JPS60246673A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPS60246673A
JPS60246673A JP59102873A JP10287384A JPS60246673A JP S60246673 A JPS60246673 A JP S60246673A JP 59102873 A JP59102873 A JP 59102873A JP 10287384 A JP10287384 A JP 10287384A JP S60246673 A JPS60246673 A JP S60246673A
Authority
JP
Japan
Prior art keywords
gate electrode
solid
photodiode
type
resetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59102873A
Other languages
Japanese (ja)
Inventor
Hiroshi Abe
博史 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59102873A priority Critical patent/JPS60246673A/en
Publication of JPS60246673A publication Critical patent/JPS60246673A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To reduce the size of a resetting mechanism for a storage capacitor for beam generating carriers, and to increase density by unifying gate and drain electrodes in an MOS type field-effect transistor. CONSTITUTION:An N type region 2 forms a photodiode through a joining with a P type semiconductor substrate 1. A depletion layer 4 is shaped to the P type substrate 1, and a storage gate electrode 3 storing beam generating carriers in the photodiode and a barrier gate electrode 5 for setting the potential of the photodiode are formed. An N<+> drain region 6 and a resetting gate electrode 7 constitute an MOSFET using the depletion layer 4 as a source. An electrode for drawing out charges is unified with the resetting gate electrode 7. A margin of an opening and the N<+> drain diffusion layer 6 on the formation of the opening of an insulating film is unnecessitated, thus miniaturizing resetting structure.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は固体撮像素子、特に光生成キャリア用蓄積キャ
パシタのリセット機構を備えた固体撮像素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a solid-state image sensor, and particularly to a solid-state image sensor equipped with a reset mechanism for a storage capacitor for photogenerated carriers.

〔従来技術〕[Prior art]

第1図(a)は、従来例に係るリセット機構を備えた固
体撮像素子の構成を示す断面図である。1はP型半導体
基板、2はN型領域でP型半導体基板lとの接合により
フォト・ダイオードを形成している。3は、P型基板1
に空乏層4を形成して前記フォト・ダイオードの光生成
キャリアを蓄積させる蓄積ゲート電極、5FiN型領域
2即ち前記フ芽ト・ダイオードの電位を設定する為のバ
リアゲート電極、6はN+型ドレイン領域、7はリセッ
トゲート電極である。N+ドレイン領域及びリセットゲ
ート電極7は、空乏層4をソースとするMOSFETを
構成している。8はN+型ドレイン領域に接続された電
荷吸い出し用電極である。
FIG. 1(a) is a cross-sectional view showing the configuration of a solid-state image sensor equipped with a reset mechanism according to a conventional example. Reference numeral 1 denotes a P-type semiconductor substrate, and 2 denotes an N-type region, which forms a photodiode by joining with the P-type semiconductor substrate l. 3 is a P-type substrate 1
5 is a storage gate electrode for forming a depletion layer 4 to accumulate photogenerated carriers of the photodiode; 5 is a barrier gate electrode for setting the potential of the FiN type region 2, that is, the photodiode; 6 is an N+ type drain; Region 7 is a reset gate electrode. The N+ drain region and the reset gate electrode 7 constitute a MOSFET using the depletion layer 4 as a source. 8 is a charge extraction electrode connected to the N+ type drain region.

次に第1図(b)を参照しながら動作を説明する。Next, the operation will be explained with reference to FIG. 1(b).

第1図(b)は、第1図(a)に示す各部の゛電位分布
を示す図であり、φ8.φIIT l φ8.φDはそ
れぞれパ リアゲート電極5.蓄積ゲート電極3.リセ
ットゲート電極7.N+ドレイン領域6の電位である。
FIG. 1(b) is a diagram showing the potential distribution of each part shown in FIG. 1(a). φIIT l φ8. φD is the pariah gate electrode 5. Storage gate electrode 3. Reset gate electrode7. This is the potential of the N+ drain region 6.

先ずN型領域2で発生した光生成キャリアは、電位φB
を乗り越えて、蓄積ゲート電極3下の電位φ8丁の所に
集められる。このため電位φ8Tが次第に浅くなシ、φ
、よシも浅くなると、キャリアは電位φ8を乗シ越えて
電位φ9のN+ドレイン領域6に集められる0そしてキ
ャリヤは電極8によって外部に吸い出される。この場合
、リセットゲート[極7及び!ドレイン領域6はブルー
ミング抑制機構として働いている。また、電荷蓄積ゲー
ト3下の中ヤリアを、出力回路図(図示せず)に接続さ
れた電荷転送レジスタ(図示せず)へ送出した後、電位
φRを電位φ8?よりも高くすれば、電位φ8Tの部分
に残留しているキャリアをt拡散層6で吸い出す事がで
きる。これにより暗電流成分を除去して固体撮像素子の
ダイナミックレンジを広げる事が可能となる。
First, the photogenerated carriers generated in the N-type region 2 reach the potential φB
, and is collected at a potential φ8 below the storage gate electrode 3. Therefore, the potential φ8T gradually becomes shallower, φ
, when the depth becomes shallower, the carriers exceed the potential φ8 and are collected in the N+ drain region 6 at the potential φ9.Then, the carriers are sucked out by the electrode 8. In this case, the reset gate [poles 7 and ! The drain region 6 functions as a blooming suppression mechanism. Further, after sending the internal voltage under the charge storage gate 3 to the charge transfer register (not shown) connected to the output circuit diagram (not shown), the potential φR is changed to the potential φ8? If the voltage is set higher than that, the carriers remaining in the portion of the potential φ8T can be sucked out by the t diffusion layer 6. This makes it possible to remove the dark current component and widen the dynamic range of the solid-state image sensor.

