JPS60111466A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS60111466A JPS60111466A JP22016183A JP22016183A JPS60111466A JP S60111466 A JPS60111466 A JP S60111466A JP 22016183 A JP22016183 A JP 22016183A JP 22016183 A JP22016183 A JP 22016183A JP S60111466 A JPS60111466 A JP S60111466A
- Authority
- JP
- Japan
- Prior art keywords
- region
- oxide film
- sinker
- nitride film
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000009792 diffusion process Methods 0.000 claims abstract description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 19
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 17
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000002955 isolation Methods 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 abstract description 9
- 238000000926 separation method Methods 0.000 description 10
- 229910052796 boron Inorganic materials 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 241000238557 Decapoda Species 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- DOTMOQHOJINYBL-UHFFFAOYSA-N molecular nitrogen;molecular oxygen Chemical compound N#N.O=O DOTMOQHOJINYBL-UHFFFAOYSA-N 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Local Oxidation Of Silicon (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はモノリシックバイポーラIC等の半導体装置の
製造方法に関するものであり、特に微細化、高密度化に
好適なベース領域、分離領域更にはシンカー領域の最適
な形成法を提供し、素子の総合特性の向上をはかると共
1こ表面保護膜等の面段差を小ならしめて品質、歩留等
の向上をはかるようにしたものである。以下図面を用い
て説明する。第1図はこの種のバイポーラIC用トラン
ジスタの従来製造法を示す概略工程図で(a)図はP型
半導体ウーハ−1にN+埋込層2を形成し、更Iこ気相
成長(エピタキシアル)によりコレクタ領域となるN層
3が形成されてなる半導体基体の例を示す。次いでウー
ハ−3の全面にシリコン酸化膜Sin、を形成し、分離
領域形成用の窓開けを行いこれよりP型不純物(ボロン
)を沈積(デポジット)する。(b)図次に少くとも露
出しているP 表面上にあらたに拡散マスク用シリコン
酸化膜(SiOy)を形成し、シンカー領域形成用の窓
開けを行った後n凰不純物(リン)を沈積する。(01
図、次いで拡散処理を行い、分離領域4及びシンカー領
域5(コレクタ抵抗を低くするためn 埋込層とSi表
面を結ぶ高濃度n型領域差形成する。即ちN層3をP
で分離したN層3の島を形成する。(d1図、然る後写
真処理の後該島部に通常のベース及びエミッタ拡散を行
いベース領域6及びエミッタ領域7を形成し更に保護膜
9(リンガラス等)形成、コンタクトパターニング及び
配線パターンニングを行いトランジスタを完成する。(
e)図、なお、(f)図は係る構造の部分的拡大図を示
しく図では埋込層2及びシンカー領域5は省略した)図
中点線はウーハ−1(分離層4)、コレクタ領域3(埋
込層2、シンカー領域5)及びベース領域6に夫々逆バ
イアス電圧が印加された時の空乏層の拡がりを示す。ウ
ーハ−1及びベース間で空乏層が接触すると所謂パンチ
スルーを起し破壊(ブレークダウン)する。即ち従来法
によれば分離(基板相当)・シンカー・ベースの拡散窓
あけ写真がそれぞれ独立に行なわれる為、(f1図のよ
うに左右で写真の合せ精度に起因する誤差が生じる(A
HA)(通常2〜3 mm )。即ち素子内部で耐圧の
アンバランスを生じ、この耐圧は空乏層の狭い部分人で
決定されるため耐圧低下の原因となる大きな欠点を有す
る。一方前記欠点を解消し、所定の耐圧を確保する為に
はそれだけパターンに余裕をもたせる必要があるが上記
の如く埋込・シンカー・分離・ベースとそれぞれ4回の
写真合せかあると余裕度も10〃m近く必要となり。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing semiconductor devices such as monolithic bipolar ICs, and particularly relates to an optimal method for forming base regions, isolation regions, and sinker regions suitable for miniaturization and high density. The present invention aims to improve the overall characteristics of the device, and also to reduce the difference in surface level of the surface protective film, etc., thereby improving quality, yield, etc. This will be explained below using the drawings. Figure 1 is a schematic process diagram showing the conventional manufacturing method of this type of bipolar IC transistor. An example of a semiconductor substrate in which an N layer 3 serving as a collector region is formed using Al) is shown. Next, a silicon oxide film Sin is formed on the entire surface of the woofer 3, a window is opened for forming an isolation region, and a P-type impurity (boron) is deposited from this window. (b) Next to the figure, a silicon oxide film (SiOy) for a diffusion mask is newly formed on at least the exposed P surface, and after opening a window for forming a sinker region, an n-phosphorus impurity (phosphorus) is deposited. do. (01
Next, a diffusion process is performed to form an isolation region 4 and a sinker region 5 (in order to lower the collector resistance, a high concentration n-type region connecting the buried layer and the Si surface is formed. In other words, the N layer 3 is replaced with P
