。
As is clear from the manufacturing method of the above embodiments, the present invention is a method in which a large and simple pattern of the resist film 14 is pattern-jung in an initial step before forming an isolation zone, and a total of 9 highly accurate patterns are formed. However, the conventional fine resist film 7 pattern for forming the pace region becomes unnecessary. Therefore.

工弓ツタ・コレクタ短絡の欠陥を殆んど解消させること
ができる。
It is possible to almost eliminate defects such as bow vines and collector short circuits.

即ち、本発明では、ペース形成のためのフォト工程を省
略することにより欠陥の発生を防止するものであろう■
溝を形成するプロ七スでは、■溝上に突起かで舞、この
突起は、■溝形成後のコンタク)Ig先光時位置合せを
している段階においてマスクをきすつけ、不所望部分で
の窓あけをしてしまうことになる、この様にV溝形成後
のペース形成用フォト工程は避ける必要がある。同様に
して、■溝形成後にn生型領域15を形成することも考
えられるが上記の理由により避けるべきである。
That is, in the present invention, the occurrence of defects can be prevented by omitting the photo process for forming the paste.
In the process of forming grooves, ■ a protrusion is formed on the groove, and this protrusion is removed by ■ contacting after groove formation.) Scratch the mask at the stage of alignment at the time of Ig exposure, and remove unwanted areas. It is necessary to avoid the photo process for forming the paste after forming the V-groove, which would result in opening a window. Similarly, it is possible to form the n-type region 15 after forming the groove, but this should be avoided for the reasons mentioned above.

したがって、本発明はV溝状の素子間分離帯を有するI
Cの製造方法において、歩留および品質子間分離帯全面
を含まなくとも、その一部を含んだパターンを形成して
も、同様の結果がえられることは言うまでもない。
Therefore, the present invention provides an I
In the manufacturing method of C, it goes without saying that similar results can be obtained even if a pattern is formed that does not include the entire area of the separation zone between the quality elements, but only a part of it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第8図は従来の製造工程順断面図、第4図
はその問題点を示す断面図、第5図ないし第8図は本発
明にか−る製造工程順断面である。 図中、1.11はp型S1基板、2,12はn+型埋没
層、3,13はn型エピタキシャル層、6゜18はV溝
状素子間分離帯、7.14はレジスト膜、8,19はp
型ベース領域、9.20はエミッタ領域、10.21は
コレクタコンタクト領域、15はコレクタ接続層を示す
。 第21!1 第4v!1 第5図 第7図 第8図
1 to 8 are sectional views in the order of the conventional manufacturing process, FIG. 4 is a sectional view showing the problems thereof, and FIGS. 5 to 8 are sectional views in the order of the manufacturing process according to the present invention. In the figure, 1.11 is a p-type S1 substrate, 2 and 12 are n+ type buried layers, 3 and 13 are n-type epitaxial layers, 6°18 is a V-groove isolation zone between elements, 7.14 is a resist film, and 8 , 19 is p
A mold base region, 9.20 an emitter region, 10.21 a collector contact region, and 15 a collector connection layer. 21st! 1st 4th v! 1 Figure 5 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] ■溝状の素子間分離帯を有する半導体集積回路の製造方
法においで、−導電mVyコン基板上にy対導電型エピ
タキシャμ層を成長した後、素子間分離帯形成領域を含
む領域に反対導電型高濃度不純物を注入又は拡散して、
コレクタ接続層を形成する工程と、次いで、■溝状の素
子間分離帯を形成し九後、全面に一導電型不純物を注入
又は拡散して、ペース領域を形成する工程とが含まれる
ことを特徴とする半導体集積回路の製造方法。
■In a method of manufacturing a semiconductor integrated circuit having a groove-shaped isolation band between elements, after growing an epitaxial μ layer of a y-conductivity type on a -conductivity mVycon substrate, a region containing an isolation band formation region is provided with an opposite conductivity. By implanting or diffusing high-concentration impurities,
It should be noted that the process includes the steps of forming a collector connection layer, and then forming a groove-shaped inter-element isolation zone, and then injecting or diffusing impurities of one conductivity type into the entire surface to form a space region. Features: A method for manufacturing semiconductor integrated circuits.
JP18246581A 1981-11-13 1981-11-13 Manufacture of semiconductor ic Pending JPS5884443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18246581A JPS5884443A (en) 1981-11-13 1981-11-13 Manufacture of semiconductor ic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18246581A JPS5884443A (en) 1981-11-13 1981-11-13 Manufacture of semiconductor ic

Publications (1)

Publication Number Publication Date
JPS5884443A true JPS5884443A (en) 1983-05-20

Family

ID=16118730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18246581A Pending JPS5884443A (en) 1981-11-13 1981-11-13 Manufacture of semiconductor ic

Country Status (1)

Country Link
JP (1) JPS5884443A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824797A (en) * 1985-10-31 1989-04-25 International Business Machines Corporation Self-aligned channel stop
US4866004A (en) * 1985-10-05 1989-09-12 Fujitsu Limited Method of forming groove isolation filled with dielectric for semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866004A (en) * 1985-10-05 1989-09-12 Fujitsu Limited Method of forming groove isolation filled with dielectric for semiconductor device
US4824797A (en) * 1985-10-31 1989-04-25 International Business Machines Corporation Self-aligned channel stop

Similar Documents

Publication Publication Date Title
GB2128400A (en) Isolation and wiring of a semiconductor integrated circuit device and method of manufacturing the same
GB2111305A (en) Method of forming ion implanted regions self-aligned with overlying insulating layer portions
JPS6362897B2 (en)
JP3528350B2 (en) Method for manufacturing semiconductor device
JPH0828424B2 (en) Semiconductor device and manufacturing method thereof
JPS60111466A (en) Manufacture of semiconductor device
KR910000020B1 (en) Manufacture of semiconductor device
JPS5884443A (en) Manufacture of semiconductor ic
JPS58200554A (en) Manufacture of semiconductor device
JPS6255709B2 (en)
KR910008978B1 (en) Manufacturing method of semiconductor device
KR920000706B1 (en) Manufacturing method of trench with high-density diffusion region
JPH0366815B2 (en)
JPH07161729A (en) Manufacture of semiconductor device
KR0140658B1 (en) Manufacture of element isolation for semiconductor integrated circuit device
KR890004971B1 (en) Semiconductor manufacturing method
JPS6129539B2 (en)
JPS62108576A (en) Manufacture of semiconductor device
JPS5966168A (en) Manufacture of semiconductor device
JPS5879735A (en) Semiconductor integrated circuit
JPS6211504B2 (en)
JPS59126664A (en) Mos type semiconductor memory device and manufacture thereof
JPH05235020A (en) Manufacture of mos structure transistor
JPH0637276A (en) Semiconductor device
JPS5950087B2 (en) Manufacturing method of semiconductor device