ところで第1図(a)に示した従来のリセット機構にお
いては、!型ドレイン拡散層6に対して電荷吸い出し用
の11.極8を設ける場合、11tm程度の厚い絶縁膜
を開孔する必要がある。
By the way, in the conventional reset mechanism shown in FIG. 1(a),! 11 for sucking out charges from the type drain diffusion layer 6. When providing the pole 8, it is necessary to open a hole in the insulating film as thick as about 11 tm.

しかしこの開孔の大きさは、今日の微細パターン技術を
もってしても2μm角以下にすることは出来ず、また!
型ドレイン拡散層6内に確実に開孔し、且つ開孔する際
の横方向エツチング等を考慮すれば開孔端と前記炉型ド
レイン拡散層6の端とのマージンは2μm程度は取る必
要がある。このように各寸法等を考慮すれば、炉型ドレ
イン拡散層は6μm角の大きさになる。
However, even with today's fine pattern technology, the size of this opening cannot be reduced to less than 2 μm square.
In order to ensure that the hole is formed in the mold drain diffusion layer 6 and taking into consideration the lateral etching when forming the hole, it is necessary to provide a margin of about 2 μm between the opening end and the edge of the furnace-type drain diffusion layer 6. be. Considering each dimension in this manner, the furnace-type drain diffusion layer has a size of 6 μm square.

更にリセットゲート電極の有効チャネル長、即ちN+型
ドレイン拡散層6の端と蓄積ゲート電極3の端との間隔
は、ショートチャネル効果等を考慮すると3μm以上に
する必要がある。
Furthermore, the effective channel length of the reset gate electrode, ie, the distance between the end of the N+ type drain diffusion layer 6 and the end of the storage gate electrode 3, needs to be 3 μm or more, taking short channel effects and the like into account.

従って、リセット機構を設ける際の長さとしては、前記
有効チャネル長3μmとN+型ドレイン拡散層6の長さ
6μmの合せて9μmとなる。この値は今後、益々高密
度化していく固体撮像素子にとって極めて大きなもので
あり、高密度化を困難圧するものである。
Therefore, the length when providing the reset mechanism is 9 μm in total, which is the effective channel length of 3 μm and the length of the N+ type drain diffusion layer 6 of 6 μm. This value is extremely large for solid-state imaging devices, which will become increasingly dense in the future, and will make it difficult to increase the density.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記リセット機構の寸法を小さくする
ことにより高密度化出来る固体撮像素子を提供すること
である。
An object of the present invention is to provide a solid-state imaging device that can be made higher in density by reducing the size of the reset mechanism.

〔発明の構成〕[Structure of the invention]

本発明による固体撮像素子は、フォト−ダイオードと、
前記フォト・ダイオードで光生成されたキャリアを蓄積
する蓄積ゲート電極と、前記蓄積ゲート電極下の空乏層
をソースとするMO8m電界効果トランジスタのゲート
及びドレイン電極は一体化されている事を特徴とする。
A solid-state image sensor according to the present invention includes a photo-diode,
A storage gate electrode that stores carriers photogenerated by the photodiode and a gate and drain electrode of an MO8m field effect transistor whose source is a depletion layer under the storage gate electrode are integrated. .

〔実施例〕〔Example〕

次に図面を参照して本発明の実施例について説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第2図は本発明の実施例に係るリセット機構を備えた固
体撮像素子の構成を示す断面図で、第1図(a)と同一
のものには同一符号を記しである。
FIG. 2 is a cross-sectional view showing the configuration of a solid-state image sensor equipped with a reset mechanism according to an embodiment of the present invention, in which the same components as in FIG. 1(a) are denoted by the same reference numerals.

N1ドレイン拡散層6は、リセットゲート電極(例えば
多結晶シリコン)を通して、或いはリセットゲート電極
から拡散されたN型不純物によって形成されている。
The N1 drain diffusion layer 6 is formed of N-type impurities diffused through or from the reset gate electrode (for example, polycrystalline silicon).

本構成によれば、第1図(a)に示した電荷吸い出し用
の電極8はリセットゲ−1’に極7と一体化されている
。しかしながら各電極の下のP型基板中の電位φは、第
1図(b)に示したものと全く同一である。
According to this configuration, the charge extraction electrode 8 shown in FIG. 1(a) is integrated with the pole 7 of the reset gate 1'. However, the potential φ in the P-type substrate under each electrode is exactly the same as that shown in FIG. 1(b).