Form islands of N layer 3 separated by . (Fig. d1, after photo processing, normal base and emitter diffusion is performed on the island to form a base region 6 and an emitter region 7, and then a protective film 9 (phosphor glass, etc.) is formed, contact patterning, and wiring patterning. and complete the transistor. (
Fig. e) and Fig. (f) show a partially enlarged view of the structure (the buried layer 2 and sinker region 5 are omitted in the figure). The dotted lines in the figure indicate the woofer 1 (separation layer 4) and the collector region. 3 (buried layer 2, sinker region 5) and base region 6 when a reverse bias voltage is applied, respectively. When the depletion layer comes into contact between the woofer 1 and the base, so-called punch-through occurs and breaks down. In other words, according to the conventional method, since the separation (corresponding to the substrate), sinker, and base diffusion window photos are taken independently, an error occurs due to the alignment accuracy of the left and right photos (as shown in figure f1).
HA) (usually 2-3 mm). That is, an unbalance in breakdown voltage occurs inside the element, and this breakdown voltage is determined by a narrow portion of the depletion layer, which has a major drawback of causing a drop in breakdown voltage. On the other hand, in order to eliminate the above-mentioned drawbacks and ensure the specified withstand voltage, it is necessary to give the pattern enough leeway, but as mentioned above, if there are only 4 photo alignments each for embedding, sinker, separation, and base, there is not enough leeway. Nearly 10m is required.
バイポーラICの高密度化をさまたげる大きな原因とな
っている。また、上記方法は写真のたびに酸化膜が追加
され段差が非常に激しくなる。This is a major cause of hindering the increase in the density of bipolar ICs. Furthermore, in the above method, an oxide film is added every time a photograph is taken, resulting in extremely large differences in level.
その為メタライズで断線が生じやすく歩留り、信頼性を
悪くしていた。As a result, metallization tends to cause disconnections, which reduces yield and reliability.
本発明は分離・シンカー・ベースの拡散窓あけの位置関
係を1回の写真処理で決定するようにして上記の欠点を
解消し、これにより写真の合せ余裕を不用ならしめ、バ
イポーラICの高密度化を可能ならしめること及び表面
の段差を最小限におさえる方法を提供するものである。The present invention solves the above-mentioned drawbacks by determining the positional relationship of the separation, sinker, and base diffusion window openings in a single photo process, thereby eliminating the need for alignment margins for photos and making it possible to achieve high density bipolar ICs. The purpose of this invention is to provide a method of making it possible to reduce the surface level difference and minimizing the level difference on the surface.
本発明は
(イ)半導体基体の一面上にシリコン酸化膜及びシリコ
ン窒化膜を順次積層せしめる工程。The present invention includes (a) a step of sequentially laminating a silicon oxide film and a silicon nitride film on one surface of a semiconductor substrate;
(ロ)前記半導体基体の2以上の拡散領域形成区域上の
シリコン窒化膜を残し、他のシリコン窒化膜もしくはシ
リコン窒化膜及びシリコン酸化膜を除去する工程。(b) A step of leaving the silicon nitride film on the two or more diffusion region formation areas of the semiconductor substrate and removing the other silicon nitride film or the silicon nitride film and the silicon oxide film.
(ハ)前記半導体基体のシリコン窒化膜の除去された面
にシリコン酸化膜を形成する工程。(c) forming a silicon oxide film on the surface of the semiconductor substrate from which the silicon nitride film has been removed;
に) 前記半導体基体の一拡散領域形成区域上のシリコ
ン窒化膜及びシリコン酸化膜を除去し。b) removing the silicon nitride film and silicon oxide film on one diffusion region forming area of the semiconductor substrate;
露出した表面より不純物を拡散して第1の拡散領域を形
成する工程。A step of diffusing impurities from the exposed surface to form a first diffusion region.
(ホ)前記半導体基体の拡散領域(第1)表面にシリコ
ン酸化膜を形成した後、他の拡散領域形成区域上のシリ
コン窒化膜及びシリコン酸化膜を除去し、露出した表面
より不純物を拡散して他の拡散領域を形成する工程。(e) After forming a silicon oxide film on the diffusion region (first) surface of the semiconductor substrate, remove the silicon nitride film and silicon oxide film on other diffusion region formation areas, and diffuse impurities from the exposed surface. forming another diffusion region.
以上G)乃至(ホ))を含むことを特徴とするものであ
る。It is characterized by including the above G) to (E)).
以下実施例について説明する。第2図は本発明の実施例
を示す工程別概略断面図で先ず■ 半導体基体はウェハ
ー1に埋込層2及びエビ層3を設けた従来とほぼ同一基
体を用意する。(第2図a)
■ 次にウェハー表面にシリコン酸化膜(8i0J及び
シリコン窒化膜(SiN)を順次層状に形成し、次いで
該ウェハー表面上の分離領域、シンカー領域及びベース
領域形成区域の窒化膜を残し他の窒化膜(8i N)及
び酸化膜(8io、)を除去する。(なお、8i0.は
残してもよい。)第2図(+))
■ 次に上記ウーハ−の窒化膜の除去された面を選択的
に酸化し厚い酸化膜(Sin、)を形成する。第2図(
c)
■ 次に分離用写真処理をし分離領域形成表面の8iN
を例えばプラズマエツチャーテ除去シ次いでSin、を
除去する。第2図(d)。この時の写真の合せ余裕は+
d)図のB、B’の距離の範囲内にあわば良い。Examples will be described below. FIG. 2 is a schematic cross-sectional view of each step showing an embodiment of the present invention. First, (1) A semiconductor substrate is prepared which is substantially the same as a conventional substrate in which a wafer 1 is provided with a buried layer 2 and a shrimp layer 3. (Fig. 2a) ■ Next, a silicon oxide film (8i0J) and a silicon nitride film (SiN) are sequentially formed in layers on the wafer surface, and then a nitride film is formed on the isolation region, sinker region, and base region forming area on the wafer surface. Remove the other nitride film (8i N) and oxide film (8io, ), leaving the nitride film (8i N). (8i0. may be left.) Fig. 2 (+)) The removed surface is selectively oxidized to form a thick oxide film (Sin). Figure 2 (
c) ■ Next, photo processing for separation is performed to reduce the 8iN of the separation area forming surface.
For example, plasma etching removes Sin. Figure 2(d). The alignment margin for the photos at this time is +
d) The distance should be within the range of distances B and B' in the figure.
■ 次に残ったSiN膜及び8IO,膜をマスクとし例
えばBNjこよる気相拡散法で窓あけされた分離領域に
ボロンを沈積する。第2図(e)なお8iNはボロンを
ほとんど通過させないが8i0.は表面に多少ボロンが
入りBSG膜となる為このB5G1[を選択的に除去(
例えば非硝酸素のP−エッチ液)し、再酸化する。(2) Next, using the remaining SiN film, 8IO, and film as a mask, boron is deposited in the window-opened separation region by, for example, a vapor phase diffusion method using BNj. FIG. 2(e) Note that 8iN hardly allows boron to pass through, but 8i0. Since BSG has some boron on the surface, this B5G1 is selectively removed (
(e.g., a non-nitrogen-oxygen P-etch solution) and reoxidize.
■ 次に同様の方法でシンカー領域表面のSINを除去
し基板S1を露出させた徒1通常の方法(例えば PO
Cl2からの気相拡散)でN型の不純物を沈積する。(
第2図f)
■ 次いで上記分離領域用法fft層及びシンカー領域
川波積層を拡散し1分離領域4及びシンカー領域5を形
成する。(第2図g)
■ 以下上記同様にしてベース区域上の窒化膜を除去し
て、ベース領域6を形成、更にエミッタ領域7を形成し
た援、コンタクト窓開及び配線パーターニングを行って
完成した。■ Next, the SIN on the surface of the sinker region was removed using the same method to expose the substrate S1.