このように開孔する際の開孔−N+ドレイン拡散層マー
ジンが不敗であり、またリセットゲート電極7は電荷の
吸い出し作用をも兼ねている。不要マージン量は計4μ
mであるから、従来のリセット構造を設ける際の長さ9
μmが5μmと縮少され、約騒となる。
In this manner, the opening −N+ drain diffusion layer margin when opening is indestructible, and the reset gate electrode 7 also serves as a charge sucking function. Total unnecessary margin amount is 4μ
m, so the length when providing the conventional reset structure is 9
μm is reduced to 5 μm, which is approximately noisy.

〔発明の効果〕〔Effect of the invention〕

このように本発明によればリセット構造を従来的1/2
まで小さくなる事が出来、従って高密度な固体撮像素子
を達成することができる。
In this way, according to the present invention, the reset structure can be reduced to 1/2 that of the conventional one.
Therefore, a high-density solid-state imaging device can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は従来例に係るリセット機構を備えた固体
撮像素子の構成を示す断面図、第1図(b)は第1図′
(a)に示す各部の電位分布を示す図、第2図は本発明
の実施例に係るリセット機構を備えた固体撮像素子の構
成を示す断面図である。 1・・・P型半導体基板、2・・・N型領域。 3・・・蓄積ゲート′fki極、4・・・空乏層。 5・・・バリアゲート電極、6・・・N”fflドレイ
ン拡散層、7・・・リセットゲート電極。 8・・・′電荷吸い出し用電極。
FIG. 1(a) is a cross-sectional view showing the configuration of a solid-state image sensor equipped with a conventional reset mechanism, and FIG.
FIG. 2 is a cross-sectional view showing the configuration of a solid-state image sensor equipped with a reset mechanism according to an embodiment of the present invention. 1...P-type semiconductor substrate, 2...N-type region. 3...Storage gate 'fki pole, 4...Depletion layer. 5... Barrier gate electrode, 6... N''ffl drain diffusion layer, 7... Reset gate electrode. 8...' Charge extraction electrode.

Claims (1)

【特許請求の範囲】[Claims] フォトψダイオードと、前記フォト−ダイオードで光生
成されたキャリアを蓄積する蓄積ゲート電極と、前記蓄
積ゲート電極下の空乏層をソースとするMO8型電界効
果トランジスタとを備えた固体撮像素子において、前記
MO8ffl電界効果トランジスタのゲート及びドレイ
ン電極は一体化されている事を特徴とする固体撮像素子
A solid-state imaging device comprising a photo-ψ diode, a storage gate electrode that stores carriers photogenerated by the photo-diode, and an MO8 type field effect transistor whose source is a depletion layer under the storage gate electrode. A solid-state imaging device characterized in that the gate and drain electrodes of an MO8ffl field effect transistor are integrated.
JP59102873A 1984-05-22 1984-05-22 Solid-state image pickup element Pending JPS60246673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59102873A JPS60246673A (en) 1984-05-22 1984-05-22 Solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59102873A JPS60246673A (en) 1984-05-22 1984-05-22 Solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPS60246673A true JPS60246673A (en) 1985-12-06

Family

ID=14339012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59102873A Pending JPS60246673A (en) 1984-05-22 1984-05-22 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS60246673A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966082A (en) * 1972-09-11 1974-06-26
JPS5793568A (en) * 1980-12-02 1982-06-10 Nec Corp Semiconductor image pickup element
JPS57170565A (en) * 1981-04-14 1982-10-20 Matsushita Electric Ind Co Ltd Photoelectric converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966082A (en) * 1972-09-11 1974-06-26
JPS5793568A (en) * 1980-12-02 1982-06-10 Nec Corp Semiconductor image pickup element
JPS57170565A (en) * 1981-04-14 1982-10-20 Matsushita Electric Ind Co Ltd Photoelectric converter

Similar Documents

Publication Publication Date Title
US7939868B2 (en) Image pickup device and camera
EP1032049B1 (en) Photoelectric converting element
JP2832136B2 (en) Solid-state imaging device and manufacturing method thereof
JP3020785B2 (en) Solid-state imaging device
JPH0247912B2 (en)
JP3621273B2 (en) Solid-state imaging device and manufacturing method thereof
JPS60246673A (en) Solid-state image pickup element
JPH0438872A (en) Solid camera device
JP3648518B2 (en) Solid-state imaging device
JPS6223156A (en) Semiconductor device and manufacture thereof
JP2584010B2 (en) Solid-state imaging device and method of manufacturing the same
JPH04115575A (en) Solid state image pickup device
JPH0697416A (en) Solid-state image sensing device and manufacture thereof
JP2006074063A (en) Method for manufacturing charge detector
JP2004063498A (en) Mos type solid state imaging device and method of manufacturing the same
JP3041362B2 (en) Linear image sensor
JP2005166824A (en) Solid-state imaging device
JPH07202156A (en) Solid-state image pickup device and manufacture thereof
JP2000174250A (en) Solid state image pickup element
TW200421627A (en) Charge-transferring device
JPS62179760A (en) Manufacture of photoelectric conversion device
JPH0282573A (en) Optoelectric transducer
JPH02218160A (en) Solid-state image sensing element
JP2005268295A (en) Solid state image sensor
US20100309358A1 (en) Solid-state imaging device