N-type impurities are deposited by vapor phase diffusion from Cl2. (
(FIG. 2f) (1) Next, the separation region 4 and sinker region 5 are formed by diffusing the fft layer and the sinker region Kawanami lamination described above. (Fig. 2g) ■ The nitride film on the base area was removed in the same manner as above to form the base area 6, and the emitter area 7 was further formed, contact windows were opened, and wiring patterning was performed to complete the process. .
(第2図h)
この製法によれば分離・シンカー・ベース各領域の位置
関係は最初の8iN膜の写真マスク自体の精度で決って
おりこれは02〜05μm程度以下である。従って合せ
余裕を取る必要がなく。(Fig. 2h) According to this manufacturing method, the positional relationship of the separation, sinker, and base regions is determined by the accuracy of the initial 8iN film photomask itself, which is about 02 to 05 μm or less. Therefore, there is no need to take a margin.
耐圧で決まる空乏層のひろがり幅ぎりぎりに設計するこ
とができ高密度化が可能となる。また各拡散の度にSj
O,の選択エッチ(P2O,BSG)・再酸化が繰り返
され、しかもコンタクトの窓あけを必要とする部分は8
iNでおおわれていた関係で基体が突き上げた構造とな
り酸化膜が薄くなっている。その結果、表面全体の段差
が少なく滑らかであるとともに、コンタクト窓あけが容
易になる利点がある。因み1こ従来分離、ベース間(第
1図f−A)25μmに設計していたものを20μmに
したところ、従来法では大幅な歩留り低下を生じたが拳
法では逆に歩留りが向上した。従来法の歩留り低下は空
乏層のパンチスルーによる耐圧低下であり1本法の歩留
向上は表面がより滑らかとなり、AI配線不良が減少し
た為であることが確認された。It is possible to design the depletion layer to the limit of the width determined by the withstand voltage, making it possible to increase the density. Also, for each diffusion, Sj
Selective etching of O, (P2O, BSG) and reoxidation are repeated, and the area that requires contact window opening is 8.
Since the substrate was covered with iN, the structure was such that the substrate was pushed up, and the oxide film was thin. As a result, there are advantages in that the entire surface is smooth with few steps, and contact windows can be easily opened. Incidentally, when the conventional separation and base distance (f-A in Fig. 1), which was designed to be 25 μm, was changed to 20 μm, the yield decreased significantly in the conventional method, but on the contrary, the yield improved in Kempo. It was confirmed that the decrease in yield in the conventional method was due to a decrease in breakdown voltage due to punch-through of the depletion layer, and the improvement in yield in the single method was due to a smoother surface and a reduction in AI wiring defects.
以上の実施例では拡散マスクとしてシリコン酸化膜及び
窒化膜を利用して通常のデポジット及び拡散工程を経て
各領域を形成する例について説明したが、この他イオン
注入機を利用しても同様に実施できる。ただこの場合拡
散マスクとしては酸化膜及びレジストを利用し、ボロン
或はリンを注入し必要に応じて熱処理するとよい。In the above example, an example was explained in which each region was formed through a normal deposition and diffusion process using a silicon oxide film and a nitride film as a diffusion mask, but it could also be performed using an ion implanter. can. However, in this case, it is preferable to use an oxide film and a resist as a diffusion mask, implant boron or phosphorus, and perform heat treatment if necessary.
以上の説明から明らかなように本発明によれば1回の写
真処理精度の範囲で各領域のセルフ7ライメントが達成
できるので各ユニット素子の特性が揃い素子の総合特性
が向上し素子製造時の歩留が向上できる等実用上の効果
は大きい。As is clear from the above explanation, according to the present invention, self-alignment of each region can be achieved within the accuracy of one photo processing, so that the characteristics of each unit element are uniform, the overall characteristics of the element are improved, and the overall characteristics of the element are improved. It has great practical effects, such as improved yield.
第1図(a)〜(f)は従来例を示す工程別断面図、Q
−
第2図(、j〜(h)は本発明の一実施例を示す工程別
断面図である。図において1は半導体ウーハ−12は埋
込層、3はエピタキシアル成長層、4は分離領域、5は
シンカー領域、6はベース領域。
7はエミッタ領域、Sin、はシリコン酸化膜、SiN
はシリコン窒化膜である。
特許出願人 新電元工業株式会社
10−
叢と口Figures 1 (a) to (f) are cross-sectional views showing conventional examples by process, Q
- Figures 2 (, j to (h) are cross-sectional views showing one embodiment of the present invention by process. In the figure, 1 is a semiconductor woofer, 12 is a buried layer, 3 is an epitaxial growth layer, and 4 is a separated layer. 5 is a sinker region, 6 is a base region. 7 is an emitter region, Sin is a silicon oxide film, SiN
is a silicon nitride film. Patent applicant Shindengen Kogyo Co., Ltd. 10- Kusa Toguchi
Claims (2)
シリコン窒化膜を順次積層せしめる工程。 (ロ)前記半導体基体の2以上の拡散領域形成区域上の
シリコン窒化膜を残し、他のシリコン窒化膜もしくはシ
リコン窒化膜及びシリコン酸化膜を除去する工程。 (ハ)前記半導体基体のシリコン窒化膜の除去された面
にシリコン酸化膜を形成する工程。 に)前記半導体基体の一拡散領域形成区域上のシリコン
窒化膜及びシリコン酸化膜を除去し、露出した表面より
不純物を拡散して第1の拡散領域を形成する工程。 (ホ)前記半導体基体の拡散領域(第1)表面にシリコ
ン酸化膜を形成した後、他の拡散領域形成区域上のシリ
コン窒化膜及びシリコン酸化膜を除去し、霧出した表面
より不純物を拡散して他の拡散領域を形成する工程。 以上(イ)乃至(ホ)を含む半導体装置の製造方法。(1) (a) Step of sequentially laminating a silicon oxide film and a silicon nitride film on one surface of a semiconductor substrate. (b) A step of leaving the silicon nitride film on the two or more diffusion region formation areas of the semiconductor substrate and removing the other silicon nitride film or the silicon nitride film and the silicon oxide film. (c) forming a silicon oxide film on the surface of the semiconductor substrate from which the silicon nitride film has been removed; b) removing the silicon nitride film and the silicon oxide film on the one diffusion region formation area of the semiconductor substrate and diffusing impurities from the exposed surface to form a first diffusion region; (e) After forming a silicon oxide film on the diffusion region (first) surface of the semiconductor substrate, remove the silicon nitride film and silicon oxide film on other diffusion region formation areas, and diffuse impurities from the surface that has been sprayed out. to form another diffusion region. A method of manufacturing a semiconductor device including the above (a) to (e).
はベース領域、分離領域及びシンカー領域であることを
特徴とする特許請求の範囲第(1)項記載の半導体装置
の製造方法。(2) The method for manufacturing a semiconductor device according to claim (1), wherein the diffusion region forming area is a base region, an isolation region, or a base region, an isolation region, and a sinker region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22016183A JPS60111466A (en) | 1983-11-22 | 1983-11-22 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22016183A JPS60111466A (en) | 1983-11-22 | 1983-11-22 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60111466A true JPS60111466A (en) | 1985-06-17 |
Family
ID=16746838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22016183A Pending JPS60111466A (en) | 1983-11-22 | 1983-11-22 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60111466A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01132162A (en) * | 1987-11-17 | 1989-05-24 | Mitsubishi Electric Corp | Manufacture of semiconductor device |
JPH02305464A (en) * | 1989-05-19 | 1990-12-19 | Sanyo Electric Co Ltd | Manufacture of semiconductor integrated circuit |
JPH02305462A (en) * | 1989-05-19 | 1990-12-19 | Sanyo Electric Co Ltd | Manufacture of semiconductor integrated circuit |
JPH02305466A (en) * | 1989-05-19 | 1990-12-19 | Sanyo Electric Co Ltd | Manufacture of semiconductor integrated circuit |
JPH02305463A (en) * | 1989-05-19 | 1990-12-19 | Sanyo Electric Co Ltd | Manufacture of semiconductor integrated circuit |
JPH02305461A (en) * | 1989-05-19 | 1990-12-19 | Sanyo Electric Co Ltd | Manufacture of semiconductor integrated circuit |
JPH02305465A (en) * | 1989-05-19 | 1990-12-19 | Sanyo Electric Co Ltd | Manufacture of semiconductor integrated circuit |
JPH02305467A (en) * | 1989-05-19 | 1990-12-19 | Sanyo Electric Co Ltd | Manufacture of semiconductor integrate circuit |
JP2021174945A (en) * | 2020-04-28 | 2021-11-01 | 株式会社東海理化電機製作所 | Semiconductor device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53123675A (en) * | 1977-04-01 | 1978-10-28 | Burroughs Corp | Method of producing transistor in semiconductor ic |
JPS55111144A (en) * | 1979-02-20 | 1980-08-27 | Nec Corp | Manufacturing method of semiconductor device |
JPS55160444A (en) * | 1979-05-31 | 1980-12-13 | Fujitsu Ltd | Manufacture of semiconductor device |
-
1983
- 1983-11-22 JP JP22016183A patent/JPS60111466A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53123675A (en) * | 1977-04-01 | 1978-10-28 | Burroughs Corp | Method of producing transistor in semiconductor ic |
JPS55111144A (en) * | 1979-02-20 | 1980-08-27 | Nec Corp | Manufacturing method of semiconductor device |
JPS55160444A (en) * | 1979-05-31 | 1980-12-13 | Fujitsu Ltd | Manufacture of semiconductor device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01132162A (en) * | 1987-11-17 | 1989-05-24 | Mitsubishi Electric Corp | Manufacture of semiconductor device |
JPH02305464A (en) * | 1989-05-19 | 1990-12-19 | Sanyo Electric Co Ltd | Manufacture of semiconductor integrated circuit |
JPH02305462A (en) * | 1989-05-19 | 1990-12-19 | Sanyo Electric Co Ltd | Manufacture of semiconductor integrated circuit |
JPH02305466A (en) * | 1989-05-19 | 1990-12-19 | Sanyo Electric Co Ltd | Manufacture of semiconductor integrated circuit |
JPH02305463A (en) * | 1989-05-19 | 1990-12-19 | Sanyo Electric Co Ltd | Manufacture of semiconductor integrated circuit |
JPH02305461A (en) * | 1989-05-19 | 1990-12-19 | Sanyo Electric Co Ltd | Manufacture of semiconductor integrated circuit |
JPH02305465A (en) * | 1989-05-19 | 1990-12-19 | Sanyo Electric Co Ltd | Manufacture of semiconductor integrated circuit |
JPH02305467A (en) * | 1989-05-19 | 1990-12-19 | Sanyo Electric Co Ltd | Manufacture of semiconductor integrate circuit |
JP2021174945A (en) * | 2020-04-28 | 2021-11-01 | 株式会社東海理化電機製作所 | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008235927A (en) | Process for doping two levels of double poly bipolar transistor after formation of second poly layer | |
JPS60111466A (en) | Manufacture of semiconductor device | |
JPH038343A (en) | Bipolar transistor and manufacture thereof | |
JPS6081839A (en) | Manufacture of semiconductor device | |
JPH03129818A (en) | Manufacture of semiconductor device | |
JPH0964192A (en) | Manufacture of semiconductor device | |
JPS61242064A (en) | Manufacture of complementary type semiconductor device | |
JPH0828424B2 (en) | Semiconductor device and manufacturing method thereof | |
KR910000020B1 (en) | Manufacture of semiconductor device | |
JPS628939B2 (en) | ||
JPS6244862B2 (en) | ||
JPS5933271B2 (en) | Manufacturing method of semiconductor device | |
JP3042804B2 (en) | Element isolation method and semiconductor device | |
JPS6010748A (en) | Manufacture of semiconductor device | |
JPS6058637A (en) | Manufacture of semiconductor device | |
JPS58170012A (en) | Manufacture of semiconductor device | |
JPS59151459A (en) | Manufacture of semiconductor device | |
JPH01241158A (en) | Manufacture of semiconductor integrated circuit | |
JPS5884443A (en) | Manufacture of semiconductor ic | |
JPH0117256B2 (en) | ||
JPH03180029A (en) | Manufacture of semiconductor device | |
JPH04216651A (en) | Manufacture of semiconductor device | |
JPS63244666A (en) | Manufacture of semiconductor device | |
JPS59134868A (en) | Manufacture of semiconductor device | |
JPH0364066A (en) | Manufacture of bipolar cmos semiconductor integrated circuit |